kern_sig.c revision 1.333 1 /* $NetBSD: kern_sig.c,v 1.333 2017/03/23 21:59:55 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.333 2017/03/23 21:59:55 christos Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/wait.h>
88 #include <sys/ktrace.h>
89 #include <sys/syslog.h>
90 #include <sys/filedesc.h>
91 #include <sys/file.h>
92 #include <sys/pool.h>
93 #include <sys/ucontext.h>
94 #include <sys/exec.h>
95 #include <sys/kauth.h>
96 #include <sys/acct.h>
97 #include <sys/callout.h>
98 #include <sys/atomic.h>
99 #include <sys/cpu.h>
100 #include <sys/module.h>
101 #include <sys/sdt.h>
102
103 #ifdef PAX_SEGVGUARD
104 #include <sys/pax.h>
105 #endif /* PAX_SEGVGUARD */
106
107 #include <uvm/uvm_extern.h>
108
109 #define SIGQUEUE_MAX 32
110 static pool_cache_t sigacts_cache __read_mostly;
111 static pool_cache_t ksiginfo_cache __read_mostly;
112 static callout_t proc_stop_ch __cacheline_aligned;
113
114 sigset_t contsigmask __cacheline_aligned;
115 static sigset_t stopsigmask __cacheline_aligned;
116 sigset_t sigcantmask __cacheline_aligned;
117
118 static void ksiginfo_exechook(struct proc *, void *);
119 static void proc_stop_callout(void *);
120 static int sigchecktrace(void);
121 static int sigpost(struct lwp *, sig_t, int, int);
122 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
123 static int sigunwait(struct proc *, const ksiginfo_t *);
124 static void sigswitch(bool, int, int);
125
126 static void sigacts_poolpage_free(struct pool *, void *);
127 static void *sigacts_poolpage_alloc(struct pool *, int);
128
129 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
130 int (*coredump_vec)(struct lwp *, const char *) =
131 (int (*)(struct lwp *, const char *))enosys;
132
133 /*
134 * DTrace SDT provider definitions
135 */
136 SDT_PROVIDER_DECLARE(proc);
137 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
138 "struct lwp *", /* target thread */
139 "struct proc *", /* target process */
140 "int"); /* signal */
141 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
142 "struct lwp *", /* target thread */
143 "struct proc *", /* target process */
144 "int"); /* signal */
145 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
146 "int", /* signal */
147 "ksiginfo_t *", /* signal info */
148 "void (*)(void)"); /* handler address */
149
150
151 static struct pool_allocator sigactspool_allocator = {
152 .pa_alloc = sigacts_poolpage_alloc,
153 .pa_free = sigacts_poolpage_free
154 };
155
156 #ifdef DEBUG
157 int kern_logsigexit = 1;
158 #else
159 int kern_logsigexit = 0;
160 #endif
161
162 static const char logcoredump[] =
163 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
164 static const char lognocoredump[] =
165 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
166
167 static kauth_listener_t signal_listener;
168
169 static int
170 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
171 void *arg0, void *arg1, void *arg2, void *arg3)
172 {
173 struct proc *p;
174 int result, signum;
175
176 result = KAUTH_RESULT_DEFER;
177 p = arg0;
178 signum = (int)(unsigned long)arg1;
179
180 if (action != KAUTH_PROCESS_SIGNAL)
181 return result;
182
183 if (kauth_cred_uidmatch(cred, p->p_cred) ||
184 (signum == SIGCONT && (curproc->p_session == p->p_session)))
185 result = KAUTH_RESULT_ALLOW;
186
187 return result;
188 }
189
190 /*
191 * signal_init:
192 *
193 * Initialize global signal-related data structures.
194 */
195 void
196 signal_init(void)
197 {
198
199 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
200
201 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
202 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
203 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
204 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
205 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
206
207 exechook_establish(ksiginfo_exechook, NULL);
208
209 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
210 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
211
212 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
213 signal_listener_cb, NULL);
214 }
215
216 /*
217 * sigacts_poolpage_alloc:
218 *
219 * Allocate a page for the sigacts memory pool.
220 */
221 static void *
222 sigacts_poolpage_alloc(struct pool *pp, int flags)
223 {
224
225 return (void *)uvm_km_alloc(kernel_map,
226 PAGE_SIZE * 2, PAGE_SIZE * 2,
227 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
228 | UVM_KMF_WIRED);
229 }
230
231 /*
232 * sigacts_poolpage_free:
233 *
234 * Free a page on behalf of the sigacts memory pool.
235 */
236 static void
237 sigacts_poolpage_free(struct pool *pp, void *v)
238 {
239
240 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
241 }
242
243 /*
244 * sigactsinit:
245 *
246 * Create an initial sigacts structure, using the same signal state
247 * as of specified process. If 'share' is set, share the sigacts by
248 * holding a reference, otherwise just copy it from parent.
249 */
250 struct sigacts *
251 sigactsinit(struct proc *pp, int share)
252 {
253 struct sigacts *ps = pp->p_sigacts, *ps2;
254
255 if (__predict_false(share)) {
256 atomic_inc_uint(&ps->sa_refcnt);
257 return ps;
258 }
259 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
260 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
261 ps2->sa_refcnt = 1;
262
263 mutex_enter(&ps->sa_mutex);
264 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
265 mutex_exit(&ps->sa_mutex);
266 return ps2;
267 }
268
269 /*
270 * sigactsunshare:
271 *
272 * Make this process not share its sigacts, maintaining all signal state.
273 */
274 void
275 sigactsunshare(struct proc *p)
276 {
277 struct sigacts *ps, *oldps = p->p_sigacts;
278
279 if (__predict_true(oldps->sa_refcnt == 1))
280 return;
281
282 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
283 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
284 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
285 ps->sa_refcnt = 1;
286
287 p->p_sigacts = ps;
288 sigactsfree(oldps);
289 }
290
291 /*
292 * sigactsfree;
293 *
294 * Release a sigacts structure.
295 */
296 void
297 sigactsfree(struct sigacts *ps)
298 {
299
300 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
301 mutex_destroy(&ps->sa_mutex);
302 pool_cache_put(sigacts_cache, ps);
303 }
304 }
305
306 /*
307 * siginit:
308 *
309 * Initialize signal state for process 0; set to ignore signals that
310 * are ignored by default and disable the signal stack. Locking not
311 * required as the system is still cold.
312 */
313 void
314 siginit(struct proc *p)
315 {
316 struct lwp *l;
317 struct sigacts *ps;
318 int signo, prop;
319
320 ps = p->p_sigacts;
321 sigemptyset(&contsigmask);
322 sigemptyset(&stopsigmask);
323 sigemptyset(&sigcantmask);
324 for (signo = 1; signo < NSIG; signo++) {
325 prop = sigprop[signo];
326 if (prop & SA_CONT)
327 sigaddset(&contsigmask, signo);
328 if (prop & SA_STOP)
329 sigaddset(&stopsigmask, signo);
330 if (prop & SA_CANTMASK)
331 sigaddset(&sigcantmask, signo);
332 if (prop & SA_IGNORE && signo != SIGCONT)
333 sigaddset(&p->p_sigctx.ps_sigignore, signo);
334 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
335 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
336 }
337 sigemptyset(&p->p_sigctx.ps_sigcatch);
338 p->p_sflag &= ~PS_NOCLDSTOP;
339
340 ksiginfo_queue_init(&p->p_sigpend.sp_info);
341 sigemptyset(&p->p_sigpend.sp_set);
342
343 /*
344 * Reset per LWP state.
345 */
346 l = LIST_FIRST(&p->p_lwps);
347 l->l_sigwaited = NULL;
348 l->l_sigstk.ss_flags = SS_DISABLE;
349 l->l_sigstk.ss_size = 0;
350 l->l_sigstk.ss_sp = 0;
351 ksiginfo_queue_init(&l->l_sigpend.sp_info);
352 sigemptyset(&l->l_sigpend.sp_set);
353
354 /* One reference. */
355 ps->sa_refcnt = 1;
356 }
357
358 /*
359 * execsigs:
360 *
361 * Reset signals for an exec of the specified process.
