Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.338
      1 /*	$NetBSD: kern_sig.c,v 1.338 2017/10/25 08:12:39 maya Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.338 2017/10/25 08:12:39 maya Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 
    104 #ifdef PAX_SEGVGUARD
    105 #include <sys/pax.h>
    106 #endif /* PAX_SEGVGUARD */
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #define	SIGQUEUE_MAX	32
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 sigset_t		contsigmask	__cacheline_aligned;
    116 static sigset_t		stopsigmask	__cacheline_aligned;
    117 sigset_t		sigcantmask	__cacheline_aligned;
    118 
    119 static void	ksiginfo_exechook(struct proc *, void *);
    120 static void	proc_stop(struct proc *, int);
    121 static void	proc_stop_callout(void *);
    122 static int	sigchecktrace(void);
    123 static int	sigpost(struct lwp *, sig_t, int, int);
    124 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    125 static int	sigunwait(struct proc *, const ksiginfo_t *);
    126 static void	sigswitch(bool, int, int);
    127 
    128 static void	sigacts_poolpage_free(struct pool *, void *);
    129 static void	*sigacts_poolpage_alloc(struct pool *, int);
    130 
    131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    132 int (*coredump_vec)(struct lwp *, const char *) =
    133     (int (*)(struct lwp *, const char *))enosys;
    134 
    135 /*
    136  * DTrace SDT provider definitions
    137  */
    138 SDT_PROVIDER_DECLARE(proc);
    139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    140     "struct lwp *", 	/* target thread */
    141     "struct proc *", 	/* target process */
    142     "int");		/* signal */
    143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    144     "struct lwp *",	/* target thread */
    145     "struct proc *",	/* target process */
    146     "int");  		/* signal */
    147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    148     "int", 		/* signal */
    149     "ksiginfo_t *", 	/* signal info */
    150     "void (*)(void)");	/* handler address */
    151 
    152 
    153 static struct pool_allocator sigactspool_allocator = {
    154 	.pa_alloc = sigacts_poolpage_alloc,
    155 	.pa_free = sigacts_poolpage_free
    156 };
    157 
    158 #ifdef DEBUG
    159 int	kern_logsigexit = 1;
    160 #else
    161 int	kern_logsigexit = 0;
    162 #endif
    163 
    164 static const char logcoredump[] =
    165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    166 static const char lognocoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    168 
    169 static kauth_listener_t signal_listener;
    170 
    171 static int
    172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    173     void *arg0, void *arg1, void *arg2, void *arg3)
    174 {
    175 	struct proc *p;
    176 	int result, signum;
    177 
    178 	result = KAUTH_RESULT_DEFER;
    179 	p = arg0;
    180 	signum = (int)(unsigned long)arg1;
    181 
    182 	if (action != KAUTH_PROCESS_SIGNAL)
    183 		return result;
    184 
    185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    187 		result = KAUTH_RESULT_ALLOW;
    188 
    189 	return result;
    190 }
    191 
    192 /*
    193  * signal_init:
    194  *
    195  *	Initialize global signal-related data structures.
    196  */
    197 void
    198 signal_init(void)
    199 {
    200 
    201 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    202 
    203 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    204 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    205 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    206 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    207 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    208 
    209 	exechook_establish(ksiginfo_exechook, NULL);
    210 
    211 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    212 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    213 
    214 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    215 	    signal_listener_cb, NULL);
    216 }
    217 
    218 /*
    219  * sigacts_poolpage_alloc:
    220  *
    221  *	Allocate a page for the sigacts memory pool.
    222  */
    223 static void *
    224 sigacts_poolpage_alloc(struct pool *pp, int flags)
    225 {
    226 
    227 	return (void *)uvm_km_alloc(kernel_map,
    228 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    229 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    230 	    | UVM_KMF_WIRED);
    231 }
    232 
    233 /*
    234  * sigacts_poolpage_free:
    235  *
    236  *	Free a page on behalf of the sigacts memory pool.
    237  */
    238 static void
    239 sigacts_poolpage_free(struct pool *pp, void *v)
    240 {
    241 
    242 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigactsinit:
    247  *
    248  *	Create an initial sigacts structure, using the same signal state
    249  *	as of specified process.  If 'share' is set, share the sigacts by
    250  *	holding a reference, otherwise just copy it from parent.
    251  */
    252 struct sigacts *
    253 sigactsinit(struct proc *pp, int share)
    254 {
    255 	struct sigacts *ps = pp->p_sigacts, *ps2;
    256 
    257 	if (__predict_false(share)) {
    258 		atomic_inc_uint(&ps->sa_refcnt);
    259 		return ps;
    260 	}
    261 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    262 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    263 	ps2->sa_refcnt = 1;
    264 
    265 	mutex_enter(&ps->sa_mutex);
    266 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    267 	mutex_exit(&ps->sa_mutex);
    268 	return ps2;
    269 }
    270 
    271 /*
    272  * sigactsunshare:
    273  *
    274  *	Make this process not share its sigacts, maintaining all signal state.
    275  */
    276 void
    277 sigactsunshare(struct proc *p)
    278 {
    279 	struct sigacts *ps, *oldps = p->p_sigacts;
    280 
    281 	if (__predict_true(oldps->sa_refcnt == 1))
    282 		return;
    283 
    284 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    285 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    286 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    287 	ps->sa_refcnt = 1;
    288 
    289 	p->p_sigacts = ps;
    290 	sigactsfree(oldps);
    291 }
    292 
    293 /*
    294  * sigactsfree;
    295  *
    296  *	Release a sigacts structure.
    297  */
    298 void
    299 sigactsfree(struct sigacts *ps)
    300 {
    301 
    302 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    303 		mutex_destroy(&ps->sa_mutex);
    304 		pool_cache_put(sigacts_cache, ps);
    305 	}
    306 }
    307 
    308 /*
    309  * siginit:
    310  *
    311  *	Initialize signal state for process 0; set to ignore signals that
    312  *	are ignored by default and disable the signal stack.  Locking not
    313  *	required as the system is still cold.
