Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.334
      1 /*	$NetBSD: kern_sig.c,v 1.334 2017/03/24 17:40:44 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.334 2017/03/24 17:40:44 christos Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 
    104 #ifdef PAX_SEGVGUARD
    105 #include <sys/pax.h>
    106 #endif /* PAX_SEGVGUARD */
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #define	SIGQUEUE_MAX	32
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 sigset_t		contsigmask	__cacheline_aligned;
    116 static sigset_t		stopsigmask	__cacheline_aligned;
    117 sigset_t		sigcantmask	__cacheline_aligned;
    118 
    119 static void	ksiginfo_exechook(struct proc *, void *);
    120 static void	proc_stop(struct proc *, int);
    121 static void	proc_stop_callout(void *);
    122 static int	sigchecktrace(void);
    123 static int	sigpost(struct lwp *, sig_t, int, int);
    124 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    125 static int	sigunwait(struct proc *, const ksiginfo_t *);
    126 static void	sigswitch(bool, int, int);
    127 
    128 static void	sigacts_poolpage_free(struct pool *, void *);
    129 static void	*sigacts_poolpage_alloc(struct pool *, int);
    130 
    131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    132 int (*coredump_vec)(struct lwp *, const char *) =
    133     (int (*)(struct lwp *, const char *))enosys;
    134 
    135 /*
    136  * DTrace SDT provider definitions
    137  */
    138 SDT_PROVIDER_DECLARE(proc);
    139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    140     "struct lwp *", 	/* target thread */
    141     "struct proc *", 	/* target process */
    142     "int");		/* signal */
    143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    144     "struct lwp *",	/* target thread */
    145     "struct proc *",	/* target process */
    146     "int");  		/* signal */
    147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    148     "int", 		/* signal */
    149     "ksiginfo_t *", 	/* signal info */
    150     "void (*)(void)");	/* handler address */
    151 
    152 
    153 static struct pool_allocator sigactspool_allocator = {
    154 	.pa_alloc = sigacts_poolpage_alloc,
    155 	.pa_free = sigacts_poolpage_free
    156 };
    157 
    158 #ifdef DEBUG
    159 int	kern_logsigexit = 1;
    160 #else
    161 int	kern_logsigexit = 0;
    162 #endif
    163 
    164 static const char logcoredump[] =
    165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    166 static const char lognocoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    168 
    169 static kauth_listener_t signal_listener;
    170 
    171 static int
    172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    173     void *arg0, void *arg1, void *arg2, void *arg3)
    174 {
    175 	struct proc *p;
    176 	int result, signum;
    177 
    178 	result = KAUTH_RESULT_DEFER;
    179 	p = arg0;
    180 	signum = (int)(unsigned long)arg1;
    181 
    182 	if (action != KAUTH_PROCESS_SIGNAL)
    183 		return result;
    184 
    185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    187 		result = KAUTH_RESULT_ALLOW;
    188 
    189 	return result;
    190 }
    191 
    192 /*
    193  * signal_init:
    194  *
    195  *	Initialize global signal-related data structures.
    196  */
    197 void
    198 signal_init(void)
    199 {
    200 
    201 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    202 
    203 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    204 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    205 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    206 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    207 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    208 
    209 	exechook_establish(ksiginfo_exechook, NULL);
    210 
    211 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    212 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    213 
    214 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    215 	    signal_listener_cb, NULL);
    216 }
    217 
    218 /*
    219  * sigacts_poolpage_alloc:
    220  *
    221  *	Allocate a page for the sigacts memory pool.
    222  */
    223 static void *
    224 sigacts_poolpage_alloc(struct pool *pp, int flags)
    225 {
    226 
    227 	return (void *)uvm_km_alloc(kernel_map,
    228 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    229 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    230 	    | UVM_KMF_WIRED);
    231 }
    232 
    233 /*
    234  * sigacts_poolpage_free:
    235  *
    236  *	Free a page on behalf of the sigacts memory pool.
    237  */
    238 static void
    239 sigacts_poolpage_free(struct pool *pp, void *v)
    240 {
    241 
    242 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigactsinit:
    247  *
    248  *	Create an initial sigacts structure, using the same signal state
    249  *	as of specified process.  If 'share' is set, share the sigacts by
    250  *	holding a reference, otherwise just copy it from parent.
    251  */
    252 struct sigacts *
    253 sigactsinit(struct proc *pp, int share)
    254 {
    255 	struct sigacts *ps = pp->p_sigacts, *ps2;
    256 
    257 	if (__predict_false(share)) {
    258 		atomic_inc_uint(&ps->sa_refcnt);
    259 		return ps;
    260 	}
    261 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    262 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    263 	ps2->sa_refcnt = 1;
    264 
    265 	mutex_enter(&ps->sa_mutex);
    266 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    267 	mutex_exit(&ps->sa_mutex);
    268 	return ps2;
    269 }
    270 
    271 /*
    272  * sigactsunshare:
    273  *
    274  *	Make this process not share its sigacts, maintaining all signal state.
    275  */
    276 void
    277 sigactsunshare(struct proc *p)
    278 {
    279 	struct sigacts *ps, *oldps = p->p_sigacts;
    280 
    281 	if (__predict_true(oldps->sa_refcnt == 1))
    282 		return;
    283 
    284 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    285 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    286 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    287 	ps->sa_refcnt = 1;
    288 
    289 	p->p_sigacts = ps;
    290 	sigactsfree(oldps);
    291 }
    292 
    293 /*
    294  * sigactsfree;
    295  *
    296  *	Release a sigacts structure.
    297  */
    298 void
    299 sigactsfree(struct sigacts *ps)
    300 {
    301 
    302 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    303 		mutex_destroy(&ps->sa_mutex);
    304 		pool_cache_put(sigacts_cache, ps);
    305 	}
    306 }
    307 
    308 /*
    309  * siginit:
    310  *
    311  *	Initialize signal state for process 0; set to ignore signals that
    312  *	are ignored by default and disable the signal stack.  Locking not
    313  *	required as the system is still cold.
    314  */
    315 void
    316 siginit(struct proc *p)
    317 {
    318 	struct lwp *l;
    319 	struct sigacts *ps;
    320 	int signo, prop;
    321 
    322 	ps = p->p_sigacts;
    323 	sigemptyset(&contsigmask);
    324 	sigemptyset(&stopsigmask);
    325 	sigemptyset(&sigcantmask);
    326 	for (signo = 1; signo < NSIG; signo++) {
    327 		prop = sigprop[signo];
    328 		if (prop & SA_CONT)
    329 			sigaddset(&contsigmask, signo);
    330 		if (prop & SA_STOP)
    331 			sigaddset(&stopsigmask, signo);
    332 		if (prop & SA_CANTMASK)
    333 			sigaddset(&sigcantmask, signo);
    334 		if (prop & SA_IGNORE && signo != SIGCONT)
    335 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    336 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    337 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    338 	}
    339 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    340 	p->p_sflag &= ~PS_NOCLDSTOP;
    341 
    342 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    343 	sigemptyset(&p->p_sigpend.sp_set);
    344 
    345 	/*
    346 	 * Reset per LWP state.
    347 	 */
    348 	l = LIST_FIRST(&p->p_lwps);
    349 	l->l_sigwaited = NULL;
    350 	l->l_sigstk.ss_flags = SS_DISABLE;
    351 	l->l_sigstk.ss_size = 0;
    352 	l->l_sigstk.ss_sp = 0;
    353 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    354 	sigemptyset(&l->l_sigpend.sp_set);
    355 
    356 	/* One reference. */
    357 	ps->sa_refcnt = 1;
    358 }
    359 
    360 /*
    361  * execsigs:
    362  *
    363  *	Reset signals for an exec of the specified process.
    364  */
    365 void
    366 execsigs(struct proc *p)
    367 {
    368 	struct sigacts *ps;
    369 	struct lwp *l;
    370 	int signo, prop;
    371 	sigset_t tset;
    372 	ksiginfoq_t kq;
    373 
    374 	KASSERT(p->p_nlwps == 1);
    375 
    376 	sigactsunshare(p);
    377 	ps = p->p_sigacts;
    378 
    379 	/*
    380 	 * Reset caught signals.  Held signals remain held through
    381 	 * l->l_sigmask (unless they were caught, and are now ignored
    382 	 * by default).
    383 	 *
    384 	 * No need to lock yet, the process has only one LWP and
    385 	 * at this point the sigacts are private to the process.