362 */
363 void
364 execsigs(struct proc *p)
365 {
366 struct sigacts *ps;
367 struct lwp *l;
368 int signo, prop;
369 sigset_t tset;
370 ksiginfoq_t kq;
371
372 KASSERT(p->p_nlwps == 1);
373
374 sigactsunshare(p);
375 ps = p->p_sigacts;
376
377 /*
378 * Reset caught signals. Held signals remain held through
379 * l->l_sigmask (unless they were caught, and are now ignored
380 * by default).
381 *
382 * No need to lock yet, the process has only one LWP and
383 * at this point the sigacts are private to the process.
384 */
385 sigemptyset(&tset);
386 for (signo = 1; signo < NSIG; signo++) {
387 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
388 prop = sigprop[signo];
389 if (prop & SA_IGNORE) {
390 if ((prop & SA_CONT) == 0)
391 sigaddset(&p->p_sigctx.ps_sigignore,
392 signo);
393 sigaddset(&tset, signo);
394 }
395 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
396 }
397 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
398 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
399 }
400 ksiginfo_queue_init(&kq);
401
402 mutex_enter(p->p_lock);
403 sigclearall(p, &tset, &kq);
404 sigemptyset(&p->p_sigctx.ps_sigcatch);
405
406 /*
407 * Reset no zombies if child dies flag as Solaris does.
408 */
409 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
410 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
411 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
412
413 /*
414 * Reset per-LWP state.
415 */
416 l = LIST_FIRST(&p->p_lwps);
417 l->l_sigwaited = NULL;
418 l->l_sigstk.ss_flags = SS_DISABLE;
419 l->l_sigstk.ss_size = 0;
420 l->l_sigstk.ss_sp = 0;
421 ksiginfo_queue_init(&l->l_sigpend.sp_info);
422 sigemptyset(&l->l_sigpend.sp_set);
423 mutex_exit(p->p_lock);
424
425 ksiginfo_queue_drain(&kq);
426 }
427
428 /*
429 * ksiginfo_exechook:
430 *
431 * Free all pending ksiginfo entries from a process on exec.
432 * Additionally, drain any unused ksiginfo structures in the
433 * system back to the pool.
434 *
435 * XXX This should not be a hook, every process has signals.
436 */
437 static void
438 ksiginfo_exechook(struct proc *p, void *v)
439 {
440 ksiginfoq_t kq;
441
442 ksiginfo_queue_init(&kq);
443
444 mutex_enter(p->p_lock);
445 sigclearall(p, NULL, &kq);
446 mutex_exit(p->p_lock);
447
448 ksiginfo_queue_drain(&kq);
449 }
450
451 /*
452 * ksiginfo_alloc:
453 *
454 * Allocate a new ksiginfo structure from the pool, and optionally copy
455 * an existing one. If the existing ksiginfo_t is from the pool, and
456 * has not been queued somewhere, then just return it. Additionally,
457 * if the existing ksiginfo_t does not contain any information beyond
458 * the signal number, then just return it.
459 */
460 ksiginfo_t *
461 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
462 {
463 ksiginfo_t *kp;
464
465 if (ok != NULL) {
466 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
467 KSI_FROMPOOL)
468 return ok;
469 if (KSI_EMPTY_P(ok))
470 return ok;
471 }
472
473 kp = pool_cache_get(ksiginfo_cache, flags);
474 if (kp == NULL) {
475 #ifdef DIAGNOSTIC
476 printf("Out of memory allocating ksiginfo for pid %d\n",
477 p->p_pid);
478 #endif
479 return NULL;
480 }
481
482 if (ok != NULL) {
483 memcpy(kp, ok, sizeof(*kp));
484 kp->ksi_flags &= ~KSI_QUEUED;
485 } else
486 KSI_INIT_EMPTY(kp);
487
488 kp->ksi_flags |= KSI_FROMPOOL;
489
490 return kp;
491 }
492
493 /*
494 * ksiginfo_free:
495 *
496 * If the given ksiginfo_t is from the pool and has not been queued,
497 * then free it.
498 */
499 void
500 ksiginfo_free(ksiginfo_t *kp)
501 {
502
503 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
504 return;
505 pool_cache_put(ksiginfo_cache, kp);
506 }
507
508 /*
509 * ksiginfo_queue_drain:
510 *
511 * Drain a non-empty ksiginfo_t queue.
512 */
513 void
514 ksiginfo_queue_drain0(ksiginfoq_t *kq)
515 {
516 ksiginfo_t *ksi;
517
518 KASSERT(!TAILQ_EMPTY(kq));
519
520 while (!TAILQ_EMPTY(kq)) {
521 ksi = TAILQ_FIRST(kq);
522 TAILQ_REMOVE(kq, ksi, ksi_list);
523 pool_cache_put(ksiginfo_cache, ksi);
524 }
525 }
526
527 static int
528 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
529 {
530 ksiginfo_t *ksi, *nksi;
531
532 if (sp == NULL)
533 goto out;
534
535 /* Find siginfo and copy it out. */
536 int count = 0;
537 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
538 if (ksi->ksi_signo != signo)
539 continue;
540 if (count++ > 0) /* Only remove the first, count all of them */
541 continue;
542 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
543 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
544 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
545 ksi->ksi_flags &= ~KSI_QUEUED;
546 if (out != NULL) {
547 memcpy(out, ksi, sizeof(*out));
548 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
549 }
550 ksiginfo_free(ksi);
551 }
552 if (count)
553 return count;
554
555 out:
556 /* If there is no siginfo, then manufacture it. */
557 if (out != NULL) {
558 KSI_INIT(out);
559 out->ksi_info._signo = signo;
560 out->ksi_info._code = SI_NOINFO;
561 }
562 return 0;
563 }
564
565 /*
566 * sigget:
567 *
568 * Fetch the first pending signal from a set. Optionally, also fetch
569 * or manufacture a ksiginfo element. Returns the number of the first
570 * pending signal, or zero.
571 */
572 int
573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
574 {
575 sigset_t tset;
576 int count;
577
578 /* If there's no pending set, the signal is from the debugger. */
579 if (sp == NULL)
580 goto out;
581
582 /* Construct mask from signo, and 'mask'. */
583 if (signo == 0) {
584 if (mask != NULL) {
585 tset = *mask;
586 __sigandset(&sp->sp_set, &tset);
587 } else
588 tset = sp->sp_set;
589
590 /* If there are no signals pending - return. */
591 if ((signo = firstsig(&tset)) == 0)
592 goto out;
593 } else {
594 KASSERT(sigismember(&sp->sp_set, signo));
595 }
596
597 sigdelset(&sp->sp_set, signo);
598 out:
599 count = siggetinfo(sp, out, signo);
600 if (count > 1)
601 sigaddset(&sp->sp_set, signo);
602 return signo;
603 }
604
605 /*
606 * sigput:
607 *
608 * Append a new ksiginfo element to the list of pending ksiginfo's.
609 */
610 static int
611 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
612 {
613 ksiginfo_t *kp;
614
615 KASSERT(mutex_owned(p->p_lock));
616 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
617
618 sigaddset(&sp->sp_set, ksi->ksi_signo);
619
620 /*
621 * If there is no siginfo, we are done.
622 */
623 if (KSI_EMPTY_P(ksi))
624 return 0;
625
626 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
627
628 size_t count = 0;
629 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 count++;
631 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
632 continue;
633 if (kp->ksi_signo == ksi->ksi_signo) {
634 KSI_COPY(ksi, kp);
635 kp->ksi_flags |= KSI_QUEUED;
636 return 0;
637 }
638 }
639
640 if (count >= SIGQUEUE_MAX) {
641 #ifdef DIAGNOSTIC
642 printf("%s(%d): Signal queue is full signal=%d\n",
643 p->p_comm, p->p_pid, ksi->ksi_signo);
644 #endif
645 return EAGAIN;
646 }
647 ksi->ksi_flags |= KSI_QUEUED;
648 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
649
650 return 0;
651 }
652
653 /*
654 * sigclear:
655 *
656 * Clear all pending signals in the specified set.