    314  */
    315 void
    316 siginit(struct proc *p)
    317 {
    318 	struct lwp *l;
    319 	struct sigacts *ps;
    320 	int signo, prop;
    321 
    322 	ps = p->p_sigacts;
    323 	sigemptyset(&contsigmask);
    324 	sigemptyset(&stopsigmask);
    325 	sigemptyset(&sigcantmask);
    326 	for (signo = 1; signo < NSIG; signo++) {
    327 		prop = sigprop[signo];
    328 		if (prop & SA_CONT)
    329 			sigaddset(&contsigmask, signo);
    330 		if (prop & SA_STOP)
    331 			sigaddset(&stopsigmask, signo);
    332 		if (prop & SA_CANTMASK)
    333 			sigaddset(&sigcantmask, signo);
    334 		if (prop & SA_IGNORE && signo != SIGCONT)
    335 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    336 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    337 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    338 	}
    339 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    340 	p->p_sflag &= ~PS_NOCLDSTOP;
    341 
    342 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    343 	sigemptyset(&p->p_sigpend.sp_set);
    344 
    345 	/*
    346 	 * Reset per LWP state.
    347 	 */
    348 	l = LIST_FIRST(&p->p_lwps);
    349 	l->l_sigwaited = NULL;
    350 	l->l_sigstk = SS_INIT;
    351 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    352 	sigemptyset(&l->l_sigpend.sp_set);
    353 
    354 	/* One reference. */
    355 	ps->sa_refcnt = 1;
    356 }
    357 
    358 /*
    359  * execsigs:
    360  *
    361  *	Reset signals for an exec of the specified process.
    362  */
    363 void
    364 execsigs(struct proc *p)
    365 {
    366 	struct sigacts *ps;
    367 	struct lwp *l;
    368 	int signo, prop;
    369 	sigset_t tset;
    370 	ksiginfoq_t kq;
    371 
    372 	KASSERT(p->p_nlwps == 1);
    373 
    374 	sigactsunshare(p);
    375 	ps = p->p_sigacts;
    376 
    377 	/*
    378 	 * Reset caught signals.  Held signals remain held through
    379 	 * l->l_sigmask (unless they were caught, and are now ignored
    380 	 * by default).
    381 	 *
    382 	 * No need to lock yet, the process has only one LWP and
    383 	 * at this point the sigacts are private to the process.
    384 	 */
    385 	sigemptyset(&tset);
    386 	for (signo = 1; signo < NSIG; signo++) {
    387 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    388 			prop = sigprop[signo];
    389 			if (prop & SA_IGNORE) {
    390 				if ((prop & SA_CONT) == 0)
    391 					sigaddset(&p->p_sigctx.ps_sigignore,
    392 					    signo);
    393 				sigaddset(&tset, signo);
    394 			}
    395 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    396 		}
    397 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    398 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    399 	}
    400 	ksiginfo_queue_init(&kq);
    401 
    402 	mutex_enter(p->p_lock);
    403 	sigclearall(p, &tset, &kq);
    404 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    405 
    406 	/*
    407 	 * Reset no zombies if child dies flag as Solaris does.
    408 	 */
    409 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    410 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    411 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    412 
    413 	/*
    414 	 * Reset per-LWP state.
    415 	 */
    416 	l = LIST_FIRST(&p->p_lwps);
    417 	l->l_sigwaited = NULL;
    418 	l->l_sigstk = SS_INIT;
    419 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    420 	sigemptyset(&l->l_sigpend.sp_set);
    421 	mutex_exit(p->p_lock);
    422 
    423 	ksiginfo_queue_drain(&kq);
    424 }
    425 
    426 /*
    427  * ksiginfo_exechook:
    428  *
    429  *	Free all pending ksiginfo entries from a process on exec.
    430  *	Additionally, drain any unused ksiginfo structures in the
    431  *	system back to the pool.
    432  *
    433  *	XXX This should not be a hook, every process has signals.
    434  */
    435 static void
    436 ksiginfo_exechook(struct proc *p, void *v)
    437 {
    438 	ksiginfoq_t kq;
    439 
    440 	ksiginfo_queue_init(&kq);
    441 
    442 	mutex_enter(p->p_lock);
    443 	sigclearall(p, NULL, &kq);
    444 	mutex_exit(p->p_lock);
    445 
    446 	ksiginfo_queue_drain(&kq);
    447 }
    448 
    449 /*
    450  * ksiginfo_alloc:
    451  *
    452  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    453  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    454  *	has not been queued somewhere, then just return it.  Additionally,
    455  *	if the existing ksiginfo_t does not contain any information beyond
    456  *	the signal number, then just return it.
    457  */
    458 ksiginfo_t *
    459 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    460 {
    461 	ksiginfo_t *kp;
    462 
    463 	if (ok != NULL) {
    464 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    465 		    KSI_FROMPOOL)
    466 			return ok;
    467 		if (KSI_EMPTY_P(ok))
    468 			return ok;
    469 	}
    470 
    471 	kp = pool_cache_get(ksiginfo_cache, flags);
    472 	if (kp == NULL) {
    473 #ifdef DIAGNOSTIC
    474 		printf("Out of memory allocating ksiginfo for pid %d\n",
    475 		    p->p_pid);
    476 #endif
    477 		return NULL;
    478 	}
    479 
    480 	if (ok != NULL) {
    481 		memcpy(kp, ok, sizeof(*kp));
    482 		kp->ksi_flags &= ~KSI_QUEUED;
    483 	} else
    484 		KSI_INIT_EMPTY(kp);
    485 
    486 	kp->ksi_flags |= KSI_FROMPOOL;
    487 
    488 	return kp;
    489 }
    490 
    491 /*
    492  * ksiginfo_free:
    493  *
    494  *	If the given ksiginfo_t is from the pool and has not been queued,
    495  *	then free it.