    386 	 */
    387 	sigemptyset(&tset);
    388 	for (signo = 1; signo < NSIG; signo++) {
    389 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    390 			prop = sigprop[signo];
    391 			if (prop & SA_IGNORE) {
    392 				if ((prop & SA_CONT) == 0)
    393 					sigaddset(&p->p_sigctx.ps_sigignore,
    394 					    signo);
    395 				sigaddset(&tset, signo);
    396 			}
    397 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    398 		}
    399 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    400 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    401 	}
    402 	ksiginfo_queue_init(&kq);
    403 
    404 	mutex_enter(p->p_lock);
    405 	sigclearall(p, &tset, &kq);
    406 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    407 
    408 	/*
    409 	 * Reset no zombies if child dies flag as Solaris does.
    410 	 */
    411 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    412 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    413 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    414 
    415 	/*
    416 	 * Reset per-LWP state.
    417 	 */
    418 	l = LIST_FIRST(&p->p_lwps);
    419 	l->l_sigwaited = NULL;
    420 	l->l_sigstk.ss_flags = SS_DISABLE;
    421 	l->l_sigstk.ss_size = 0;
    422 	l->l_sigstk.ss_sp = 0;
    423 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    424 	sigemptyset(&l->l_sigpend.sp_set);
    425 	mutex_exit(p->p_lock);
    426 
    427 	ksiginfo_queue_drain(&kq);
    428 }
    429 
    430 /*
    431  * ksiginfo_exechook:
    432  *
    433  *	Free all pending ksiginfo entries from a process on exec.
    434  *	Additionally, drain any unused ksiginfo structures in the
    435  *	system back to the pool.
    436  *
    437  *	XXX This should not be a hook, every process has signals.
    438  */
    439 static void
    440 ksiginfo_exechook(struct proc *p, void *v)
    441 {
    442 	ksiginfoq_t kq;
    443 
    444 	ksiginfo_queue_init(&kq);
    445 
    446 	mutex_enter(p->p_lock);
    447 	sigclearall(p, NULL, &kq);
    448 	mutex_exit(p->p_lock);
    449 
    450 	ksiginfo_queue_drain(&kq);
    451 }
    452 
    453 /*
    454  * ksiginfo_alloc:
    455  *
    456  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    457  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    458  *	has not been queued somewhere, then just return it.  Additionally,
    459  *	if the existing ksiginfo_t does not contain any information beyond
    460  *	the signal number, then just return it.
    461  */
    462 ksiginfo_t *
    463 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    464 {
    465 	ksiginfo_t *kp;
    466 
    467 	if (ok != NULL) {
    468 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    469 		    KSI_FROMPOOL)
    470 			return ok;
    471 		if (KSI_EMPTY_P(ok))
    472 			return ok;
    473 	}
    474 
    475 	kp = pool_cache_get(ksiginfo_cache, flags);
    476 	if (kp == NULL) {
    477 #ifdef DIAGNOSTIC
    478 		printf("Out of memory allocating ksiginfo for pid %d\n",
    479 		    p->p_pid);
    480 #endif
    481 		return NULL;
    482 	}
    483 
    484 	if (ok != NULL) {
    485 		memcpy(kp, ok, sizeof(*kp));
    486 		kp->ksi_flags &= ~KSI_QUEUED;
    487 	} else
    488 		KSI_INIT_EMPTY(kp);
    489 
    490 	kp->ksi_flags |= KSI_FROMPOOL;
    491 
    492 	return kp;
    493 }
    494 
    495 /*
    496  * ksiginfo_free:
    497  *
    498  *	If the given ksiginfo_t is from the pool and has not been queued,
    499  *	then free it.
    500  */
    501 void
    502 ksiginfo_free(ksiginfo_t *kp)
    503 {
    504 
    505 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    506 		return;
    507 	pool_cache_put(ksiginfo_cache, kp);
    508 }
    509 
    510 /*
    511  * ksiginfo_queue_drain:
    512  *
    513  *	Drain a non-empty ksiginfo_t queue.
    514  */
    515 void
    516 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    517 {
    518 	ksiginfo_t *ksi;
    519 
    520 	KASSERT(!TAILQ_EMPTY(kq));
    521 
    522 	while (!TAILQ_EMPTY(kq)) {
    523 		ksi = TAILQ_FIRST(kq);
    524 		TAILQ_REMOVE(kq, ksi, ksi_list);
    525 		pool_cache_put(ksiginfo_cache, ksi);
    526 	}
    527 }
    528 
    529 static int
    530 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    531 {
    532 	ksiginfo_t *ksi, *nksi;
    533 
    534 	if (sp == NULL)
    535 		goto out;
    536 
    537 	/* Find siginfo and copy it out. */
    538 	int count = 0;
    539 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    540 		if (ksi->ksi_signo != signo)
    541 			continue;
    542 		if (count++ > 0) /* Only remove the first, count all of them */
    543 			continue;
    544 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    545 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    546 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    547 		ksi->ksi_flags &= ~KSI_QUEUED;
    548 		if (out != NULL) {
    549 			memcpy(out, ksi, sizeof(*out));
    550 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    551 		}
    552 		ksiginfo_free(ksi);
    553 	}
    554 	if (count)
    555 		return count;
    556 
    557 out:
    558 	/* If there is no siginfo, then manufacture it. */
    559 	if (out != NULL) {
    560 		KSI_INIT(out);
    561 		out->ksi_info._signo = signo;
    562 		out->ksi_info._code = SI_NOINFO;
    563 	}
    564 	return 0;
    565 }
    566 
    567 /*
    568  * sigget:
    569  *
    570  *	Fetch the first pending signal from a set.  Optionally, also fetch
    571  *	or manufacture a ksiginfo element.  Returns the number of the first
    572  *	pending signal, or zero.
    573  */
    574 int
    575 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    576 {
    577 	sigset_t tset;
    578 	int count;
    579 
    580 	/* If there's no pending set, the signal is from the debugger. */
    581 	if (sp == NULL)
    582 		goto out;
    583 
    584 	/* Construct mask from signo, and 'mask'. */
    585 	if (signo == 0) {
    586 		if (mask != NULL) {
    587 			tset = *mask;
    588 			__sigandset(&sp->sp_set, &tset);
    589 		} else
    590 			tset = sp->sp_set;
    591 
    592 		/* If there are no signals pending - return. */
    593 		if ((signo = firstsig(&tset)) == 0)
    594 			goto out;
    595 	} else {
    596 		KASSERT(sigismember(&sp->sp_set, signo));
    597 	}
    598 
    599 	sigdelset(&sp->sp_set, signo);
    600 out:
    601 	count = siggetinfo(sp, out, signo);
    602 	if (count > 1)
    603 		sigaddset(&sp->sp_set, signo);
    604 	return signo;
    605 }
    606 
    607 /*
    608  * sigput:
    609  *
    610  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    611  */
    612 static int
    613 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    614 {
    615 	ksiginfo_t *kp;
    616 
    617 	KASSERT(mutex_owned(p->p_lock));
    618 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    619 
    620 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    621 
    622 	/*
    623 	 * If there is no siginfo, we are done.
    624 	 */
    625 	if (KSI_EMPTY_P(ksi))
    626 		return 0;
    627 
    628 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    629 
    630 	size_t count = 0;
    631 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    632 		count++;
    633 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    634 			continue;
    635 		if (kp->ksi_signo == ksi->ksi_signo) {
    636 			KSI_COPY(ksi, kp);
    637 			kp->ksi_flags |= KSI_QUEUED;
    638 			return 0;
    639 		}
    640 	}
    641 
    642 	if (count >= SIGQUEUE_MAX) {
    643 #ifdef DIAGNOSTIC
    644 		printf("%s(%d): Signal queue is full signal=%d\n",
    645 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    646 #endif
    647 		return EAGAIN;
    648 	}
    649 	ksi->ksi_flags |= KSI_QUEUED;
    650 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    651 
    652 	return 0;
    653 }
    654 
    655 /*
    656  * sigclear:
    657  *
    658  *	Clear all pending signals in the specified set.
    659  */
    660 void
    661 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    662 {
    663 	ksiginfo_t *ksi, *next;
    664 
    665 	if (mask == NULL)
    666 		sigemptyset(&sp->sp_set);
    667 	else
    668 		sigminusset(mask, &sp->sp_set);
    669 
    670 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    671 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    672 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    673 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    674 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    675 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    676 		}
    677 	}
    678 }
    679 
    680 /*
    681  * sigclearall:
    682  *
    683  *	Clear all pending signals in the specified set from a process and
    684  *	its LWPs.
    685  */
    686 void
    687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    688 {
    689 	struct lwp *l;
    690 
    691 	KASSERT(mutex_owned(p->p_lock));
    692 
    693 	sigclear(&p->p_sigpend, mask, kq);
    694 
    695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    696 		sigclear(&l->l_sigpend, mask, kq);
    697 	}
    698 }
    699 
    700 /*
    701  * sigispending:
    702  *
    703  *	Return the first signal number if there are pending signals for the
    704  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    705  *	and that the signal has been posted to the appopriate queue before
    706  *	LW_PENDSIG is set.