657 */
658 void
659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
660 {
661 ksiginfo_t *ksi, *next;
662
663 if (mask == NULL)
664 sigemptyset(&sp->sp_set);
665 else
666 sigminusset(mask, &sp->sp_set);
667
668 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
669 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
670 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
671 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
672 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
673 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
674 }
675 }
676 }
677
678 /*
679 * sigclearall:
680 *
681 * Clear all pending signals in the specified set from a process and
682 * its LWPs.
683 */
684 void
685 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
686 {
687 struct lwp *l;
688
689 KASSERT(mutex_owned(p->p_lock));
690
691 sigclear(&p->p_sigpend, mask, kq);
692
693 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
694 sigclear(&l->l_sigpend, mask, kq);
695 }
696 }
697
698 /*
699 * sigispending:
700 *
701 * Return the first signal number if there are pending signals for the
702 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
703 * and that the signal has been posted to the appopriate queue before
704 * LW_PENDSIG is set.
705 */
706 int
707 sigispending(struct lwp *l, int signo)
708 {
709 struct proc *p = l->l_proc;
710 sigset_t tset;
711
712 membar_consumer();
713
714 tset = l->l_sigpend.sp_set;
715 sigplusset(&p->p_sigpend.sp_set, &tset);
716 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
717 sigminusset(&l->l_sigmask, &tset);
718
719 if (signo == 0) {
720 return firstsig(&tset);
721 }
722 return sigismember(&tset, signo) ? signo : 0;
723 }
724
725 void
726 getucontext(struct lwp *l, ucontext_t *ucp)
727 {
728 struct proc *p = l->l_proc;
729
730 KASSERT(mutex_owned(p->p_lock));
731
732 ucp->uc_flags = 0;
733 ucp->uc_link = l->l_ctxlink;
734 ucp->uc_sigmask = l->l_sigmask;
735 ucp->uc_flags |= _UC_SIGMASK;
736
737 /*
738 * The (unsupplied) definition of the `current execution stack'
739 * in the System V Interface Definition appears to allow returning
740 * the main context stack.
741 */
742 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
743 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
744 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
745 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
746 } else {
747 /* Simply copy alternate signal execution stack. */
748 ucp->uc_stack = l->l_sigstk;
749 }
750 ucp->uc_flags |= _UC_STACK;
751 mutex_exit(p->p_lock);
752 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
753 mutex_enter(p->p_lock);
754 }
755
756 int
757 setucontext(struct lwp *l, const ucontext_t *ucp)
758 {
759 struct proc *p = l->l_proc;
760 int error;
761
762 KASSERT(mutex_owned(p->p_lock));
763
764 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
765 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
766 if (error != 0)
767 return error;
768 }
769
770 mutex_exit(p->p_lock);
771 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
772 mutex_enter(p->p_lock);
773 if (error != 0)
774 return (error);
775
776 l->l_ctxlink = ucp->uc_link;
777
778 /*
779 * If there was stack information, update whether or not we are
780 * still running on an alternate signal stack.
781 */
782 if ((ucp->uc_flags & _UC_STACK) != 0) {
783 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
784 l->l_sigstk.ss_flags |= SS_ONSTACK;
785 else
786 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
787 }
788
789 return 0;
790 }
791
792 /*
793 * killpg1: common code for kill process group/broadcast kill.
794 */
795 int
796 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
797 {
798 struct proc *p, *cp;
799 kauth_cred_t pc;
800 struct pgrp *pgrp;
801 int nfound;
802 int signo = ksi->ksi_signo;
803
804 cp = l->l_proc;
805 pc = l->l_cred;
806 nfound = 0;
807
808 mutex_enter(proc_lock);
809 if (all) {
810 /*
811 * Broadcast.
812 */
813 PROCLIST_FOREACH(p, &allproc) {
814 if (p->p_pid <= 1 || p == cp ||
815 (p->p_flag & PK_SYSTEM) != 0)
816 continue;
817 mutex_enter(p->p_lock);
818 if (kauth_authorize_process(pc,
819 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
820 NULL) == 0) {
821 nfound++;
822 if (signo)
823 kpsignal2(p, ksi);
824 }
825 mutex_exit(p->p_lock);
826 }
827 } else {
828 if (pgid == 0)
829 /* Zero pgid means send to my process group. */
830 pgrp = cp->p_pgrp;
831 else {
832 pgrp = pgrp_find(pgid);
833 if (pgrp == NULL)
834 goto out;
835 }
836 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
837 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
838 continue;
839 mutex_enter(p->p_lock);
840 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
841 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
842 nfound++;
843 if (signo && P_ZOMBIE(p) == 0)
844 kpsignal2(p, ksi);
845 }
846 mutex_exit(p->p_lock);
847 }
848 }
849 out:
850 mutex_exit(proc_lock);
851 return nfound ? 0 : ESRCH;
852 }
853
854 /*
855 * Send a signal to a process group. If checktty is set, limit to members
856 * which have a controlling terminal.
857 */
858 void
859 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
860 {
861 ksiginfo_t ksi;
862
863 KASSERT(!cpu_intr_p());
864 KASSERT(mutex_owned(proc_lock));
865
866 KSI_INIT_EMPTY(&ksi);
867 ksi.ksi_signo = sig;
868 kpgsignal(pgrp, &ksi, NULL, checkctty);
869 }
870
871 void
872 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
873 {
874 struct proc *p;
875
876 KASSERT(!cpu_intr_p());
877 KASSERT(mutex_owned(proc_lock));
878 KASSERT(pgrp != NULL);
879
880 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
881 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
882 kpsignal(p, ksi, data);
883 }
884
885 /*
886 * Send a signal caused by a trap to the current LWP. If it will be caught
887 * immediately, deliver it with correct code. Otherwise, post it normally.
888 */
889 void
890 trapsignal(struct lwp *l, ksiginfo_t *ksi)
891 {
892 struct proc *p;
893 struct sigacts *ps;
894 int signo = ksi->ksi_signo;
895 sigset_t *mask;
896
897 KASSERT(KSI_TRAP_P(ksi));
898
899 ksi->ksi_lid = l->l_lid;
900 p = l->l_proc;
901
902 KASSERT(!cpu_intr_p());
903 mutex_enter(proc_lock);
904 mutex_enter(p->p_lock);
905 mask = &l->l_sigmask;
906 ps = p->p_sigacts;
907
908 if ((p->p_slflag & PSL_TRACED) == 0 &&
909 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
910 !sigismember(mask, signo)) {
911 mutex_exit(proc_lock);
912 l->l_ru.ru_nsignals++;
913 kpsendsig(l, ksi, mask);
914 mutex_exit(p->p_lock);
915 if (ktrpoint(KTR_PSIG)) {
916 if (p->p_emul->e_ktrpsig)
917 p->p_emul->e_ktrpsig(signo,
918 SIGACTION_PS(ps, signo).sa_handler,
919 mask, ksi);
920 else
921 ktrpsig(signo,
922 SIGACTION_PS(ps, signo).sa_handler,
923 mask, ksi);
924 }
925 } else {
926 kpsignal2(p, ksi);
927 mutex_exit(p->p_lock);
928 mutex_exit(proc_lock);
929 }
930 }
931
932 /*
933 * Fill in signal information and signal the parent for a child status change.