    496  */
    497 void
    498 ksiginfo_free(ksiginfo_t *kp)
    499 {
    500 
    501 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    502 		return;
    503 	pool_cache_put(ksiginfo_cache, kp);
    504 }
    505 
    506 /*
    507  * ksiginfo_queue_drain:
    508  *
    509  *	Drain a non-empty ksiginfo_t queue.
    510  */
    511 void
    512 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    513 {
    514 	ksiginfo_t *ksi;
    515 
    516 	KASSERT(!TAILQ_EMPTY(kq));
    517 
    518 	while (!TAILQ_EMPTY(kq)) {
    519 		ksi = TAILQ_FIRST(kq);
    520 		TAILQ_REMOVE(kq, ksi, ksi_list);
    521 		pool_cache_put(ksiginfo_cache, ksi);
    522 	}
    523 }
    524 
    525 static int
    526 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    527 {
    528 	ksiginfo_t *ksi, *nksi;
    529 
    530 	if (sp == NULL)
    531 		goto out;
    532 
    533 	/* Find siginfo and copy it out. */
    534 	int count = 0;
    535 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    536 		if (ksi->ksi_signo != signo)
    537 			continue;
    538 		if (count++ > 0) /* Only remove the first, count all of them */
    539 			continue;
    540 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    541 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    542 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    543 		ksi->ksi_flags &= ~KSI_QUEUED;
    544 		if (out != NULL) {
    545 			memcpy(out, ksi, sizeof(*out));
    546 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    547 		}
    548 		ksiginfo_free(ksi);
    549 	}
    550 	if (count)
    551 		return count;
    552 
    553 out:
    554 	/* If there is no siginfo, then manufacture it. */
    555 	if (out != NULL) {
    556 		KSI_INIT(out);
    557 		out->ksi_info._signo = signo;
    558 		out->ksi_info._code = SI_NOINFO;
    559 	}
    560 	return 0;
    561 }
    562 
    563 /*
    564  * sigget:
    565  *
    566  *	Fetch the first pending signal from a set.  Optionally, also fetch
    567  *	or manufacture a ksiginfo element.  Returns the number of the first
    568  *	pending signal, or zero.
    569  */
    570 int
    571 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    572 {
    573 	sigset_t tset;
    574 	int count;
    575 
    576 	/* If there's no pending set, the signal is from the debugger. */
    577 	if (sp == NULL)
    578 		goto out;
    579 
    580 	/* Construct mask from signo, and 'mask'. */
    581 	if (signo == 0) {
    582 		if (mask != NULL) {
    583 			tset = *mask;
    584 			__sigandset(&sp->sp_set, &tset);
    585 		} else
    586 			tset = sp->sp_set;
    587 
    588 		/* If there are no signals pending - return. */
    589 		if ((signo = firstsig(&tset)) == 0)
    590 			goto out;
    591 	} else {
    592 		KASSERT(sigismember(&sp->sp_set, signo));
    593 	}
    594 
    595 	sigdelset(&sp->sp_set, signo);
    596 out:
    597 	count = siggetinfo(sp, out, signo);
    598 	if (count > 1)
    599 		sigaddset(&sp->sp_set, signo);
    600 	return signo;
    601 }
    602 
    603 /*
    604  * sigput:
    605  *
    606  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    607  */
    608 static int
    609 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    610 {
    611 	ksiginfo_t *kp;
    612 
    613 	KASSERT(mutex_owned(p->p_lock));
    614 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    615 
    616 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    617 
    618 	/*
    619 	 * If there is no siginfo, we are done.
    620 	 */
    621 	if (KSI_EMPTY_P(ksi))
    622 		return 0;
    623 
    624 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    625 
    626 	size_t count = 0;
    627 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    628 		count++;
    629 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    630 			continue;
    631 		if (kp->ksi_signo == ksi->ksi_signo) {
    632 			KSI_COPY(ksi, kp);
    633 			kp->ksi_flags |= KSI_QUEUED;
    634 			return 0;
    635 		}
    636 	}
    637 
    638 	if (count >= SIGQUEUE_MAX) {
    639 #ifdef DIAGNOSTIC
    640 		printf("%s(%d): Signal queue is full signal=%d\n",
    641 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    642 #endif
    643 		return EAGAIN;
    644 	}
    645 	ksi->ksi_flags |= KSI_QUEUED;
    646 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    647 
    648 	return 0;
    649 }
    650 
    651 /*
    652  * sigclear:
    653  *
    654  *	Clear all pending signals in the specified set.
    655  */
    656 void
    657 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    658 {
    659 	ksiginfo_t *ksi, *next;
    660 
    661 	if (mask == NULL)
    662 		sigemptyset(&sp->sp_set);
    663 	else
    664 		sigminusset(mask, &sp->sp_set);
    665 
    666 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    667 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    668 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    669 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    670 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    671 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    672 		}
    673 	}
    674 }
    675 
    676 /*
    677  * sigclearall:
    678  *
    679  *	Clear all pending signals in the specified set from a process and
    680  *	its LWPs.
    681  */
    682 void
    683 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    684 {
    685 	struct lwp *l;
    686 
    687 	KASSERT(mutex_owned(p->p_lock));
    688 
    689 	sigclear(&p->p_sigpend, mask, kq);
    690 
    691 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    692 		sigclear(&l->l_sigpend, mask, kq);
    693 	}
    694 }
    695 
    696 /*
    697  * sigispending:
    698  *
    699  *	Return the first signal number if there are pending signals for the
    700  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    701  *	and that the signal has been posted to the appopriate queue before
    702  *	LW_PENDSIG is set.