    707  */
    708 int
    709 sigispending(struct lwp *l, int signo)
    710 {
    711 	struct proc *p = l->l_proc;
    712 	sigset_t tset;
    713 
    714 	membar_consumer();
    715 
    716 	tset = l->l_sigpend.sp_set;
    717 	sigplusset(&p->p_sigpend.sp_set, &tset);
    718 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    719 	sigminusset(&l->l_sigmask, &tset);
    720 
    721 	if (signo == 0) {
    722 		return firstsig(&tset);
    723 	}
    724 	return sigismember(&tset, signo) ? signo : 0;
    725 }
    726 
    727 void
    728 getucontext(struct lwp *l, ucontext_t *ucp)
    729 {
    730 	struct proc *p = l->l_proc;
    731 
    732 	KASSERT(mutex_owned(p->p_lock));
    733 
    734 	ucp->uc_flags = 0;
    735 	ucp->uc_link = l->l_ctxlink;
    736 	ucp->uc_sigmask = l->l_sigmask;
    737 	ucp->uc_flags |= _UC_SIGMASK;
    738 
    739 	/*
    740 	 * The (unsupplied) definition of the `current execution stack'
    741 	 * in the System V Interface Definition appears to allow returning
    742 	 * the main context stack.
    743 	 */
    744 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    745 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    746 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    747 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    748 	} else {
    749 		/* Simply copy alternate signal execution stack. */
    750 		ucp->uc_stack = l->l_sigstk;
    751 	}
    752 	ucp->uc_flags |= _UC_STACK;
    753 	mutex_exit(p->p_lock);
    754 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    755 	mutex_enter(p->p_lock);
    756 }
    757 
    758 int
    759 setucontext(struct lwp *l, const ucontext_t *ucp)
    760 {
    761 	struct proc *p = l->l_proc;
    762 	int error;
    763 
    764 	KASSERT(mutex_owned(p->p_lock));
    765 
    766 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    767 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    768 		if (error != 0)
    769 			return error;
    770 	}
    771 
    772 	mutex_exit(p->p_lock);
    773 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    774 	mutex_enter(p->p_lock);
    775 	if (error != 0)
    776 		return (error);
    777 
    778 	l->l_ctxlink = ucp->uc_link;
    779 
    780 	/*
    781 	 * If there was stack information, update whether or not we are
    782 	 * still running on an alternate signal stack.
    783 	 */
    784 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    785 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    786 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    787 		else
    788 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    789 	}
    790 
    791 	return 0;
    792 }
    793 
    794 /*
    795  * killpg1: common code for kill process group/broadcast kill.
    796  */
    797 int
    798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    799 {
    800 	struct proc	*p, *cp;
    801 	kauth_cred_t	pc;
    802 	struct pgrp	*pgrp;
    803 	int		nfound;
    804 	int		signo = ksi->ksi_signo;
    805 
    806 	cp = l->l_proc;
    807 	pc = l->l_cred;
    808 	nfound = 0;
    809 
    810 	mutex_enter(proc_lock);
    811 	if (all) {
    812 		/*
    813 		 * Broadcast.
    814 		 */
    815 		PROCLIST_FOREACH(p, &allproc) {
    816 			if (p->p_pid <= 1 || p == cp ||
    817 			    (p->p_flag & PK_SYSTEM) != 0)
    818 				continue;
    819 			mutex_enter(p->p_lock);
    820 			if (kauth_authorize_process(pc,
    821 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    822 			    NULL) == 0) {
    823 				nfound++;
    824 				if (signo)
    825 					kpsignal2(p, ksi);
    826 			}
    827 			mutex_exit(p->p_lock);
    828 		}
    829 	} else {
    830 		if (pgid == 0)
    831 			/* Zero pgid means send to my process group. */
    832 			pgrp = cp->p_pgrp;
    833 		else {
    834 			pgrp = pgrp_find(pgid);
    835 			if (pgrp == NULL)
    836 				goto out;
    837 		}
    838 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    839 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    840 				continue;
    841 			mutex_enter(p->p_lock);
    842 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    843 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    844 				nfound++;
    845 				if (signo && P_ZOMBIE(p) == 0)
    846 					kpsignal2(p, ksi);
    847 			}
    848 			mutex_exit(p->p_lock);
    849 		}
    850 	}
    851 out:
    852 	mutex_exit(proc_lock);
    853 	return nfound ? 0 : ESRCH;
    854 }
    855 
    856 /*
    857  * Send a signal to a process group.  If checktty is set, limit to members
    858  * which have a controlling terminal.
    859  */
    860 void
    861 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    862 {
    863 	ksiginfo_t ksi;
    864 
    865 	KASSERT(!cpu_intr_p());
    866 	KASSERT(mutex_owned(proc_lock));
    867 
    868 	KSI_INIT_EMPTY(&ksi);
    869 	ksi.ksi_signo = sig;
    870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    871 }
    872 
    873 void
    874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    875 {
    876 	struct proc *p;
    877 
    878 	KASSERT(!cpu_intr_p());
    879 	KASSERT(mutex_owned(proc_lock));
    880 	KASSERT(pgrp != NULL);
    881 
    882 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    883 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    884 			kpsignal(p, ksi, data);
    885 }
    886 
    887 /*
    888  * Send a signal caused by a trap to the current LWP.  If it will be caught
    889  * immediately, deliver it with correct code.  Otherwise, post it normally.
    890  */
    891 void
    892 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    893 {
    894 	struct proc	*p;
    895 	struct sigacts	*ps;
    896 	int signo = ksi->ksi_signo;
    897 	sigset_t *mask;
    898 
    899 	KASSERT(KSI_TRAP_P(ksi));
    900 
    901 	ksi->ksi_lid = l->l_lid;
    902 	p = l->l_proc;
    903 
    904 	KASSERT(!cpu_intr_p());
    905 	mutex_enter(proc_lock);
    906 	mutex_enter(p->p_lock);
    907 	mask = &l->l_sigmask;
    908 	ps = p->p_sigacts;
    909 
    910 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    911 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    912 	    !sigismember(mask, signo)) {
    913 		mutex_exit(proc_lock);
    914 		l->l_ru.ru_nsignals++;
    915 		kpsendsig(l, ksi, mask);
    916 		mutex_exit(p->p_lock);
    917 		if (ktrpoint(KTR_PSIG)) {
    918 			if (p->p_emul->e_ktrpsig)
    919 				p->p_emul->e_ktrpsig(signo,
    920 				    SIGACTION_PS(ps, signo).sa_handler,
    921 				    mask, ksi);
    922 			else
    923 				ktrpsig(signo,
    924 				    SIGACTION_PS(ps, signo).sa_handler,
    925 				    mask, ksi);
    926 		}
    927 	} else {
    928 		kpsignal2(p, ksi);
    929 		mutex_exit(p->p_lock);
    930 		mutex_exit(proc_lock);
    931 	}
    932 }
    933 
    934 /*
    935  * Fill in signal information and signal the parent for a child status change.
    936  */
    937 void
    938 child_psignal(struct proc *p, int mask)
    939 {
    940 	ksiginfo_t ksi;
    941 	struct proc *q;
    942 	int xsig;
    943 
    944 	KASSERT(mutex_owned(proc_lock));
    945 	KASSERT(mutex_owned(p->p_lock));
    946 
    947 	xsig = p->p_xsig;
    948 
    949 	KSI_INIT(&ksi);
    950 	ksi.ksi_signo = SIGCHLD;
    951 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    952 	ksi.ksi_pid = p->p_pid;
    953 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    954 	ksi.ksi_status = xsig;
    955 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    956 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    957 
    958 	q = p->p_pptr;
    959 
    960 	mutex_exit(p->p_lock);
    961 	mutex_enter(q->p_lock);
    962 
    963 	if ((q->p_sflag & mask) == 0)
    964 		kpsignal2(q, &ksi);
    965 
    966 	mutex_exit(q->p_lock);
    967 	mutex_enter(p->p_lock);
    968 }
    969 
    970 void
    971 psignal(struct proc *p, int signo)
    972 {
    973 	ksiginfo_t ksi;
    974 
    975 	KASSERT(!cpu_intr_p());
    976 	KASSERT(mutex_owned(proc_lock));
    977 
    978 	KSI_INIT_EMPTY(&ksi);
    979 	ksi.ksi_signo = signo;
    980 	mutex_enter(p->p_lock);
    981 	kpsignal2(p, &ksi);
    982 	mutex_exit(p->p_lock);
    983 }
    984 
    985 void
    986 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    987 {
    988 	fdfile_t *ff;
    989 	file_t *fp;
    990 	fdtab_t *dt;
    991 
    992 	KASSERT(!cpu_intr_p());
    993 	KASSERT(mutex_owned(proc_lock));
    994 
    995 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    996 		size_t fd;
    997 		filedesc_t *fdp = p->p_fd;
    998 
    999 		/* XXXSMP locking */
   1000 		ksi->ksi_fd = -1;
   1001 		dt = fdp->fd_dt;
   1002 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1003 			if ((ff = dt->dt_ff[fd]) == NULL)
   1004 				continue;
   1005 			if ((fp = ff->ff_file) == NULL)
   1006 				continue;
   1007 			if (fp->f_data == data) {
   1008 				ksi->ksi_fd = fd;
   1009 				break;
   1010 			}
   1011 		}
   1012 	}
   1013 	mutex_enter(p->p_lock);
   1014 	kpsignal2(p, ksi);
   1015 	mutex_exit(p->p_lock);
   1016 }
   1017 
   1018 /*
   1019  * sigismasked:
   1020  *
   1021  *	Returns true if signal is ignored or masked for the specified LWP.