934 */
935 void
936 child_psignal(struct proc *p, int mask)
937 {
938 ksiginfo_t ksi;
939 struct proc *q;
940 int xsig;
941
942 KASSERT(mutex_owned(proc_lock));
943 KASSERT(mutex_owned(p->p_lock));
944
945 xsig = p->p_xsig;
946
947 KSI_INIT(&ksi);
948 ksi.ksi_signo = SIGCHLD;
949 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
950 ksi.ksi_pid = p->p_pid;
951 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
952 ksi.ksi_status = xsig;
953 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
954 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
955
956 q = p->p_pptr;
957
958 mutex_exit(p->p_lock);
959 mutex_enter(q->p_lock);
960
961 if ((q->p_sflag & mask) == 0)
962 kpsignal2(q, &ksi);
963
964 mutex_exit(q->p_lock);
965 mutex_enter(p->p_lock);
966 }
967
968 void
969 psignal(struct proc *p, int signo)
970 {
971 ksiginfo_t ksi;
972
973 KASSERT(!cpu_intr_p());
974 KASSERT(mutex_owned(proc_lock));
975
976 KSI_INIT_EMPTY(&ksi);
977 ksi.ksi_signo = signo;
978 mutex_enter(p->p_lock);
979 kpsignal2(p, &ksi);
980 mutex_exit(p->p_lock);
981 }
982
983 void
984 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
985 {
986 fdfile_t *ff;
987 file_t *fp;
988 fdtab_t *dt;
989
990 KASSERT(!cpu_intr_p());
991 KASSERT(mutex_owned(proc_lock));
992
993 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
994 size_t fd;
995 filedesc_t *fdp = p->p_fd;
996
997 /* XXXSMP locking */
998 ksi->ksi_fd = -1;
999 dt = fdp->fd_dt;
1000 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1001 if ((ff = dt->dt_ff[fd]) == NULL)
1002 continue;
1003 if ((fp = ff->ff_file) == NULL)
1004 continue;
1005 if (fp->f_data == data) {
1006 ksi->ksi_fd = fd;
1007 break;
1008 }
1009 }
1010 }
1011 mutex_enter(p->p_lock);
1012 kpsignal2(p, ksi);
1013 mutex_exit(p->p_lock);
1014 }
1015
1016 /*
1017 * sigismasked:
1018 *
1019 * Returns true if signal is ignored or masked for the specified LWP.
1020 */
1021 int
1022 sigismasked(struct lwp *l, int sig)
1023 {
1024 struct proc *p = l->l_proc;
1025
1026 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1027 sigismember(&l->l_sigmask, sig);
1028 }
1029
1030 /*
1031 * sigpost:
1032 *
1033 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1034 * be able to take the signal.
1035 */
1036 static int
1037 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1038 {
1039 int rv, masked;
1040 struct proc *p = l->l_proc;
1041
1042 KASSERT(mutex_owned(p->p_lock));
1043
1044 /*
1045 * If the LWP is on the way out, sigclear() will be busy draining all
1046 * pending signals. Don't give it more.
1047 */
1048 if (l->l_refcnt == 0)
1049 return 0;
1050
1051 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1052
1053 /*
1054 * Have the LWP check for signals. This ensures that even if no LWP
1055 * is found to take the signal immediately, it should be taken soon.
1056 */
1057 lwp_lock(l);
1058 l->l_flag |= LW_PENDSIG;
1059
1060 /*
1061 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1062 * Note: SIGKILL and SIGSTOP cannot be masked.
1063 */
1064 masked = sigismember(&l->l_sigmask, sig);
1065 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1066 lwp_unlock(l);
1067 return 0;
1068 }
1069
1070 /*
1071 * If killing the process, make it run fast.
1072 */
1073 if (__predict_false((prop & SA_KILL) != 0) &&
1074 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1075 KASSERT(l->l_class == SCHED_OTHER);
1076 lwp_changepri(l, MAXPRI_USER);
1077 }
1078
1079 /*
1080 * If the LWP is running or on a run queue, then we win. If it's
1081 * sleeping interruptably, wake it and make it take the signal. If
1082 * the sleep isn't interruptable, then the chances are it will get
1083 * to see the signal soon anyhow. If suspended, it can't take the
1084 * signal right now. If it's LWP private or for all LWPs, save it
1085 * for later; otherwise punt.
1086 */
1087 rv = 0;
1088
1089 switch (l->l_stat) {
1090 case LSRUN:
1091 case LSONPROC:
1092 lwp_need_userret(l);
1093 rv = 1;
1094 break;
1095
1096 case LSSLEEP:
1097 if ((l->l_flag & LW_SINTR) != 0) {
1098 /* setrunnable() will release the lock. */
1099 setrunnable(l);
1100 return 1;
1101 }
1102 break;
1103
1104 case LSSUSPENDED:
1105 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1106 /* lwp_continue() will release the lock. */
1107 lwp_continue(l);
1108 return 1;
1109 }
1110 break;
1111
1112 case LSSTOP:
1113 if ((prop & SA_STOP) != 0)
1114 break;
1115
1116 /*
1117 * If the LWP is stopped and we are sending a continue
1118 * signal, then start it again.
1119 */
1120 if ((prop & SA_CONT) != 0) {
1121 if (l->l_wchan != NULL) {
1122 l->l_stat = LSSLEEP;
1123 p->p_nrlwps++;
1124 rv = 1;
1125 break;
1126 }
1127 /* setrunnable() will release the lock. */
1128 setrunnable(l);
1129 return 1;
1130 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1131 /* setrunnable() will release the lock. */
1132 setrunnable(l);
1133 return 1;
1134 }
1135 break;
1136
1137 default:
1138 break;
1139 }
1140
1141 lwp_unlock(l);
1142 return rv;
1143 }
1144
1145 /*
1146 * Notify an LWP that it has a pending signal.
1147 */
1148 void
1149 signotify(struct lwp *l)
1150 {
1151 KASSERT(lwp_locked(l, NULL));
1152
1153 l->l_flag |= LW_PENDSIG;
1154 lwp_need_userret(l);
1155 }
1156
1157 /*
1158 * Find an LWP within process p that is waiting on signal ksi, and hand
1159 * it on.
1160 */
1161 static int
1162 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1163 {
1164 struct lwp *l;
1165 int signo;
1166
1167 KASSERT(mutex_owned(p->p_lock));
1168
1169 signo = ksi->ksi_signo;
1170
1171 if (ksi->ksi_lid != 0) {
1172 /*
1173 * Signal came via _lwp_kill(). Find the LWP and see if
1174 * it's interested.
1175 */
1176 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1177 return 0;
1178 if (l->l_sigwaited == NULL ||
1179 !sigismember(&l->l_sigwaitset, signo))
1180 return 0;
1181 } else {
1182 /*
1183 * Look for any LWP that may be interested.
1184 */
1185 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1186 KASSERT(l->l_sigwaited != NULL);
1187 if (sigismember(&l->l_sigwaitset, signo))
1188 break;
1189 }
1190 }
1191
1192 if (l != NULL) {
1193 l->l_sigwaited->ksi_info = ksi->ksi_info;
1194 l->l_sigwaited = NULL;
1195 LIST_REMOVE(l, l_sigwaiter);
1196 cv_signal(&l->l_sigcv);
1197 return 1;
1198 }
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Send the signal to the process. If the signal has an action, the action
1205 * is usually performed by the target process rather than the caller; we add
1206 * the signal to the set of pending signals for the process.
1207 *
1208 * Exceptions:
1209 * o When a stop signal is sent to a sleeping process that takes the
1210 * default action, the process is stopped without awakening it.
1211 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1212 * regardless of the signal action (eg, blocked or ignored).
1213 *
1214 * Other ignored signals are discarded immediately.
1215 */
1216 int
1217 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1218 {
1219 int prop, signo = ksi->ksi_signo;
1220 struct sigacts *sa;
1221 struct lwp *l = NULL;
1222 ksiginfo_t *kp;
1223 lwpid_t lid;
1224 sig_t action;
1225 bool toall;
1226 int error = 0;
1227
1228 KASSERT(!cpu_intr_p());
1229 KASSERT(mutex_owned(proc_lock));
1230 KASSERT(mutex_owned(p->p_lock));
1231 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1232 KASSERT(signo > 0 && signo < NSIG);
1233
1234 /*
1235 * If the process is being created by fork, is a zombie or is
1236 * exiting, then just drop the signal here and bail out.