    703  */
    704 int
    705 sigispending(struct lwp *l, int signo)
    706 {
    707 	struct proc *p = l->l_proc;
    708 	sigset_t tset;
    709 
    710 	membar_consumer();
    711 
    712 	tset = l->l_sigpend.sp_set;
    713 	sigplusset(&p->p_sigpend.sp_set, &tset);
    714 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    715 	sigminusset(&l->l_sigmask, &tset);
    716 
    717 	if (signo == 0) {
    718 		return firstsig(&tset);
    719 	}
    720 	return sigismember(&tset, signo) ? signo : 0;
    721 }
    722 
    723 void
    724 getucontext(struct lwp *l, ucontext_t *ucp)
    725 {
    726 	struct proc *p = l->l_proc;
    727 
    728 	KASSERT(mutex_owned(p->p_lock));
    729 
    730 	ucp->uc_flags = 0;
    731 	ucp->uc_link = l->l_ctxlink;
    732 	ucp->uc_sigmask = l->l_sigmask;
    733 	ucp->uc_flags |= _UC_SIGMASK;
    734 
    735 	/*
    736 	 * The (unsupplied) definition of the `current execution stack'
    737 	 * in the System V Interface Definition appears to allow returning
    738 	 * the main context stack.
    739 	 */
    740 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    741 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    742 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    743 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    744 	} else {
    745 		/* Simply copy alternate signal execution stack. */
    746 		ucp->uc_stack = l->l_sigstk;
    747 	}
    748 	ucp->uc_flags |= _UC_STACK;
    749 	mutex_exit(p->p_lock);
    750 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    751 	mutex_enter(p->p_lock);
    752 }
    753 
    754 int
    755 setucontext(struct lwp *l, const ucontext_t *ucp)
    756 {
    757 	struct proc *p = l->l_proc;
    758 	int error;
    759 
    760 	KASSERT(mutex_owned(p->p_lock));
    761 
    762 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    763 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    764 		if (error != 0)
    765 			return error;
    766 	}
    767 
    768 	mutex_exit(p->p_lock);
    769 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    770 	mutex_enter(p->p_lock);
    771 	if (error != 0)
    772 		return (error);
    773 
    774 	l->l_ctxlink = ucp->uc_link;
    775 
    776 	/*
    777 	 * If there was stack information, update whether or not we are
    778 	 * still running on an alternate signal stack.
    779 	 */
    780 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    781 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    782 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    783 		else
    784 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    785 	}
    786 
    787 	return 0;
    788 }
    789 
    790 /*
    791  * killpg1: common code for kill process group/broadcast kill.
    792  */
    793 int
    794 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    795 {
    796 	struct proc	*p, *cp;
    797 	kauth_cred_t	pc;
    798 	struct pgrp	*pgrp;
    799 	int		nfound;
    800 	int		signo = ksi->ksi_signo;
    801 
    802 	cp = l->l_proc;
    803 	pc = l->l_cred;
    804 	nfound = 0;
    805 
    806 	mutex_enter(proc_lock);
    807 	if (all) {
    808 		/*
    809 		 * Broadcast.
    810 		 */
    811 		PROCLIST_FOREACH(p, &allproc) {
    812 			if (p->p_pid <= 1 || p == cp ||
    813 			    (p->p_flag & PK_SYSTEM) != 0)
    814 				continue;
    815 			mutex_enter(p->p_lock);
    816 			if (kauth_authorize_process(pc,
    817 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    818 			    NULL) == 0) {
    819 				nfound++;
    820 				if (signo)
    821 					kpsignal2(p, ksi);
    822 			}
    823 			mutex_exit(p->p_lock);
    824 		}
    825 	} else {
    826 		if (pgid == 0)
    827 			/* Zero pgid means send to my process group. */
    828 			pgrp = cp->p_pgrp;
    829 		else {
    830 			pgrp = pgrp_find(pgid);
    831 			if (pgrp == NULL)
    832 				goto out;
    833 		}
    834 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    835 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    836 				continue;
    837 			mutex_enter(p->p_lock);
    838 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    839 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    840 				nfound++;
    841 				if (signo && P_ZOMBIE(p) == 0)
    842 					kpsignal2(p, ksi);
    843 			}
    844 			mutex_exit(p->p_lock);
    845 		}
    846 	}
    847 out:
    848 	mutex_exit(proc_lock);
    849 	return nfound ? 0 : ESRCH;
    850 }
    851 
    852 /*
    853  * Send a signal to a process group.  If checktty is set, limit to members
    854  * which have a controlling terminal.
    855  */
    856 void
    857 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    858 {
    859 	ksiginfo_t ksi;
    860 
    861 	KASSERT(!cpu_intr_p());
    862 	KASSERT(mutex_owned(proc_lock));
    863 
    864 	KSI_INIT_EMPTY(&ksi);
    865 	ksi.ksi_signo = sig;
    866 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    867 }
    868 
    869 void
    870 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    871 {
    872 	struct proc *p;
    873 
    874 	KASSERT(!cpu_intr_p());
    875 	KASSERT(mutex_owned(proc_lock));
    876 	KASSERT(pgrp != NULL);
    877 
    878 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    879 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    880 			kpsignal(p, ksi, data);
    881 }
    882 
    883 /*
    884  * Send a signal caused by a trap to the current LWP.  If it will be caught
    885  * immediately, deliver it with correct code.  Otherwise, post it normally.