   1022  */
   1023 int
   1024 sigismasked(struct lwp *l, int sig)
   1025 {
   1026 	struct proc *p = l->l_proc;
   1027 
   1028 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1029 	    sigismember(&l->l_sigmask, sig);
   1030 }
   1031 
   1032 /*
   1033  * sigpost:
   1034  *
   1035  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1036  *	be able to take the signal.
   1037  */
   1038 static int
   1039 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1040 {
   1041 	int rv, masked;
   1042 	struct proc *p = l->l_proc;
   1043 
   1044 	KASSERT(mutex_owned(p->p_lock));
   1045 
   1046 	/*
   1047 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1048 	 * pending signals.  Don't give it more.
   1049 	 */
   1050 	if (l->l_refcnt == 0)
   1051 		return 0;
   1052 
   1053 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1054 
   1055 	/*
   1056 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1057 	 * is found to take the signal immediately, it should be taken soon.
   1058 	 */
   1059 	lwp_lock(l);
   1060 	l->l_flag |= LW_PENDSIG;
   1061 
   1062 	/*
   1063 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1064 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1065 	 */
   1066 	masked = sigismember(&l->l_sigmask, sig);
   1067 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1068 		lwp_unlock(l);
   1069 		return 0;
   1070 	}
   1071 
   1072 	/*
   1073 	 * If killing the process, make it run fast.
   1074 	 */
   1075 	if (__predict_false((prop & SA_KILL) != 0) &&
   1076 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1077 		KASSERT(l->l_class == SCHED_OTHER);
   1078 		lwp_changepri(l, MAXPRI_USER);
   1079 	}
   1080 
   1081 	/*
   1082 	 * If the LWP is running or on a run queue, then we win.  If it's
   1083 	 * sleeping interruptably, wake it and make it take the signal.  If
   1084 	 * the sleep isn't interruptable, then the chances are it will get
   1085 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1086 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1087 	 * for later; otherwise punt.
   1088 	 */
   1089 	rv = 0;
   1090 
   1091 	switch (l->l_stat) {
   1092 	case LSRUN:
   1093 	case LSONPROC:
   1094 		lwp_need_userret(l);
   1095 		rv = 1;
   1096 		break;
   1097 
   1098 	case LSSLEEP:
   1099 		if ((l->l_flag & LW_SINTR) != 0) {
   1100 			/* setrunnable() will release the lock. */
   1101 			setrunnable(l);
   1102 			return 1;
   1103 		}
   1104 		break;
   1105 
   1106 	case LSSUSPENDED:
   1107 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1108 			/* lwp_continue() will release the lock. */
   1109 			lwp_continue(l);
   1110 			return 1;
   1111 		}
   1112 		break;
   1113 
   1114 	case LSSTOP:
   1115 		if ((prop & SA_STOP) != 0)
   1116 			break;
   1117 
   1118 		/*
   1119 		 * If the LWP is stopped and we are sending a continue
   1120 		 * signal, then start it again.
   1121 		 */
   1122 		if ((prop & SA_CONT) != 0) {
   1123 			if (l->l_wchan != NULL) {
   1124 				l->l_stat = LSSLEEP;
   1125 				p->p_nrlwps++;
   1126 				rv = 1;
   1127 				break;
   1128 			}
   1129 			/* setrunnable() will release the lock. */
   1130 			setrunnable(l);
   1131 			return 1;
   1132 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1133 			/* setrunnable() will release the lock. */
   1134 			setrunnable(l);
   1135 			return 1;
   1136 		}
   1137 		break;
   1138 
   1139 	default:
   1140 		break;
   1141 	}
   1142 
   1143 	lwp_unlock(l);
   1144 	return rv;
   1145 }
   1146 
   1147 /*
   1148  * Notify an LWP that it has a pending signal.
   1149  */
   1150 void
   1151 signotify(struct lwp *l)
   1152 {
   1153 	KASSERT(lwp_locked(l, NULL));
   1154 
   1155 	l->l_flag |= LW_PENDSIG;
   1156 	lwp_need_userret(l);
   1157 }
   1158 
   1159 /*
   1160  * Find an LWP within process p that is waiting on signal ksi, and hand
   1161  * it on.
   1162  */
   1163 static int
   1164 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1165 {
   1166 	struct lwp *l;
   1167 	int signo;
   1168 
   1169 	KASSERT(mutex_owned(p->p_lock));
   1170 
   1171 	signo = ksi->ksi_signo;
   1172 
   1173 	if (ksi->ksi_lid != 0) {
   1174 		/*
   1175 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1176 		 * it's interested.
   1177 		 */
   1178 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1179 			return 0;
   1180 		if (l->l_sigwaited == NULL ||
   1181 		    !sigismember(&l->l_sigwaitset, signo))
   1182 			return 0;
   1183 	} else {
   1184 		/*
   1185 		 * Look for any LWP that may be interested.
   1186 		 */
   1187 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1188 			KASSERT(l->l_sigwaited != NULL);
   1189 			if (sigismember(&l->l_sigwaitset, signo))
   1190 				break;
   1191 		}
   1192 	}
   1193 
   1194 	if (l != NULL) {
   1195 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1196 		l->l_sigwaited = NULL;
   1197 		LIST_REMOVE(l, l_sigwaiter);
   1198 		cv_signal(&l->l_sigcv);
   1199 		return 1;
   1200 	}
   1201 
   1202 	return 0;
   1203 }
   1204 
   1205 /*
   1206  * Send the signal to the process.  If the signal has an action, the action
   1207  * is usually performed by the target process rather than the caller; we add
   1208  * the signal to the set of pending signals for the process.
   1209  *
   1210  * Exceptions:
   1211  *   o When a stop signal is sent to a sleeping process that takes the
   1212  *     default action, the process is stopped without awakening it.
   1213  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1214  *     regardless of the signal action (eg, blocked or ignored).
   1215  *
   1216  * Other ignored signals are discarded immediately.
   1217  */
   1218 int
   1219 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1220 {
   1221 	int prop, signo = ksi->ksi_signo;
   1222 	struct sigacts *sa;
   1223 	struct lwp *l = NULL;
   1224 	ksiginfo_t *kp;
   1225 	lwpid_t lid;
   1226 	sig_t action;
   1227 	bool toall;
   1228 	int error = 0;
   1229 
   1230 	KASSERT(!cpu_intr_p());
   1231 	KASSERT(mutex_owned(proc_lock));
   1232 	KASSERT(mutex_owned(p->p_lock));
   1233 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1234 	KASSERT(signo > 0 && signo < NSIG);
   1235 
   1236 	/*
   1237 	 * If the process is being created by fork, is a zombie or is
   1238 	 * exiting, then just drop the signal here and bail out.
   1239 	 */
   1240 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1241 		return 0;
   1242 
   1243 	/* XXX for core dump/debugger */
   1244 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1245 	p->p_sigctx.ps_info = ksi->ksi_info;
   1246 
   1247 	/*
   1248 	 * Notify any interested parties of the signal.
   1249 	 */
   1250 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1251 
   1252 	/*
   1253 	 * Some signals including SIGKILL must act on the entire process.
   1254 	 */
   1255 	kp = NULL;
   1256 	prop = sigprop[signo];
   1257 	toall = ((prop & SA_TOALL) != 0);
   1258 	lid = toall ? 0 : ksi->ksi_lid;
   1259 
   1260 	/*
   1261 	 * If proc is traced, always give parent a chance.