1237 */
1238 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1239 return 0;
1240
1241 /* XXX for core dump/debugger */
1242 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1243 p->p_sigctx.ps_info = ksi->ksi_info;
1244
1245 /*
1246 * Notify any interested parties of the signal.
1247 */
1248 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1249
1250 /*
1251 * Some signals including SIGKILL must act on the entire process.
1252 */
1253 kp = NULL;
1254 prop = sigprop[signo];
1255 toall = ((prop & SA_TOALL) != 0);
1256 lid = toall ? 0 : ksi->ksi_lid;
1257
1258 /*
1259 * If proc is traced, always give parent a chance.
1260 */
1261 if (p->p_slflag & PSL_TRACED) {
1262 action = SIG_DFL;
1263
1264 if (lid == 0) {
1265 /*
1266 * If the process is being traced and the signal
1267 * is being caught, make sure to save any ksiginfo.
1268 */
1269 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1270 goto discard;
1271 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1272 goto out;
1273 }
1274 } else {
1275 /*
1276 * If the signal was the result of a trap and is not being
1277 * caught, then reset it to default action so that the
1278 * process dumps core immediately.
1279 */
1280 if (KSI_TRAP_P(ksi)) {
1281 sa = p->p_sigacts;
1282 mutex_enter(&sa->sa_mutex);
1283 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1284 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1285 SIGACTION(p, signo).sa_handler = SIG_DFL;
1286 }
1287 mutex_exit(&sa->sa_mutex);
1288 }
1289
1290 /*
1291 * If the signal is being ignored, then drop it. Note: we
1292 * don't set SIGCONT in ps_sigignore, and if it is set to
1293 * SIG_IGN, action will be SIG_DFL here.
1294 */
1295 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1296 goto discard;
1297
1298 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1299 action = SIG_CATCH;
1300 else {
1301 action = SIG_DFL;
1302
1303 /*
1304 * If sending a tty stop signal to a member of an
1305 * orphaned process group, discard the signal here if
1306 * the action is default; don't stop the process below
1307 * if sleeping, and don't clear any pending SIGCONT.
1308 */
1309 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1310 goto discard;
1311
1312 if (prop & SA_KILL && p->p_nice > NZERO)
1313 p->p_nice = NZERO;
1314 }
1315 }
1316
1317 /*
1318 * If stopping or continuing a process, discard any pending
1319 * signals that would do the inverse.
1320 */
1321 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1322 ksiginfoq_t kq;
1323
1324 ksiginfo_queue_init(&kq);
1325 if ((prop & SA_CONT) != 0)
1326 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1327 if ((prop & SA_STOP) != 0)
1328 sigclear(&p->p_sigpend, &contsigmask, &kq);
1329 ksiginfo_queue_drain(&kq); /* XXXSMP */
1330 }
1331
1332 /*
1333 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1334 * please!), check if any LWPs are waiting on it. If yes, pass on
1335 * the signal info. The signal won't be processed further here.
1336 */
1337 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1338 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1339 sigunwait(p, ksi))
1340 goto discard;
1341
1342 /*
1343 * XXXSMP Should be allocated by the caller, we're holding locks
1344 * here.
1345 */
1346 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1347 goto discard;
1348
1349 /*
1350 * LWP private signals are easy - just find the LWP and post
1351 * the signal to it.
1352 */
1353 if (lid != 0) {
1354 l = lwp_find(p, lid);
1355 if (l != NULL) {
1356 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1357 goto out;
1358 membar_producer();
1359 (void)sigpost(l, action, prop, kp->ksi_signo);
1360 }
1361 goto out;
1362 }
1363
1364 /*
1365 * Some signals go to all LWPs, even if posted with _lwp_kill()
1366 * or for an SA process.
1367 */
1368 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1369 if ((p->p_slflag & PSL_TRACED) != 0)
1370 goto deliver;
1371
1372 /*
1373 * If SIGCONT is default (or ignored) and process is
1374 * asleep, we are finished; the process should not
1375 * be awakened.
1376 */
1377 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1378 goto out;
1379 } else {
1380 /*
1381 * Process is stopped or stopping.
1382 * - If traced, then no action is needed, unless killing.
1383 * - Run the process only if sending SIGCONT or SIGKILL.
1384 */
1385 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1386 goto out;
1387 }
1388 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1389 /*
1390 * Re-adjust p_nstopchild if the process was
1391 * stopped but not yet collected by its parent.
1392 */
1393 if (p->p_stat == SSTOP && !p->p_waited)
1394 p->p_pptr->p_nstopchild--;
1395 p->p_stat = SACTIVE;
1396 p->p_sflag &= ~PS_STOPPING;
1397 if (p->p_slflag & PSL_TRACED) {
1398 KASSERT(signo == SIGKILL);
1399 goto deliver;
1400 }
1401 /*
1402 * Do not make signal pending if SIGCONT is default.
1403 *
1404 * If the process catches SIGCONT, let it handle the
1405 * signal itself (if waiting on event - process runs,
1406 * otherwise continues sleeping).
1407 */
1408 if ((prop & SA_CONT) != 0) {
1409 p->p_xsig = SIGCONT;
1410 p->p_sflag |= PS_CONTINUED;
1411 child_psignal(p, 0);
1412 if (action == SIG_DFL) {
1413 KASSERT(signo != SIGKILL);
1414 goto deliver;
1415 }
1416 }
1417 } else if ((prop & SA_STOP) != 0) {
1418 /*
1419 * Already stopped, don't need to stop again.
1420 * (If we did the shell could get confused.)
1421 */
1422 goto out;
1423 }
1424 }
1425 /*
1426 * Make signal pending.
1427 */
1428 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1429 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1430 goto out;
1431 deliver:
1432 /*
1433 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1434 * visible on the per process list (for sigispending()). This
1435 * is unlikely to be needed in practice, but...
1436 */
1437 membar_producer();
1438
1439 /*
1440 * Try to find an LWP that can take the signal.
1441 */
1442 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1443 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1444 break;
1445 }
1446 signo = -1;
1447 out:
1448 /*
1449 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1450 * with locks held. The caller should take care of this.
1451 */
1452 ksiginfo_free(kp);
1453 if (signo == -1)
1454 return error;
1455 discard:
1456 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1457 return error;
1458 }
1459
1460 void
1461 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1462 {
1463 struct proc *p = l->l_proc;
1464
1465 KASSERT(mutex_owned(p->p_lock));
1466 (*p->p_emul->e_sendsig)(ksi, mask);
1467 }
1468
1469 /*
1470 * Stop any LWPs sleeping interruptably.
1471 */
1472 static void
1473 proc_stop_lwps(struct proc *p)
1474 {
1475 struct lwp *l;
1476
1477 KASSERT(mutex_owned(p->p_lock));
1478 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1479
1480 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1481 lwp_lock(l);
1482 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1483 l->l_stat = LSSTOP;
1484 p->p_nrlwps--;
1485 }
1486 lwp_unlock(l);
1487 }
1488 }
1489
1490 /*
1491 * Finish stopping of a process. Mark it stopped and notify the parent.
1492 *
1493 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1494 */
1495 static void
1496 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1497 {
1498
1499 KASSERT(mutex_owned(proc_lock));
1500 KASSERT(mutex_owned(p->p_lock));
1501 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1502 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1503
1504 p->p_sflag &= ~PS_STOPPING;
1505 p->p_stat = SSTOP;
1506 p->p_waited = 0;
1507 p->p_pptr->p_nstopchild++;
1508 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1509 if (ppsig) {
1510 /* child_psignal drops p_lock briefly. */
1511 child_psignal(p, ppmask);
1512 }
1513 cv_broadcast(&p->p_pptr->p_waitcv);
1514 }
1515 }
1516
1517 /*
1518 * Stop the current process and switch away when being stopped or traced.