    886  */
    887 void
    888 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    889 {
    890 	struct proc	*p;
    891 	struct sigacts	*ps;
    892 	int signo = ksi->ksi_signo;
    893 	sigset_t *mask;
    894 
    895 	KASSERT(KSI_TRAP_P(ksi));
    896 
    897 	ksi->ksi_lid = l->l_lid;
    898 	p = l->l_proc;
    899 
    900 	KASSERT(!cpu_intr_p());
    901 	mutex_enter(proc_lock);
    902 	mutex_enter(p->p_lock);
    903 	mask = &l->l_sigmask;
    904 	ps = p->p_sigacts;
    905 
    906 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    907 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    908 	    !sigismember(mask, signo)) {
    909 		mutex_exit(proc_lock);
    910 		l->l_ru.ru_nsignals++;
    911 		kpsendsig(l, ksi, mask);
    912 		mutex_exit(p->p_lock);
    913 		if (ktrpoint(KTR_PSIG)) {
    914 			if (p->p_emul->e_ktrpsig)
    915 				p->p_emul->e_ktrpsig(signo,
    916 				    SIGACTION_PS(ps, signo).sa_handler,
    917 				    mask, ksi);
    918 			else
    919 				ktrpsig(signo,
    920 				    SIGACTION_PS(ps, signo).sa_handler,
    921 				    mask, ksi);
    922 		}
    923 	} else {
    924 		kpsignal2(p, ksi);
    925 		mutex_exit(p->p_lock);
    926 		mutex_exit(proc_lock);
    927 	}
    928 }
    929 
    930 /*
    931  * Fill in signal information and signal the parent for a child status change.
    932  */
    933 void
    934 child_psignal(struct proc *p, int mask)
    935 {
    936 	ksiginfo_t ksi;
    937 	struct proc *q;
    938 	int xsig;
    939 
    940 	KASSERT(mutex_owned(proc_lock));
    941 	KASSERT(mutex_owned(p->p_lock));
    942 
    943 	xsig = p->p_xsig;
    944 
    945 	KSI_INIT(&ksi);
    946 	ksi.ksi_signo = SIGCHLD;
    947 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    948 	ksi.ksi_pid = p->p_pid;
    949 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    950 	ksi.ksi_status = xsig;
    951 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    952 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    953 
    954 	q = p->p_pptr;
    955 
    956 	mutex_exit(p->p_lock);
    957 	mutex_enter(q->p_lock);
    958 
    959 	if ((q->p_sflag & mask) == 0)
    960 		kpsignal2(q, &ksi);
    961 
    962 	mutex_exit(q->p_lock);
    963 	mutex_enter(p->p_lock);
    964 }
    965 
    966 void
    967 psignal(struct proc *p, int signo)
    968 {
    969 	ksiginfo_t ksi;
    970 
    971 	KASSERT(!cpu_intr_p());
    972 	KASSERT(mutex_owned(proc_lock));
    973 
    974 	KSI_INIT_EMPTY(&ksi);
    975 	ksi.ksi_signo = signo;
    976 	mutex_enter(p->p_lock);
    977 	kpsignal2(p, &ksi);
    978 	mutex_exit(p->p_lock);
    979 }
    980 
    981 void
    982 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    983 {
    984 	fdfile_t *ff;
    985 	file_t *fp;
    986 	fdtab_t *dt;
    987 
    988 	KASSERT(!cpu_intr_p());
    989 	KASSERT(mutex_owned(proc_lock));
    990 
    991 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    992 		size_t fd;
    993 		filedesc_t *fdp = p->p_fd;
    994 
    995 		/* XXXSMP locking */
    996 		ksi->ksi_fd = -1;
    997 		dt = fdp->fd_dt;
    998 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
    999 			if ((ff = dt->dt_ff[fd]) == NULL)
   1000 				continue;
   1001 			if ((fp = ff->ff_file) == NULL)
   1002 				continue;
   1003 			if (fp->f_data == data) {
   1004 				ksi->ksi_fd = fd;
   1005 				break;
   1006 			}
   1007 		}
   1008 	}
   1009 	mutex_enter(p->p_lock);
   1010 	kpsignal2(p, ksi);
   1011 	mutex_exit(p->p_lock);
   1012 }
   1013 
   1014 /*
   1015  * sigismasked:
   1016  *
   1017  *	Returns true if signal is ignored or masked for the specified LWP.
   1018  */
   1019 int
   1020 sigismasked(struct lwp *l, int sig)
   1021 {
   1022 	struct proc *p = l->l_proc;
   1023 
   1024 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1025 	    sigismember(&l->l_sigmask, sig);
   1026 }
   1027 
   1028 /*
   1029  * sigpost:
   1030  *
   1031  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1032  *	be able to take the signal.
   1033  */
   1034 static int
   1035 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1036 {
   1037 	int rv, masked;
   1038 	struct proc *p = l->l_proc;
   1039 
   1040 	KASSERT(mutex_owned(p->p_lock));
   1041 
   1042 	/*
   1043 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1044 	 * pending signals.  Don't give it more.
   1045 	 */
   1046 	if (l->l_refcnt == 0)
   1047 		return 0;
   1048 
   1049 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1050 
   1051 	/*
   1052 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1053 	 * is found to take the signal immediately, it should be taken soon.
   1054 	 */
   1055 	lwp_lock(l);
   1056 	l->l_flag |= LW_PENDSIG;
   1057 
   1058 	/*
   1059 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1060 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1061 	 */
   1062 	masked = sigismember(&l->l_sigmask, sig);
   1063 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1064 		lwp_unlock(l);
   1065 		return 0;
   1066 	}
   1067 
   1068 	/*
   1069 	 * If killing the process, make it run fast.
   1070 	 */
   1071 	if (__predict_false((prop & SA_KILL) != 0) &&
   1072 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1073 		KASSERT(l->l_class == SCHED_OTHER);
   1074 		lwp_changepri(l, MAXPRI_USER);
   1075 	}
   1076 
   1077 	/*
   1078 	 * If the LWP is running or on a run queue, then we win.  If it's
   1079 	 * sleeping interruptably, wake it and make it take the signal.  If
   1080 	 * the sleep isn't interruptable, then the chances are it will get
   1081 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1082 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1083 	 * for later; otherwise punt.