   1262 	 */
   1263 	if (p->p_slflag & PSL_TRACED) {
   1264 		action = SIG_DFL;
   1265 
   1266 		if (lid == 0) {
   1267 			/*
   1268 			 * If the process is being traced and the signal
   1269 			 * is being caught, make sure to save any ksiginfo.
   1270 			 */
   1271 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1272 				goto discard;
   1273 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1274 				goto out;
   1275 		}
   1276 	} else {
   1277 		/*
   1278 		 * If the signal was the result of a trap and is not being
   1279 		 * caught, then reset it to default action so that the
   1280 		 * process dumps core immediately.
   1281 		 */
   1282 		if (KSI_TRAP_P(ksi)) {
   1283 			sa = p->p_sigacts;
   1284 			mutex_enter(&sa->sa_mutex);
   1285 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1286 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1287 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1288 			}
   1289 			mutex_exit(&sa->sa_mutex);
   1290 		}
   1291 
   1292 		/*
   1293 		 * If the signal is being ignored, then drop it.  Note: we
   1294 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1295 		 * SIG_IGN, action will be SIG_DFL here.
   1296 		 */
   1297 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1298 			goto discard;
   1299 
   1300 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1301 			action = SIG_CATCH;
   1302 		else {
   1303 			action = SIG_DFL;
   1304 
   1305 			/*
   1306 			 * If sending a tty stop signal to a member of an
   1307 			 * orphaned process group, discard the signal here if
   1308 			 * the action is default; don't stop the process below
   1309 			 * if sleeping, and don't clear any pending SIGCONT.
   1310 			 */
   1311 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1312 				goto discard;
   1313 
   1314 			if (prop & SA_KILL && p->p_nice > NZERO)
   1315 				p->p_nice = NZERO;
   1316 		}
   1317 	}
   1318 
   1319 	/*
   1320 	 * If stopping or continuing a process, discard any pending
   1321 	 * signals that would do the inverse.
   1322 	 */
   1323 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1324 		ksiginfoq_t kq;
   1325 
   1326 		ksiginfo_queue_init(&kq);
   1327 		if ((prop & SA_CONT) != 0)
   1328 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1329 		if ((prop & SA_STOP) != 0)
   1330 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1331 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1332 	}
   1333 
   1334 	/*
   1335 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1336 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1337 	 * the signal info.  The signal won't be processed further here.
   1338 	 */
   1339 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1340 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1341 	    sigunwait(p, ksi))
   1342 		goto discard;
   1343 
   1344 	/*
   1345 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1346 	 * here.
   1347 	 */
   1348 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1349 		goto discard;
   1350 
   1351 	/*
   1352 	 * LWP private signals are easy - just find the LWP and post
   1353 	 * the signal to it.
   1354 	 */
   1355 	if (lid != 0) {
   1356 		l = lwp_find(p, lid);
   1357 		if (l != NULL) {
   1358 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1359 				goto out;
   1360 			membar_producer();
   1361 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1362 		}
   1363 		goto out;
   1364 	}
   1365 
   1366 	/*
   1367 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1368 	 * or for an SA process.
   1369 	 */
   1370 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1371 		if ((p->p_slflag & PSL_TRACED) != 0)
   1372 			goto deliver;
   1373 
   1374 		/*
   1375 		 * If SIGCONT is default (or ignored) and process is
   1376 		 * asleep, we are finished; the process should not
   1377 		 * be awakened.
   1378 		 */
   1379 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1380 			goto out;
   1381 	} else {
   1382 		/*
   1383 		 * Process is stopped or stopping.
   1384 		 * - If traced, then no action is needed, unless killing.
   1385 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1386 		 */
   1387 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1388 			goto out;
   1389 		}
   1390 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1391 			/*
   1392 			 * Re-adjust p_nstopchild if the process was
   1393 			 * stopped but not yet collected by its parent.
   1394 			 */
   1395 			if (p->p_stat == SSTOP && !p->p_waited)
   1396 				p->p_pptr->p_nstopchild--;
   1397 			p->p_stat = SACTIVE;
   1398 			p->p_sflag &= ~PS_STOPPING;
   1399 			if (p->p_slflag & PSL_TRACED) {
   1400 				KASSERT(signo == SIGKILL);
   1401 				goto deliver;
   1402 			}
   1403 			/*
   1404 			 * Do not make signal pending if SIGCONT is default.
   1405 			 *
   1406 			 * If the process catches SIGCONT, let it handle the
   1407 			 * signal itself (if waiting on event - process runs,
   1408 			 * otherwise continues sleeping).
   1409 			 */
   1410 			if ((prop & SA_CONT) != 0) {
   1411 				p->p_xsig = SIGCONT;
   1412 				p->p_sflag |= PS_CONTINUED;
   1413 				child_psignal(p, 0);
   1414 				if (action == SIG_DFL) {
   1415 					KASSERT(signo != SIGKILL);
   1416 					goto deliver;
   1417 				}
   1418 			}
   1419 		} else if ((prop & SA_STOP) != 0) {
   1420 			/*
   1421 			 * Already stopped, don't need to stop again.
   1422 			 * (If we did the shell could get confused.)
   1423 			 */
   1424 			goto out;
   1425 		}
   1426 	}
   1427 	/*
   1428 	 * Make signal pending.
   1429 	 */
   1430 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1431 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1432 		goto out;
   1433 deliver:
   1434 	/*
   1435 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1436 	 * visible on the per process list (for sigispending()).  This
   1437 	 * is unlikely to be needed in practice, but...
   1438 	 */
   1439 	membar_producer();
   1440 
   1441 	/*
   1442 	 * Try to find an LWP that can take the signal.
   1443 	 */
   1444 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1445 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1446 			break;
   1447 	}
   1448 	signo = -1;
   1449 out:
   1450 	/*
   1451 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1452 	 * with locks held.  The caller should take care of this.
   1453 	 */
   1454 	ksiginfo_free(kp);
   1455 	if (signo == -1)
   1456 		return error;
   1457 discard:
   1458 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1459 	return error;
   1460 }
   1461 
   1462 void
   1463 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1464 {
   1465 	struct proc *p = l->l_proc;
   1466 
   1467 	KASSERT(mutex_owned(p->p_lock));
   1468 	(*p->p_emul->e_sendsig)(ksi, mask);
   1469 }
   1470 
   1471 /*
   1472  * Stop any LWPs sleeping interruptably.
   1473  */
   1474 static void
   1475 proc_stop_lwps(struct proc *p)
   1476 {
   1477 	struct lwp *l;
   1478 
   1479 	KASSERT(mutex_owned(p->p_lock));
   1480 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1481 
   1482 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1483 		lwp_lock(l);
   1484 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1485 			l->l_stat = LSSTOP;
   1486 			p->p_nrlwps--;
   1487 		}
   1488 		lwp_unlock(l);
   1489 	}
   1490 }
   1491 
   1492 /*
   1493  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1494  *
   1495  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1496  */
   1497 static void
   1498 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1499 {
   1500 
   1501 	KASSERT(mutex_owned(proc_lock));
   1502 	KASSERT(mutex_owned(p->p_lock));
   1503 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1504 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1505 
   1506 	p->p_sflag &= ~PS_STOPPING;
   1507 	p->p_stat = SSTOP;
   1508 	p->p_waited = 0;
   1509 	p->p_pptr->p_nstopchild++;
   1510 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1511 		if (ppsig) {
   1512 			/* child_psignal drops p_lock briefly. */
   1513 			child_psignal(p, ppmask);
   1514 		}
   1515 		cv_broadcast(&p->p_pptr->p_waitcv);
   1516 	}
   1517 }
   1518 
   1519 /*
   1520  * Stop the current process and switch away when being stopped or traced.
   1521  */
   1522 static void
   1523 sigswitch(bool ppsig, int ppmask, int signo)
   1524 {
   1525 	struct lwp *l = curlwp;
   1526 	struct proc *p = l->l_proc;
   1527 	int biglocks;
   1528 
   1529 	KASSERT(mutex_owned(p->p_lock));
   1530 	KASSERT(l->l_stat == LSONPROC);
   1531 	KASSERT(p->p_nrlwps > 0);
   1532 
   1533 	/*
   1534 	 * On entry we know that the process needs to stop.  If it's
   1535 	 * the result of a 'sideways' stop signal that has been sourced
   1536 	 * through issignal(), then stop other LWPs in the process too.
   1537 	 */
   1538 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1539 		KASSERT(signo != 0);
   1540 		proc_stop(p, signo);
   1541 		KASSERT(p->p_nrlwps > 0);
   1542 	}
   1543 
   1544 	/*
   1545 	 * If we are the last live LWP, and the stop was a result of
   1546 	 * a new signal, then signal the parent.