1519 */
1520 static void
1521 sigswitch(bool ppsig, int ppmask, int signo)
1522 {
1523 struct lwp *l = curlwp;
1524 struct proc *p = l->l_proc;
1525 int biglocks;
1526
1527 KASSERT(mutex_owned(p->p_lock));
1528 KASSERT(l->l_stat == LSONPROC);
1529 KASSERT(p->p_nrlwps > 0);
1530
1531 /*
1532 * On entry we know that the process needs to stop. If it's
1533 * the result of a 'sideways' stop signal that has been sourced
1534 * through issignal(), then stop other LWPs in the process too.
1535 */
1536 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1537 KASSERT(signo != 0);
1538 proc_stop(p, 0, signo);
1539 KASSERT(p->p_nrlwps > 0);
1540 }
1541
1542 /*
1543 * If we are the last live LWP, and the stop was a result of
1544 * a new signal, then signal the parent.
1545 */
1546 if ((p->p_sflag & PS_STOPPING) != 0) {
1547 if (!mutex_tryenter(proc_lock)) {
1548 mutex_exit(p->p_lock);
1549 mutex_enter(proc_lock);
1550 mutex_enter(p->p_lock);
1551 }
1552
1553 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1554 /*
1555 * Note that proc_stop_done() can drop
1556 * p->p_lock briefly.
1557 */
1558 proc_stop_done(p, ppsig, ppmask);
1559 }
1560
1561 mutex_exit(proc_lock);
1562 }
1563
1564 /*
1565 * Unlock and switch away.
1566 */
1567 KERNEL_UNLOCK_ALL(l, &biglocks);
1568 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1569 p->p_nrlwps--;
1570 lwp_lock(l);
1571 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1572 l->l_stat = LSSTOP;
1573 lwp_unlock(l);
1574 }
1575
1576 mutex_exit(p->p_lock);
1577 lwp_lock(l);
1578 mi_switch(l);
1579 KERNEL_LOCK(biglocks, l);
1580 mutex_enter(p->p_lock);
1581 }
1582
1583 /*
1584 * Check for a signal from the debugger.
1585 */
1586 static int
1587 sigchecktrace(void)
1588 {
1589 struct lwp *l = curlwp;
1590 struct proc *p = l->l_proc;
1591 int signo;
1592
1593 KASSERT(mutex_owned(p->p_lock));
1594
1595 /* If there's a pending SIGKILL, process it immediately. */
1596 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1597 return 0;
1598
1599 /*
1600 * If we are no longer being traced, or the parent didn't
1601 * give us a signal, or we're stopping, look for more signals.
1602 */
1603 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1604 (p->p_sflag & PS_STOPPING) != 0)
1605 return 0;
1606
1607 /*
1608 * If the new signal is being masked, look for other signals.
1609 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1610 */
1611 signo = p->p_xsig;
1612 p->p_xsig = 0;
1613 if (sigismember(&l->l_sigmask, signo)) {
1614 signo = 0;
1615 }
1616 return signo;
1617 }
1618
1619 /*
1620 * If the current process has received a signal (should be caught or cause
1621 * termination, should interrupt current syscall), return the signal number.
1622 *
1623 * Stop signals with default action are processed immediately, then cleared;
1624 * they aren't returned. This is checked after each entry to the system for
1625 * a syscall or trap.
1626 *
1627 * We will also return -1 if the process is exiting and the current LWP must
1628 * follow suit.
1629 */
1630 int
1631 issignal(struct lwp *l)
1632 {
1633 struct proc *p;
1634 int signo, prop;
1635 sigpend_t *sp;
1636 sigset_t ss;
1637
1638 p = l->l_proc;
1639 sp = NULL;
1640 signo = 0;
1641
1642 KASSERT(p == curproc);
1643 KASSERT(mutex_owned(p->p_lock));
1644
1645 for (;;) {
1646 /* Discard any signals that we have decided not to take. */
1647 if (signo != 0) {
1648 (void)sigget(sp, NULL, signo, NULL);
1649 }
1650
1651 /*
1652 * If the process is stopped/stopping, then stop ourselves
1653 * now that we're on the kernel/userspace boundary. When
1654 * we awaken, check for a signal from the debugger.
1655 */
1656 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1657 sigswitch(true, PS_NOCLDSTOP, 0);
1658 signo = sigchecktrace();
1659 } else
1660 signo = 0;
1661
1662 /* Signals from the debugger are "out of band". */
1663 sp = NULL;
1664
1665 /*
1666 * If the debugger didn't provide a signal, find a pending
1667 * signal from our set. Check per-LWP signals first, and
1668 * then per-process.
1669 */
1670 if (signo == 0) {
1671 sp = &l->l_sigpend;
1672 ss = sp->sp_set;
1673 if ((p->p_lflag & PL_PPWAIT) != 0)
1674 sigminusset(&stopsigmask, &ss);
1675 sigminusset(&l->l_sigmask, &ss);
1676
1677 if ((signo = firstsig(&ss)) == 0) {
1678 sp = &p->p_sigpend;
1679 ss = sp->sp_set;
1680 if ((p->p_lflag & PL_PPWAIT) != 0)
1681 sigminusset(&stopsigmask, &ss);
1682 sigminusset(&l->l_sigmask, &ss);
1683
1684 if ((signo = firstsig(&ss)) == 0) {
1685 /*
1686 * No signal pending - clear the
1687 * indicator and bail out.
1688 */
1689 lwp_lock(l);
1690 l->l_flag &= ~LW_PENDSIG;
1691 lwp_unlock(l);
1692 sp = NULL;
1693 break;
1694 }
1695 }
1696 }
1697
1698 /*
1699 * We should see pending but ignored signals only if
1700 * we are being traced.
1701 */
1702 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1703 (p->p_slflag & PSL_TRACED) == 0) {
1704 /* Discard the signal. */
1705 continue;
1706 }
1707
1708 /*
1709 * If traced, always stop, and stay stopped until released
1710 * by the debugger. If the our parent process is waiting
1711 * for us, don't hang as we could deadlock.
1712 */
1713 if ((p->p_slflag & PSL_TRACED) != 0 &&
1714 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1715 /*
1716 * Take the signal, but don't remove it from the
1717 * siginfo queue, because the debugger can send
1718 * it later.
1719 */
1720 if (sp)
1721 sigdelset(&sp->sp_set, signo);
1722 p->p_xsig = signo;
1723
1724 /* Emulation-specific handling of signal trace */
1725 if (p->p_emul->e_tracesig == NULL ||
1726 (*p->p_emul->e_tracesig)(p, signo) == 0)
1727 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1728 signo);
1729
1730 /* Check for a signal from the debugger. */
1731 if ((signo = sigchecktrace()) == 0)
1732 continue;
1733
1734 /* Signals from the debugger are "out of band". */
1735 sp = NULL;
1736 }
1737
1738 prop = sigprop[signo];
1739
1740 /*
1741 * Decide whether the signal should be returned.
1742 */
1743 switch ((long)SIGACTION(p, signo).sa_handler) {
1744 case (long)SIG_DFL:
1745 /*
1746 * Don't take default actions on system processes.
1747 */
1748 if (p->p_pid <= 1) {
1749 #ifdef DIAGNOSTIC
1750 /*
1751 * Are you sure you want to ignore SIGSEGV
1752 * in init? XXX
1753 */
1754 printf_nolog("Process (pid %d) got sig %d\n",
1755 p->p_pid, signo);
1756 #endif
1757 continue;
1758 }
1759
1760 /*
1761 * If there is a pending stop signal to process with
1762 * default action, stop here, then clear the signal.
1763 * However, if process is member of an orphaned
1764 * process group, ignore tty stop signals.
1765 */
1766 if (prop & SA_STOP) {
1767 /*
1768 * XXX Don't hold proc_lock for p_lflag,
1769 * but it's not a big deal.