   1084 	 */
   1085 	rv = 0;
   1086 
   1087 	switch (l->l_stat) {
   1088 	case LSRUN:
   1089 	case LSONPROC:
   1090 		lwp_need_userret(l);
   1091 		rv = 1;
   1092 		break;
   1093 
   1094 	case LSSLEEP:
   1095 		if ((l->l_flag & LW_SINTR) != 0) {
   1096 			/* setrunnable() will release the lock. */
   1097 			setrunnable(l);
   1098 			return 1;
   1099 		}
   1100 		break;
   1101 
   1102 	case LSSUSPENDED:
   1103 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1104 			/* lwp_continue() will release the lock. */
   1105 			lwp_continue(l);
   1106 			return 1;
   1107 		}
   1108 		break;
   1109 
   1110 	case LSSTOP:
   1111 		if ((prop & SA_STOP) != 0)
   1112 			break;
   1113 
   1114 		/*
   1115 		 * If the LWP is stopped and we are sending a continue
   1116 		 * signal, then start it again.
   1117 		 */
   1118 		if ((prop & SA_CONT) != 0) {
   1119 			if (l->l_wchan != NULL) {
   1120 				l->l_stat = LSSLEEP;
   1121 				p->p_nrlwps++;
   1122 				rv = 1;
   1123 				break;
   1124 			}
   1125 			/* setrunnable() will release the lock. */
   1126 			setrunnable(l);
   1127 			return 1;
   1128 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1129 			/* setrunnable() will release the lock. */
   1130 			setrunnable(l);
   1131 			return 1;
   1132 		}
   1133 		break;
   1134 
   1135 	default:
   1136 		break;
   1137 	}
   1138 
   1139 	lwp_unlock(l);
   1140 	return rv;
   1141 }
   1142 
   1143 /*
   1144  * Notify an LWP that it has a pending signal.
   1145  */
   1146 void
   1147 signotify(struct lwp *l)
   1148 {
   1149 	KASSERT(lwp_locked(l, NULL));
   1150 
   1151 	l->l_flag |= LW_PENDSIG;
   1152 	lwp_need_userret(l);
   1153 }
   1154 
   1155 /*
   1156  * Find an LWP within process p that is waiting on signal ksi, and hand
   1157  * it on.
   1158  */
   1159 static int
   1160 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1161 {
   1162 	struct lwp *l;
   1163 	int signo;
   1164 
   1165 	KASSERT(mutex_owned(p->p_lock));
   1166 
   1167 	signo = ksi->ksi_signo;
   1168 
   1169 	if (ksi->ksi_lid != 0) {
   1170 		/*
   1171 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1172 		 * it's interested.
   1173 		 */
   1174 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1175 			return 0;
   1176 		if (l->l_sigwaited == NULL ||
   1177 		    !sigismember(&l->l_sigwaitset, signo))
   1178 			return 0;
   1179 	} else {
   1180 		/*
   1181 		 * Look for any LWP that may be interested.
   1182 		 */
   1183 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1184 			KASSERT(l->l_sigwaited != NULL);
   1185 			if (sigismember(&l->l_sigwaitset, signo))
   1186 				break;
   1187 		}
   1188 	}
   1189 
   1190 	if (l != NULL) {
   1191 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1192 		l->l_sigwaited = NULL;
   1193 		LIST_REMOVE(l, l_sigwaiter);
   1194 		cv_signal(&l->l_sigcv);
   1195 		return 1;
   1196 	}
   1197 
   1198 	return 0;
   1199 }
   1200 
   1201 /*
   1202  * Send the signal to the process.  If the signal has an action, the action
   1203  * is usually performed by the target process rather than the caller; we add
   1204  * the signal to the set of pending signals for the process.
   1205  *
   1206  * Exceptions:
   1207  *   o When a stop signal is sent to a sleeping process that takes the
   1208  *     default action, the process is stopped without awakening it.
   1209  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1210  *     regardless of the signal action (eg, blocked or ignored).
   1211  *
   1212  * Other ignored signals are discarded immediately.
   1213  */
   1214 int
   1215 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1216 {
   1217 	int prop, signo = ksi->ksi_signo;
   1218 	struct sigacts *sa;
   1219 	struct lwp *l = NULL;
   1220 	ksiginfo_t *kp;
   1221 	lwpid_t lid;
   1222 	sig_t action;
   1223 	bool toall, debtrap = false;
   1224 	int error = 0;
   1225 
   1226 	KASSERT(!cpu_intr_p());
   1227 	KASSERT(mutex_owned(proc_lock));
   1228 	KASSERT(mutex_owned(p->p_lock));
   1229 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1230 	KASSERT(signo > 0 && signo < NSIG);
   1231 
   1232 	/*
   1233 	 * If the process is being created by fork, is a zombie or is
   1234 	 * exiting, then just drop the signal here and bail out.
   1235 	 */
   1236 	if (p->p_stat == SIDL && signo == SIGTRAP
   1237 	    && (p->p_slflag & PSL_TRACED)) {
   1238 		/* allow an initial SIGTRAP for traced processes */
   1239 		debtrap = true;
   1240 	} else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
   1241 		return 0;
   1242 	}
   1243 
   1244 	/* XXX for core dump/debugger */
   1245 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1246 	p->p_sigctx.ps_info = ksi->ksi_info;
   1247 
   1248 	/*
   1249 	 * Notify any interested parties of the signal.
   1250 	 */
   1251 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1252 
   1253 	/*
   1254 	 * Some signals including SIGKILL must act on the entire process.
   1255 	 */
   1256 	kp = NULL;
   1257 	prop = sigprop[signo];
   1258 	toall = ((prop & SA_TOALL) != 0);
   1259 	lid = toall ? 0 : ksi->ksi_lid;
   1260 
   1261 	/*
   1262 	 * If proc is traced, always give parent a chance.