   1547 	 */
   1548 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1549 		if (!mutex_tryenter(proc_lock)) {
   1550 			mutex_exit(p->p_lock);
   1551 			mutex_enter(proc_lock);
   1552 			mutex_enter(p->p_lock);
   1553 		}
   1554 
   1555 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1556 			/*
   1557 			 * Note that proc_stop_done() can drop
   1558 			 * p->p_lock briefly.
   1559 			 */
   1560 			proc_stop_done(p, ppsig, ppmask);
   1561 		}
   1562 
   1563 		mutex_exit(proc_lock);
   1564 	}
   1565 
   1566 	/*
   1567 	 * Unlock and switch away.
   1568 	 */
   1569 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1570 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1571 		p->p_nrlwps--;
   1572 		lwp_lock(l);
   1573 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1574 		l->l_stat = LSSTOP;
   1575 		lwp_unlock(l);
   1576 	}
   1577 
   1578 	mutex_exit(p->p_lock);
   1579 	lwp_lock(l);
   1580 	mi_switch(l);
   1581 	KERNEL_LOCK(biglocks, l);
   1582 	mutex_enter(p->p_lock);
   1583 }
   1584 
   1585 /*
   1586  * Check for a signal from the debugger.
   1587  */
   1588 static int
   1589 sigchecktrace(void)
   1590 {
   1591 	struct lwp *l = curlwp;
   1592 	struct proc *p = l->l_proc;
   1593 	int signo;
   1594 
   1595 	KASSERT(mutex_owned(p->p_lock));
   1596 
   1597 	/* If there's a pending SIGKILL, process it immediately. */
   1598 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1599 		return 0;
   1600 
   1601 	/*
   1602 	 * If we are no longer being traced, or the parent didn't
   1603 	 * give us a signal, or we're stopping, look for more signals.
   1604 	 */
   1605 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1606 	    (p->p_sflag & PS_STOPPING) != 0)
   1607 		return 0;
   1608 
   1609 	/*
   1610 	 * If the new signal is being masked, look for other signals.
   1611 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1612 	 */
   1613 	signo = p->p_xsig;
   1614 	p->p_xsig = 0;
   1615 	if (sigismember(&l->l_sigmask, signo)) {
   1616 		signo = 0;
   1617 	}
   1618 	return signo;
   1619 }
   1620 
   1621 /*
   1622  * If the current process has received a signal (should be caught or cause
   1623  * termination, should interrupt current syscall), return the signal number.
   1624  *
   1625  * Stop signals with default action are processed immediately, then cleared;
   1626  * they aren't returned.  This is checked after each entry to the system for
   1627  * a syscall or trap.
   1628  *
   1629  * We will also return -1 if the process is exiting and the current LWP must
   1630  * follow suit.
   1631  */
   1632 int
   1633 issignal(struct lwp *l)
   1634 {
   1635 	struct proc *p;
   1636 	int signo, prop;
   1637 	sigpend_t *sp;
   1638 	sigset_t ss;
   1639 
   1640 	p = l->l_proc;
   1641 	sp = NULL;
   1642 	signo = 0;
   1643 
   1644 	KASSERT(p == curproc);
   1645 	KASSERT(mutex_owned(p->p_lock));
   1646 
   1647 	for (;;) {
   1648 		/* Discard any signals that we have decided not to take. */
   1649 		if (signo != 0) {
   1650 			(void)sigget(sp, NULL, signo, NULL);
   1651 		}
   1652 
   1653 		/*
   1654 		 * If the process is stopped/stopping, then stop ourselves
   1655 		 * now that we're on the kernel/userspace boundary.  When
   1656 		 * we awaken, check for a signal from the debugger.
   1657 		 */
   1658 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1659 			sigswitch(true, PS_NOCLDSTOP, 0);
   1660 			signo = sigchecktrace();
   1661 		} else
   1662 			signo = 0;
   1663 
   1664 		/* Signals from the debugger are "out of band". */
   1665 		sp = NULL;
   1666 
   1667 		/*
   1668 		 * If the debugger didn't provide a signal, find a pending
   1669 		 * signal from our set.  Check per-LWP signals first, and
   1670 		 * then per-process.
   1671 		 */
   1672 		if (signo == 0) {
   1673 			sp = &l->l_sigpend;
   1674 			ss = sp->sp_set;
   1675 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1676 				sigminusset(&stopsigmask, &ss);
   1677 			sigminusset(&l->l_sigmask, &ss);
   1678 
   1679 			if ((signo = firstsig(&ss)) == 0) {
   1680 				sp = &p->p_sigpend;
   1681 				ss = sp->sp_set;
   1682 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1683 					sigminusset(&stopsigmask, &ss);
   1684 				sigminusset(&l->l_sigmask, &ss);
   1685 
   1686 				if ((signo = firstsig(&ss)) == 0) {
   1687 					/*
   1688 					 * No signal pending - clear the
   1689 					 * indicator and bail out.
   1690 					 */
   1691 					lwp_lock(l);
   1692 					l->l_flag &= ~LW_PENDSIG;
   1693 					lwp_unlock(l);
   1694 					sp = NULL;
   1695 					break;
   1696 				}
   1697 			}
   1698 		}
   1699 
   1700 		/*
   1701 		 * We should see pending but ignored signals only if
   1702 		 * we are being traced.
   1703 		 */
   1704 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1705 		    (p->p_slflag & PSL_TRACED) == 0) {
   1706 			/* Discard the signal. */
   1707 			continue;
   1708 		}
   1709 
   1710 		/*
   1711 		 * If traced, always stop, and stay stopped until released
   1712 		 * by the debugger.  If the our parent process is waiting
   1713 		 * for us, don't hang as we could deadlock.
   1714 		 */
   1715 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1716 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1717 			/*
   1718 			 * Take the signal, but don't remove it from the
   1719 			 * siginfo queue, because the debugger can send
   1720 			 * it later.
   1721 			 */
   1722 			if (sp)
   1723 				sigdelset(&sp->sp_set, signo);
   1724 			p->p_xsig = signo;
   1725 
   1726 			/* Emulation-specific handling of signal trace */
   1727 			if (p->p_emul->e_tracesig == NULL ||
   1728 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1729 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1730 				    signo);
   1731 
   1732 			/* Check for a signal from the debugger. */
   1733 			if ((signo = sigchecktrace()) == 0)
   1734 				continue;
   1735 
   1736 			/* Signals from the debugger are "out of band". */
   1737 			sp = NULL;
   1738 		}
   1739 
   1740 		prop = sigprop[signo];
   1741 
   1742 		/*
   1743 		 * Decide whether the signal should be returned.
   1744 		 */
   1745 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1746 		case (long)SIG_DFL:
   1747 			/*
   1748 			 * Don't take default actions on system processes.
   1749 			 */
   1750 			if (p->p_pid <= 1) {
   1751 #ifdef DIAGNOSTIC
   1752 				/*
   1753 				 * Are you sure you want to ignore SIGSEGV
   1754 				 * in init? XXX
   1755 				 */
   1756 				printf_nolog("Process (pid %d) got sig %d\n",
   1757 				    p->p_pid, signo);
   1758 #endif
   1759 				continue;
   1760 			}
   1761 
   1762 			/*
   1763 			 * If there is a pending stop signal to process with
   1764 			 * default action, stop here, then clear the signal.
   1765 			 * However, if process is member of an orphaned
   1766 			 * process group, ignore tty stop signals.
   1767 			 */
   1768 			if (prop & SA_STOP) {
   1769 				/*
   1770 				 * XXX Don't hold proc_lock for p_lflag,
   1771 				 * but it's not a big deal.
   1772 				 */
   1773 				if (p->p_slflag & PSL_TRACED ||
   1774 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1775 				    prop & SA_TTYSTOP)) {
   1776 					/* Ignore the signal. */
   1777 					continue;
   1778 				}
   1779 				/* Take the signal. */
   1780 				(void)sigget(sp, NULL, signo, NULL);
   1781 				p->p_xsig = signo;
   1782 				p->p_sflag &= ~PS_CONTINUED;
   1783 				signo = 0;
   1784 				sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
   1785 			} else if (prop & SA_IGNORE) {
   1786 				/*
   1787 				 * Except for SIGCONT, shouldn't get here.
   1788 				 * Default action is to ignore; drop it.
   1789 				 */
   1790 				continue;
   1791 			}
   1792 			break;
   1793 
   1794 		case (long)SIG_IGN:
   1795 #ifdef DEBUG_ISSIGNAL
   1796 			/*
   1797 			 * Masking above should prevent us ever trying
   1798 			 * to take action on an ignored signal other
   1799 			 * than SIGCONT, unless process is traced.