1770 */
1771 if (p->p_slflag & PSL_TRACED ||
1772 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1773 prop & SA_TTYSTOP)) {
1774 /* Ignore the signal. */
1775 continue;
1776 }
1777 /* Take the signal. */
1778 (void)sigget(sp, NULL, signo, NULL);
1779 p->p_xsig = signo;
1780 p->p_sflag &= ~PS_CONTINUED;
1781 signo = 0;
1782 sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
1783 } else if (prop & SA_IGNORE) {
1784 /*
1785 * Except for SIGCONT, shouldn't get here.
1786 * Default action is to ignore; drop it.
1787 */
1788 continue;
1789 }
1790 break;
1791
1792 case (long)SIG_IGN:
1793 #ifdef DEBUG_ISSIGNAL
1794 /*
1795 * Masking above should prevent us ever trying
1796 * to take action on an ignored signal other
1797 * than SIGCONT, unless process is traced.
1798 */
1799 if ((prop & SA_CONT) == 0 &&
1800 (p->p_slflag & PSL_TRACED) == 0)
1801 printf_nolog("issignal\n");
1802 #endif
1803 continue;
1804
1805 default:
1806 /*
1807 * This signal has an action, let postsig() process
1808 * it.
1809 */
1810 break;
1811 }
1812
1813 break;
1814 }
1815
1816 l->l_sigpendset = sp;
1817 return signo;
1818 }
1819
1820 /*
1821 * Take the action for the specified signal
1822 * from the current set of pending signals.
1823 */
1824 void
1825 postsig(int signo)
1826 {
1827 struct lwp *l;
1828 struct proc *p;
1829 struct sigacts *ps;
1830 sig_t action;
1831 sigset_t *returnmask;
1832 ksiginfo_t ksi;
1833
1834 l = curlwp;
1835 p = l->l_proc;
1836 ps = p->p_sigacts;
1837
1838 KASSERT(mutex_owned(p->p_lock));
1839 KASSERT(signo > 0);
1840
1841 /*
1842 * Set the new mask value and also defer further occurrences of this
1843 * signal.
1844 *
1845 * Special case: user has done a sigsuspend. Here the current mask is
1846 * not of interest, but rather the mask from before the sigsuspend is
1847 * what we want restored after the signal processing is completed.
1848 */
1849 if (l->l_sigrestore) {
1850 returnmask = &l->l_sigoldmask;
1851 l->l_sigrestore = 0;
1852 } else
1853 returnmask = &l->l_sigmask;
1854
1855 /*
1856 * Commit to taking the signal before releasing the mutex.
1857 */
1858 action = SIGACTION_PS(ps, signo).sa_handler;
1859 l->l_ru.ru_nsignals++;
1860 if (l->l_sigpendset == NULL) {
1861 /* From the debugger */
1862 if (p->p_sigctx.ps_faked &&
1863 signo == p->p_sigctx.ps_info._signo) {
1864 KSI_INIT(&ksi);
1865 ksi.ksi_info = p->p_sigctx.ps_info;
1866 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1867 p->p_sigctx.ps_faked = false;
1868 } else {
1869 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1870 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1871 }
1872 } else
1873 sigget(l->l_sigpendset, &ksi, signo, NULL);
1874
1875 if (ktrpoint(KTR_PSIG)) {
1876 mutex_exit(p->p_lock);
1877 if (p->p_emul->e_ktrpsig)
1878 p->p_emul->e_ktrpsig(signo, action,
1879 returnmask, &ksi);
1880 else
1881 ktrpsig(signo, action, returnmask, &ksi);
1882 mutex_enter(p->p_lock);
1883 }
1884
1885 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1886
1887 if (action == SIG_DFL) {
1888 /*
1889 * Default action, where the default is to kill
1890 * the process. (Other cases were ignored above.)
1891 */
1892 sigexit(l, signo);
1893 return;
1894 }
1895
1896 /*
1897 * If we get here, the signal must be caught.
1898 */
1899 #ifdef DIAGNOSTIC
1900 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1901 panic("postsig action");
1902 #endif
1903
1904 kpsendsig(l, &ksi, returnmask);
1905 }
1906
1907 /*
1908 * sendsig:
1909 *
1910 * Default signal delivery method for NetBSD.
1911 */
1912 void
1913 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1914 {
1915 struct sigacts *sa;
1916 int sig;
1917
1918 sig = ksi->ksi_signo;
1919 sa = curproc->p_sigacts;
1920
1921 switch (sa->sa_sigdesc[sig].sd_vers) {
1922 case 0:
1923 case 1:
1924 /* Compat for 1.6 and earlier. */
1925 if (sendsig_sigcontext_vec == NULL) {
1926 break;
1927 }
1928 (*sendsig_sigcontext_vec)(ksi, mask);
1929 return;
1930 case 2:
1931 case 3:
1932 sendsig_siginfo(ksi, mask);
1933 return;
1934 default:
1935 break;
1936 }
1937
1938 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1939 sigexit(curlwp, SIGILL);
1940 }
1941
1942 /*
1943 * sendsig_reset:
1944 *
1945 * Reset the signal action. Called from emulation specific sendsig()
1946 * before unlocking to deliver the signal.
1947 */
1948 void
1949 sendsig_reset(struct lwp *l, int signo)
1950 {
1951 struct proc *p = l->l_proc;
1952 struct sigacts *ps = p->p_sigacts;
1953
1954 KASSERT(mutex_owned(p->p_lock));
1955
1956 p->p_sigctx.ps_lwp = 0;
1957 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1958
1959 mutex_enter(&ps->sa_mutex);
1960 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1961 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1962 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1963 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1964 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1965 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1966 }
1967 mutex_exit(&ps->sa_mutex);
1968 }
1969
1970 /*
1971 * Kill the current process for stated reason.
1972 */
1973 void
1974 killproc(struct proc *p, const char *why)
1975 {
1976
1977 KASSERT(mutex_owned(proc_lock));
1978
1979 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1980 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1981 psignal(p, SIGKILL);
1982 }
1983
1984 /*
1985 * Force the current process to exit with the specified signal, dumping core
1986 * if appropriate. We bypass the normal tests for masked and caught
1987 * signals, allowing unrecoverable failures to terminate the process without
1988 * changing signal state. Mark the accounting record with the signal
1989 * termination. If dumping core, save the signal number for the debugger.
1990 * Calls exit and does not return.
1991 */
1992 void
1993 sigexit(struct lwp *l, int signo)
1994 {
1995 int exitsig, error, docore;
1996 struct proc *p;
1997 struct lwp *t;
1998
1999 p = l->l_proc;
2000
2001 KASSERT(mutex_owned(p->p_lock));
2002 KERNEL_UNLOCK_ALL(l, NULL);
2003
2004 /*
2005 * Don't permit coredump() multiple times in the same process.
2006 * Call back into sigexit, where we will be suspended until
2007 * the deed is done. Note that this is a recursive call, but
2008 * LW_WCORE will prevent us from coming back this way.
2009 */
2010 if ((p->p_sflag & PS_WCORE) != 0) {
2011 lwp_lock(l);
2012 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2013 lwp_unlock(l);
2014 mutex_exit(p->p_lock);
2015 lwp_userret(l);
2016 panic("sigexit 1");
2017 /* NOTREACHED */
2018 }
2019
2020 /* If process is already on the way out, then bail now. */
2021 if ((p->p_sflag & PS_WEXIT) != 0) {
2022 mutex_exit(p->p_lock);
2023 lwp_exit(l);
2024 panic("sigexit 2");
2025 /* NOTREACHED */
2026 }
2027
2028 /*
2029 * Prepare all other LWPs for exit. If dumping core, suspend them
2030 * so that their registers are available long enough to be dumped.
2031 */
2032 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2033 p->p_sflag |= PS_WCORE;
2034 for (;;) {
2035 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2036 lwp_lock(t);
2037 if (t == l) {
2038 t->l_flag &= ~LW_WSUSPEND;
2039 lwp_unlock(t);
2040 continue;
2041 }
2042 t->l_flag |= (LW_WCORE | LW_WEXIT);
2043 lwp_suspend(l, t);
2044 }
2045
2046 if (p->p_nrlwps == 1)
2047 break;
2048
2049 /*
2050 * Kick any LWPs sitting in lwp_wait1(), and wait
2051 * for everyone else to stop before proceeding.