   1263 	 */
   1264 	if (p->p_slflag & PSL_TRACED) {
   1265 		action = SIG_DFL;
   1266 
   1267 		if (lid == 0) {
   1268 			/*
   1269 			 * If the process is being traced and the signal
   1270 			 * is being caught, make sure to save any ksiginfo.
   1271 			 */
   1272 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1273 				goto discard;
   1274 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1275 				goto out;
   1276 		}
   1277 	} else {
   1278 		/*
   1279 		 * If the signal was the result of a trap and is not being
   1280 		 * caught, then reset it to default action so that the
   1281 		 * process dumps core immediately.
   1282 		 */
   1283 		if (KSI_TRAP_P(ksi)) {
   1284 			sa = p->p_sigacts;
   1285 			mutex_enter(&sa->sa_mutex);
   1286 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1287 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1288 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1289 			}
   1290 			mutex_exit(&sa->sa_mutex);
   1291 		}
   1292 
   1293 		/*
   1294 		 * If the signal is being ignored, then drop it.  Note: we
   1295 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1296 		 * SIG_IGN, action will be SIG_DFL here.
   1297 		 */
   1298 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1299 			goto discard;
   1300 
   1301 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1302 			action = SIG_CATCH;
   1303 		else {
   1304 			action = SIG_DFL;
   1305 
   1306 			/*
   1307 			 * If sending a tty stop signal to a member of an
   1308 			 * orphaned process group, discard the signal here if
   1309 			 * the action is default; don't stop the process below
   1310 			 * if sleeping, and don't clear any pending SIGCONT.
   1311 			 */
   1312 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1313 				goto discard;
   1314 
   1315 			if (prop & SA_KILL && p->p_nice > NZERO)
   1316 				p->p_nice = NZERO;
   1317 		}
   1318 	}
   1319 
   1320 	/*
   1321 	 * If stopping or continuing a process, discard any pending
   1322 	 * signals that would do the inverse.
   1323 	 */
   1324 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1325 		ksiginfoq_t kq;
   1326 
   1327 		ksiginfo_queue_init(&kq);
   1328 		if ((prop & SA_CONT) != 0)
   1329 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1330 		if ((prop & SA_STOP) != 0)
   1331 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1332 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1333 	}
   1334 
   1335 	/*
   1336 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1337 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1338 	 * the signal info.  The signal won't be processed further here.
   1339 	 */
   1340 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1341 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1342 	    sigunwait(p, ksi))
   1343 		goto discard;
   1344 
   1345 	/*
   1346 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1347 	 * here.
   1348 	 */
   1349 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1350 		goto discard;
   1351 
   1352 	/*
   1353 	 * LWP private signals are easy - just find the LWP and post
   1354 	 * the signal to it.
   1355 	 */
   1356 	if (lid != 0) {
   1357 		if (__predict_false(debtrap)) {
   1358 			l = LIST_FIRST(&p->p_lwps);
   1359 			if (l->l_lid != lid)
   1360 				l = NULL;
   1361 		} else {
   1362 			l = lwp_find(p, lid);
   1363 		}
   1364 		if (l != NULL) {
   1365 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1366 				goto out;
   1367 			membar_producer();
   1368 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1369 		}
   1370 		goto out;
   1371 	}
   1372 
   1373 	/*
   1374 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1375 	 * or for an SA process.
   1376 	 */
   1377 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1378 		if ((p->p_slflag & PSL_TRACED) != 0)
   1379 			goto deliver;
   1380 
   1381 		/*
   1382 		 * If SIGCONT is default (or ignored) and process is
   1383 		 * asleep, we are finished; the process should not
   1384 		 * be awakened.
   1385 		 */
   1386 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1387 			goto out;
   1388 	} else {
   1389 		/*
   1390 		 * Process is stopped or stopping.
   1391 		 * - If traced, then no action is needed, unless killing.
   1392 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1393 		 */
   1394 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1395 			goto out;
   1396 		}
   1397 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1398 			/*
   1399 			 * Re-adjust p_nstopchild if the process was
   1400 			 * stopped but not yet collected by its parent.
   1401 			 */
   1402 			if (p->p_stat == SSTOP && !p->p_waited)
   1403 				p->p_pptr->p_nstopchild--;
   1404 			p->p_stat = SACTIVE;
   1405 			p->p_sflag &= ~PS_STOPPING;
   1406 			if (p->p_slflag & PSL_TRACED) {
   1407 				KASSERT(signo == SIGKILL);
   1408 				goto deliver;
   1409 			}
   1410 			/*
   1411 			 * Do not make signal pending if SIGCONT is default.
   1412 			 *
   1413 			 * If the process catches SIGCONT, let it handle the
   1414 			 * signal itself (if waiting on event - process runs,
   1415 			 * otherwise continues sleeping).
   1416 			 */
   1417 			if ((prop & SA_CONT) != 0) {
   1418 				p->p_xsig = SIGCONT;
   1419 				p->p_sflag |= PS_CONTINUED;
   1420 				child_psignal(p, 0);
   1421 				if (action == SIG_DFL) {
   1422 					KASSERT(signo != SIGKILL);
   1423 					goto deliver;
   1424 				}
   1425 			}
   1426 		} else if ((prop & SA_STOP) != 0) {
   1427 			/*
   1428 			 * Already stopped, don't need to stop again.
   1429 			 * (If we did the shell could get confused.)
   1430 			 */
   1431 			goto out;
   1432 		}
   1433 	}
   1434 	/*
   1435 	 * Make signal pending.
   1436 	 */
   1437 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1438 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1439 		goto out;
   1440 deliver:
   1441 	/*
   1442 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1443 	 * visible on the per process list (for sigispending()).  This
   1444 	 * is unlikely to be needed in practice, but...