   1800 			 */
   1801 			if ((prop & SA_CONT) == 0 &&
   1802 			    (p->p_slflag & PSL_TRACED) == 0)
   1803 				printf_nolog("issignal\n");
   1804 #endif
   1805 			continue;
   1806 
   1807 		default:
   1808 			/*
   1809 			 * This signal has an action, let postsig() process
   1810 			 * it.
   1811 			 */
   1812 			break;
   1813 		}
   1814 
   1815 		break;
   1816 	}
   1817 
   1818 	l->l_sigpendset = sp;
   1819 	return signo;
   1820 }
   1821 
   1822 /*
   1823  * Take the action for the specified signal
   1824  * from the current set of pending signals.
   1825  */
   1826 void
   1827 postsig(int signo)
   1828 {
   1829 	struct lwp	*l;
   1830 	struct proc	*p;
   1831 	struct sigacts	*ps;
   1832 	sig_t		action;
   1833 	sigset_t	*returnmask;
   1834 	ksiginfo_t	ksi;
   1835 
   1836 	l = curlwp;
   1837 	p = l->l_proc;
   1838 	ps = p->p_sigacts;
   1839 
   1840 	KASSERT(mutex_owned(p->p_lock));
   1841 	KASSERT(signo > 0);
   1842 
   1843 	/*
   1844 	 * Set the new mask value and also defer further occurrences of this
   1845 	 * signal.
   1846 	 *
   1847 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1848 	 * not of interest, but rather the mask from before the sigsuspend is
   1849 	 * what we want restored after the signal processing is completed.
   1850 	 */
   1851 	if (l->l_sigrestore) {
   1852 		returnmask = &l->l_sigoldmask;
   1853 		l->l_sigrestore = 0;
   1854 	} else
   1855 		returnmask = &l->l_sigmask;
   1856 
   1857 	/*
   1858 	 * Commit to taking the signal before releasing the mutex.
   1859 	 */
   1860 	action = SIGACTION_PS(ps, signo).sa_handler;
   1861 	l->l_ru.ru_nsignals++;
   1862 	if (l->l_sigpendset == NULL) {
   1863 		/* From the debugger */
   1864 		if (p->p_sigctx.ps_faked &&
   1865 		    signo == p->p_sigctx.ps_info._signo) {
   1866 			KSI_INIT(&ksi);
   1867 			ksi.ksi_info = p->p_sigctx.ps_info;
   1868 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   1869 			p->p_sigctx.ps_faked = false;
   1870 		} else {
   1871 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1872 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1873 		}
   1874 	} else
   1875 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1876 
   1877 	if (ktrpoint(KTR_PSIG)) {
   1878 		mutex_exit(p->p_lock);
   1879 		if (p->p_emul->e_ktrpsig)
   1880 			p->p_emul->e_ktrpsig(signo, action,
   1881 			    returnmask, &ksi);
   1882 		else
   1883 			ktrpsig(signo, action, returnmask, &ksi);
   1884 		mutex_enter(p->p_lock);
   1885 	}
   1886 
   1887 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1888 
   1889 	if (action == SIG_DFL) {
   1890 		/*
   1891 		 * Default action, where the default is to kill
   1892 		 * the process.  (Other cases were ignored above.)
   1893 		 */
   1894 		sigexit(l, signo);
   1895 		return;
   1896 	}
   1897 
   1898 	/*
   1899 	 * If we get here, the signal must be caught.
   1900 	 */
   1901 #ifdef DIAGNOSTIC
   1902 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1903 		panic("postsig action");
   1904 #endif
   1905 
   1906 	kpsendsig(l, &ksi, returnmask);
   1907 }
   1908 
   1909 /*
   1910  * sendsig:
   1911  *
   1912  *	Default signal delivery method for NetBSD.
   1913  */
   1914 void
   1915 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1916 {
   1917 	struct sigacts *sa;
   1918 	int sig;
   1919 
   1920 	sig = ksi->ksi_signo;
   1921 	sa = curproc->p_sigacts;
   1922 
   1923 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1924 	case 0:
   1925 	case 1:
   1926 		/* Compat for 1.6 and earlier. */
   1927 		if (sendsig_sigcontext_vec == NULL) {
   1928 			break;
   1929 		}
   1930 		(*sendsig_sigcontext_vec)(ksi, mask);
   1931 		return;
   1932 	case 2:
   1933 	case 3:
   1934 		sendsig_siginfo(ksi, mask);
   1935 		return;
   1936 	default:
   1937 		break;
   1938 	}
   1939 
   1940 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1941 	sigexit(curlwp, SIGILL);
   1942 }
   1943 
   1944 /*
   1945  * sendsig_reset:
   1946  *
   1947  *	Reset the signal action.  Called from emulation specific sendsig()
   1948  *	before unlocking to deliver the signal.
   1949  */
   1950 void
   1951 sendsig_reset(struct lwp *l, int signo)
   1952 {
   1953 	struct proc *p = l->l_proc;
   1954 	struct sigacts *ps = p->p_sigacts;
   1955 
   1956 	KASSERT(mutex_owned(p->p_lock));
   1957 
   1958 	p->p_sigctx.ps_lwp = 0;
   1959 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   1960 
   1961 	mutex_enter(&ps->sa_mutex);
   1962 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1963 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1964 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1965 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1966 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1967 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1968 	}
   1969 	mutex_exit(&ps->sa_mutex);
   1970 }
   1971 
   1972 /*
   1973  * Kill the current process for stated reason.
   1974  */
   1975 void
   1976 killproc(struct proc *p, const char *why)
   1977 {
   1978 
   1979 	KASSERT(mutex_owned(proc_lock));
   1980 
   1981 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1982 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1983 	psignal(p, SIGKILL);
   1984 }
   1985 
   1986 /*
   1987  * Force the current process to exit with the specified signal, dumping core
   1988  * if appropriate.  We bypass the normal tests for masked and caught
   1989  * signals, allowing unrecoverable failures to terminate the process without
   1990  * changing signal state.  Mark the accounting record with the signal
   1991  * termination.  If dumping core, save the signal number for the debugger.
   1992  * Calls exit and does not return.
   1993  */
   1994 void
   1995 sigexit(struct lwp *l, int signo)
   1996 {
   1997 	int exitsig, error, docore;
   1998 	struct proc *p;
   1999 	struct lwp *t;
   2000 
   2001 	p = l->l_proc;
   2002 
   2003 	KASSERT(mutex_owned(p->p_lock));
   2004 	KERNEL_UNLOCK_ALL(l, NULL);
   2005 
   2006 	/*
   2007 	 * Don't permit coredump() multiple times in the same process.
   2008 	 * Call back into sigexit, where we will be suspended until
   2009 	 * the deed is done.  Note that this is a recursive call, but
   2010 	 * LW_WCORE will prevent us from coming back this way.
   2011 	 */
   2012 	if ((p->p_sflag & PS_WCORE) != 0) {
   2013 		lwp_lock(l);
   2014 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2015 		lwp_unlock(l);
   2016 		mutex_exit(p->p_lock);
   2017 		lwp_userret(l);
   2018 		panic("sigexit 1");
   2019 		/* NOTREACHED */
   2020 	}
   2021 
   2022 	/* If process is already on the way out, then bail now. */
   2023 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2024 		mutex_exit(p->p_lock);
   2025 		lwp_exit(l);
   2026 		panic("sigexit 2");
   2027 		/* NOTREACHED */
   2028 	}
   2029 
   2030 	/*
   2031 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2032 	 * so that their registers are available long enough to be dumped.
   2033  	 */
   2034 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2035 		p->p_sflag |= PS_WCORE;
   2036 		for (;;) {
   2037 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2038 				lwp_lock(t);
   2039 				if (t == l) {
   2040 					t->l_flag &= ~LW_WSUSPEND;
   2041 					lwp_unlock(t);
   2042 					continue;
   2043 				}
   2044 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2045 				lwp_suspend(l, t);
   2046 			}
   2047 
   2048 			if (p->p_nrlwps == 1)
   2049 				break;
   2050 
   2051 			/*
   2052 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2053 			 * for everyone else to stop before proceeding.
   2054 			 */
   2055 			p->p_nlwpwait++;
   2056 			cv_broadcast(&p->p_lwpcv);
   2057 			cv_wait(&p->p_lwpcv, p->p_lock);
   2058 			p->p_nlwpwait--;
   2059 		}
   2060 	}
   2061 
   2062 	exitsig = signo;
   2063 	p->p_acflag |= AXSIG;
   2064 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2065 	p->p_sigctx.ps_info._signo = signo;
   2066 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2067 
   2068 	if (docore) {
   2069 		mutex_exit(p->p_lock);
   2070 		error = (*coredump_vec)(l, NULL);
   2071 
   2072 		if (kern_logsigexit) {
   2073 			int uid = l->l_cred ?