2052 */
2053 p->p_nlwpwait++;
2054 cv_broadcast(&p->p_lwpcv);
2055 cv_wait(&p->p_lwpcv, p->p_lock);
2056 p->p_nlwpwait--;
2057 }
2058 }
2059
2060 exitsig = signo;
2061 p->p_acflag |= AXSIG;
2062 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2063 p->p_sigctx.ps_info._signo = signo;
2064 p->p_sigctx.ps_info._code = SI_NOINFO;
2065
2066 if (docore) {
2067 mutex_exit(p->p_lock);
2068 error = (*coredump_vec)(l, NULL);
2069
2070 if (kern_logsigexit) {
2071 int uid = l->l_cred ?
2072 (int)kauth_cred_geteuid(l->l_cred) : -1;
2073
2074 if (error)
2075 log(LOG_INFO, lognocoredump, p->p_pid,
2076 p->p_comm, uid, signo, error);
2077 else
2078 log(LOG_INFO, logcoredump, p->p_pid,
2079 p->p_comm, uid, signo);
2080 }
2081
2082 #ifdef PAX_SEGVGUARD
2083 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2084 #endif /* PAX_SEGVGUARD */
2085 /* Acquire the sched state mutex. exit1() will release it. */
2086 mutex_enter(p->p_lock);
2087 if (error == 0)
2088 p->p_sflag |= PS_COREDUMP;
2089 }
2090
2091 /* No longer dumping core. */
2092 p->p_sflag &= ~PS_WCORE;
2093
2094 exit1(l, 0, exitsig);
2095 /* NOTREACHED */
2096 }
2097
2098 /*
2099 * Put process 'p' into the stopped state and optionally, notify the parent.
2100 */
2101 void
2102 proc_stop(struct proc *p, int now, int signo)
2103 {
2104 struct lwp *l;
2105
2106 KASSERT(mutex_owned(p->p_lock));
2107
2108 /*
2109 * First off, set the stopping indicator and bring all sleeping
2110 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2111 * unlock between here and the p->p_nrlwps check below.
2112 */
2113 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2114 membar_producer();
2115
2116 proc_stop_lwps(p);
2117
2118 /*
2119 * If there are no LWPs available to take the signal, then we
2120 * signal the parent process immediately. Otherwise, the last
2121 * LWP to stop will take care of it.
2122 */
2123
2124 if (p->p_nrlwps == 0 || (now && p->p_nrlwps == 1 && p == curproc)) {
2125 proc_stop_done(p, true, PS_NOCLDSTOP);
2126 } else {
2127 /*
2128 * Have the remaining LWPs come to a halt, and trigger
2129 * proc_stop_callout() to ensure that they do.
2130 */
2131 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2132 sigpost(l, SIG_DFL, SA_STOP, signo);
2133 }
2134 callout_schedule(&proc_stop_ch, 1);
2135 }
2136 }
2137
2138 /*
2139 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2140 * but wait for them to come to a halt at the kernel-user boundary. This is
2141 * to allow LWPs to release any locks that they may hold before stopping.
2142 *
2143 * Non-interruptable sleeps can be long, and there is the potential for an
2144 * LWP to begin sleeping interruptably soon after the process has been set
2145 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2146 * stopping, and so complete halt of the process and the return of status
2147 * information to the parent could be delayed indefinitely.
2148 *
2149 * To handle this race, proc_stop_callout() runs once per tick while there
2150 * are stopping processes in the system. It sets LWPs that are sleeping
2151 * interruptably into the LSSTOP state.
2152 *
2153 * Note that we are not concerned about keeping all LWPs stopped while the
2154 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2155 * What we do need to ensure is that all LWPs in a stopping process have
2156 * stopped at least once, so that notification can be sent to the parent
2157 * process.
2158 */
2159 static void
2160 proc_stop_callout(void *cookie)
2161 {
2162 bool more, restart;
2163 struct proc *p;
2164
2165 (void)cookie;
2166
2167 do {
2168 restart = false;
2169 more = false;
2170
2171 mutex_enter(proc_lock);
2172 PROCLIST_FOREACH(p, &allproc) {
2173 mutex_enter(p->p_lock);
2174
2175 if ((p->p_sflag & PS_STOPPING) == 0) {
2176 mutex_exit(p->p_lock);
2177 continue;
2178 }
2179
2180 /* Stop any LWPs sleeping interruptably. */
2181 proc_stop_lwps(p);
2182 if (p->p_nrlwps == 0) {
2183 /*
2184 * We brought the process to a halt.
2185 * Mark it as stopped and notify the
2186 * parent.
2187 */
2188 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2189 /*
2190 * Note that proc_stop_done() will
2191 * drop p->p_lock briefly.
2192 * Arrange to restart and check
2193 * all processes again.
2194 */
2195 restart = true;
2196 }
2197 proc_stop_done(p, true, PS_NOCLDSTOP);
2198 } else
2199 more = true;
2200
2201 mutex_exit(p->p_lock);
2202 if (restart)
2203 break;
2204 }
2205 mutex_exit(proc_lock);
2206 } while (restart);
2207
2208 /*
2209 * If we noted processes that are stopping but still have
2210 * running LWPs, then arrange to check again in 1 tick.
2211 */
2212 if (more)
2213 callout_schedule(&proc_stop_ch, 1);
2214 }
2215
2216 /*
2217 * Given a process in state SSTOP, set the state back to SACTIVE and
2218 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2219 */
2220 void
2221 proc_unstop(struct proc *p)
2222 {
2223 struct lwp *l;
2224 int sig;
2225
2226 KASSERT(mutex_owned(proc_lock));
2227 KASSERT(mutex_owned(p->p_lock));
2228
2229 p->p_stat = SACTIVE;
2230 p->p_sflag &= ~PS_STOPPING;
2231 sig = p->p_xsig;
2232
2233 if (!p->p_waited)
2234 p->p_pptr->p_nstopchild--;
2235
2236 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2237 lwp_lock(l);
2238 if (l->l_stat != LSSTOP) {
2239 lwp_unlock(l);
2240 continue;
2241 }
2242 if (l->l_wchan == NULL) {
2243 setrunnable(l);
2244 continue;
2245 }
2246 if (sig && (l->l_flag & LW_SINTR) != 0) {
2247 setrunnable(l);
2248 sig = 0;
2249 } else {
2250 l->l_stat = LSSLEEP;
2251 p->p_nrlwps++;
2252 lwp_unlock(l);
2253 }
2254 }
2255 }
2256
2257 static int
2258 filt_sigattach(struct knote *kn)
2259 {
2260 struct proc *p = curproc;
2261
2262 kn->kn_obj = p;
2263 kn->kn_flags |= EV_CLEAR; /* automatically set */
2264
2265 mutex_enter(p->p_lock);
2266 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2267 mutex_exit(p->p_lock);
2268
2269 return 0;
2270 }
2271
2272 static void
2273 filt_sigdetach(struct knote *kn)
2274 {
2275 struct proc *p = kn->kn_obj;
2276
2277 mutex_enter(p->p_lock);
2278 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2279 mutex_exit(p->p_lock);
2280 }
2281
2282 /*
2283 * Signal knotes are shared with proc knotes, so we apply a mask to
2284 * the hint in order to differentiate them from process hints. This
2285 * could be avoided by using a signal-specific knote list, but probably
2286 * isn't worth the trouble.
2287 */
2288 static int
2289 filt_signal(struct knote *kn, long hint)
2290 {
2291
2292 if (hint & NOTE_SIGNAL) {
2293 hint &= ~NOTE_SIGNAL;
2294
2295 if (kn->kn_id == hint)
2296 kn->kn_data++;
2297 }
2298 return (kn->kn_data != 0);
2299 }
2300
2301 const struct filterops sig_filtops = {
2302 0, filt_sigattach, filt_sigdetach, filt_signal
2303 };
2304