   2074 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2075 
   2076 			if (error)
   2077 				log(LOG_INFO, lognocoredump, p->p_pid,
   2078 				    p->p_comm, uid, signo, error);
   2079 			else
   2080 				log(LOG_INFO, logcoredump, p->p_pid,
   2081 				    p->p_comm, uid, signo);
   2082 		}
   2083 
   2084 #ifdef PAX_SEGVGUARD
   2085 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2086 #endif /* PAX_SEGVGUARD */
   2087 		/* Acquire the sched state mutex.  exit1() will release it. */
   2088 		mutex_enter(p->p_lock);
   2089 		if (error == 0)
   2090 			p->p_sflag |= PS_COREDUMP;
   2091 	}
   2092 
   2093 	/* No longer dumping core. */
   2094 	p->p_sflag &= ~PS_WCORE;
   2095 
   2096 	exit1(l, 0, exitsig);
   2097 	/* NOTREACHED */
   2098 }
   2099 
   2100 /*
   2101  * Put process 'p' into the stopped state and optionally, notify the parent.
   2102  */
   2103 void
   2104 proc_stop(struct proc *p, int signo)
   2105 {
   2106 	struct lwp *l;
   2107 
   2108 	KASSERT(mutex_owned(p->p_lock));
   2109 
   2110 	/*
   2111 	 * First off, set the stopping indicator and bring all sleeping
   2112 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2113 	 * unlock between here and the p->p_nrlwps check below.
   2114 	 */
   2115 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
   2116 	membar_producer();
   2117 
   2118 	proc_stop_lwps(p);
   2119 
   2120 	/*
   2121 	 * If there are no LWPs available to take the signal, then we
   2122 	 * signal the parent process immediately.  Otherwise, the last
   2123 	 * LWP to stop will take care of it.
   2124 	 */
   2125 
   2126 	if (p->p_nrlwps == 0) {
   2127 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2128 	} else {
   2129 		/*
   2130 		 * Have the remaining LWPs come to a halt, and trigger
   2131 		 * proc_stop_callout() to ensure that they do.
   2132 		 */
   2133 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2134 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2135 		}
   2136 		callout_schedule(&proc_stop_ch, 1);
   2137 	}
   2138 }
   2139 
   2140 /*
   2141  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2142  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2143  * to allow LWPs to release any locks that they may hold before stopping.
   2144  *
   2145  * Non-interruptable sleeps can be long, and there is the potential for an
   2146  * LWP to begin sleeping interruptably soon after the process has been set
   2147  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2148  * stopping, and so complete halt of the process and the return of status
   2149  * information to the parent could be delayed indefinitely.
   2150  *
   2151  * To handle this race, proc_stop_callout() runs once per tick while there
   2152  * are stopping processes in the system.  It sets LWPs that are sleeping
   2153  * interruptably into the LSSTOP state.
   2154  *
   2155  * Note that we are not concerned about keeping all LWPs stopped while the
   2156  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2157  * What we do need to ensure is that all LWPs in a stopping process have
   2158  * stopped at least once, so that notification can be sent to the parent
   2159  * process.
   2160  */
   2161 static void
   2162 proc_stop_callout(void *cookie)
   2163 {
   2164 	bool more, restart;
   2165 	struct proc *p;
   2166 
   2167 	(void)cookie;
   2168 
   2169 	do {
   2170 		restart = false;
   2171 		more = false;
   2172 
   2173 		mutex_enter(proc_lock);
   2174 		PROCLIST_FOREACH(p, &allproc) {
   2175 			mutex_enter(p->p_lock);
   2176 
   2177 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2178 				mutex_exit(p->p_lock);
   2179 				continue;
   2180 			}
   2181 
   2182 			/* Stop any LWPs sleeping interruptably. */
   2183 			proc_stop_lwps(p);
   2184 			if (p->p_nrlwps == 0) {
   2185 				/*
   2186 				 * We brought the process to a halt.
   2187 				 * Mark it as stopped and notify the
   2188 				 * parent.
   2189 				 */
   2190 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2191 					/*
   2192 					 * Note that proc_stop_done() will
   2193 					 * drop p->p_lock briefly.
   2194 					 * Arrange to restart and check
   2195 					 * all processes again.
   2196 					 */
   2197 					restart = true;
   2198 				}
   2199 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2200 			} else
   2201 				more = true;
   2202 
   2203 			mutex_exit(p->p_lock);
   2204 			if (restart)
   2205 				break;
   2206 		}
   2207 		mutex_exit(proc_lock);
   2208 	} while (restart);
   2209 
   2210 	/*
   2211 	 * If we noted processes that are stopping but still have
   2212 	 * running LWPs, then arrange to check again in 1 tick.
   2213 	 */
   2214 	if (more)
   2215 		callout_schedule(&proc_stop_ch, 1);
   2216 }
   2217 
   2218 /*
   2219  * Given a process in state SSTOP, set the state back to SACTIVE and
   2220  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2221  */
   2222 void
   2223 proc_unstop(struct proc *p)
   2224 {
   2225 	struct lwp *l;
   2226 	int sig;
   2227 
   2228 	KASSERT(mutex_owned(proc_lock));
   2229 	KASSERT(mutex_owned(p->p_lock));
   2230 
   2231 	p->p_stat = SACTIVE;
   2232 	p->p_sflag &= ~PS_STOPPING;
   2233 	sig = p->p_xsig;
   2234 
   2235 	if (!p->p_waited)
   2236 		p->p_pptr->p_nstopchild--;
   2237 
   2238 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2239 		lwp_lock(l);
   2240 		if (l->l_stat != LSSTOP) {
   2241 			lwp_unlock(l);
   2242 			continue;
   2243 		}
   2244 		if (l->l_wchan == NULL) {
   2245 			setrunnable(l);
   2246 			continue;
   2247 		}
   2248 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2249 			setrunnable(l);
   2250 			sig = 0;
   2251 		} else {
   2252 			l->l_stat = LSSLEEP;
   2253 			p->p_nrlwps++;
   2254 			lwp_unlock(l);
   2255 		}
   2256 	}
   2257 }
   2258 
   2259 void
   2260 proc_stoptrace(int trapno)
   2261 {
   2262 	struct lwp *l = curlwp;
   2263 	struct proc *p = l->l_proc, *pp;
   2264 
   2265 	mutex_enter(p->p_lock);
   2266 	pp = p->p_pptr;
   2267 	if (pp->p_pid == 1) {
   2268 		CLR(p->p_slflag, PSL_SYSCALL);	/* XXXSMP */
   2269 		mutex_exit(p->p_lock);
   2270 		return;
   2271 	}
   2272 
   2273 	p->p_xsig = SIGTRAP;
   2274 	p->p_sigctx.ps_info._signo = p->p_xsig;
   2275 	p->p_sigctx.ps_info._code = trapno;
   2276 	sigswitch(true, 0, p->p_xsig);
   2277 	mutex_exit(p->p_lock);
   2278 }
   2279 
   2280 static int
   2281 filt_sigattach(struct knote *kn)
   2282 {
   2283 	struct proc *p = curproc;
   2284 
   2285 	kn->kn_obj = p;
   2286 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2287 
   2288 	mutex_enter(p->p_lock);
   2289 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2290 	mutex_exit(p->p_lock);
   2291 
   2292 	return 0;
   2293 }
   2294 
   2295 static void
   2296 filt_sigdetach(struct knote *kn)
   2297 {
   2298 	struct proc *p = kn->kn_obj;
   2299 
   2300 	mutex_enter(p->p_lock);
   2301 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2302 	mutex_exit(p->p_lock);
   2303 }
   2304 
   2305 /*
   2306  * Signal knotes are shared with proc knotes, so we apply a mask to
   2307  * the hint in order to differentiate them from process hints.  This
   2308  * could be avoided by using a signal-specific knote list, but probably
   2309  * isn't worth the trouble.
   2310  */
   2311 static int
   2312 filt_signal(struct knote *kn, long hint)
   2313 {
   2314 
   2315 	if (hint & NOTE_SIGNAL) {
   2316 		hint &= ~NOTE_SIGNAL;
   2317 
   2318 		if (kn->kn_id == hint)
   2319 			kn->kn_data++;
   2320 	}
   2321 	return (kn->kn_data != 0);
   2322 }
   2323 
   2324 const struct filterops sig_filtops = {
   2325 	0, filt_sigattach, filt_sigdetach, filt_signal
   2326 };
   2327