   1445 	 */
   1446 	membar_producer();
   1447 
   1448 	/*
   1449 	 * Try to find an LWP that can take the signal.
   1450 	 */
   1451 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1452 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1453 			break;
   1454 	}
   1455 	signo = -1;
   1456 out:
   1457 	/*
   1458 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1459 	 * with locks held.  The caller should take care of this.
   1460 	 */
   1461 	ksiginfo_free(kp);
   1462 	if (signo == -1)
   1463 		return error;
   1464 discard:
   1465 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1466 	return error;
   1467 }
   1468 
   1469 void
   1470 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1471 {
   1472 	struct proc *p = l->l_proc;
   1473 
   1474 	KASSERT(mutex_owned(p->p_lock));
   1475 	(*p->p_emul->e_sendsig)(ksi, mask);
   1476 }
   1477 
   1478 /*
   1479  * Stop any LWPs sleeping interruptably.
   1480  */
   1481 static void
   1482 proc_stop_lwps(struct proc *p)
   1483 {
   1484 	struct lwp *l;
   1485 
   1486 	KASSERT(mutex_owned(p->p_lock));
   1487 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1488 
   1489 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1490 		lwp_lock(l);
   1491 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1492 			l->l_stat = LSSTOP;
   1493 			p->p_nrlwps--;
   1494 		}
   1495 		lwp_unlock(l);
   1496 	}
   1497 }
   1498 
   1499 /*
   1500  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1501  *
   1502  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1503  */
   1504 static void
   1505 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1506 {
   1507 
   1508 	KASSERT(mutex_owned(proc_lock));
   1509 	KASSERT(mutex_owned(p->p_lock));
   1510 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1511 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1512 
   1513 	p->p_sflag &= ~PS_STOPPING;
   1514 	p->p_stat = SSTOP;
   1515 	p->p_waited = 0;
   1516 	p->p_pptr->p_nstopchild++;
   1517 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1518 		if (ppsig) {
   1519 			/* child_psignal drops p_lock briefly. */
   1520 			child_psignal(p, ppmask);
   1521 		}
   1522 		cv_broadcast(&p->p_pptr->p_waitcv);
   1523 	}
   1524 }
   1525 
   1526 /*
   1527  * Stop the current process and switch away when being stopped or traced.
   1528  */
   1529 static void
   1530 sigswitch(bool ppsig, int ppmask, int signo)
   1531 {
   1532 	struct lwp *l = curlwp;
   1533 	struct proc *p = l->l_proc;
   1534 	int biglocks;
   1535 
   1536 	KASSERT(mutex_owned(p->p_lock));
   1537 	KASSERT(l->l_stat == LSONPROC);
   1538 	KASSERT(p->p_nrlwps > 0);
   1539 
   1540 	/*
   1541 	 * On entry we know that the process needs to stop.  If it's
   1542 	 * the result of a 'sideways' stop signal that has been sourced
   1543 	 * through issignal(), then stop other LWPs in the process too.
   1544 	 */
   1545 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1546 		KASSERT(signo != 0);
   1547 		proc_stop(p, signo);
   1548 		KASSERT(p->p_nrlwps > 0);
   1549 	}
   1550 
   1551 	/*
   1552 	 * If we are the last live LWP, and the stop was a result of
   1553 	 * a new signal, then signal the parent.
   1554 	 */
   1555 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1556 		if (!mutex_tryenter(proc_lock)) {
   1557 			mutex_exit(p->p_lock);
   1558 			mutex_enter(proc_lock);
   1559 			mutex_enter(p->p_lock);
   1560 		}
   1561 
   1562 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1563 			/*
   1564 			 * Note that proc_stop_done() can drop
   1565 			 * p->p_lock briefly.
   1566 			 */
   1567 			proc_stop_done(p, ppsig, ppmask);
   1568 		}
   1569 
   1570 		mutex_exit(proc_lock);
   1571 	}
   1572 
   1573 	/*
   1574 	 * Unlock and switch away.
   1575 	 */
   1576 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1577 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1578 		p->p_nrlwps--;
   1579 		lwp_lock(l);
   1580 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1581 		l->l_stat = LSSTOP;
   1582 		lwp_unlock(l);
   1583 	}
   1584 
   1585 	mutex_exit(p->p_lock);
   1586 	lwp_lock(l);
   1587 	mi_switch(l);
   1588 	KERNEL_LOCK(biglocks, l);
   1589 	mutex_enter(p->p_lock);
   1590 }
   1591 
   1592 /*
   1593  * Check for a signal from the debugger.
   1594  */
   1595 static int
   1596 sigchecktrace(void)
   1597 {
   1598 	struct lwp *l = curlwp;
   1599 	struct proc *p = l->l_proc;
   1600 	int signo;
   1601 
   1602 	KASSERT(mutex_owned(p->p_lock));
   1603 
   1604 	/* If there's a pending SIGKILL, process it immediately. */
   1605 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1606 		return 0;
   1607 
   1608 	/*
   1609 	 * If we are no longer being traced, or the parent didn't
   1610 	 * give us a signal, or we're stopping, look for more signals.
   1611 	 */
   1612 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1613 	    (p->p_sflag & PS_STOPPING) != 0)
   1614 		return 0;
   1615 
   1616 	/*
   1617 	 * If the new signal is being masked, look for other signals.
   1618 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1619 	 */
   1620 	signo = p->p_xsig;
   1621 	p->p_xsig = 0;
   1622 	if (sigismember(&l->l_sigmask, signo)) {
   1623 		signo = 0;
   1624 	}
   1625 	return signo;
   1626 }
   1627 
   1628 /*
   1629  * If the current process has received a signal (should be caught or cause
   1630  * termination, should interrupt current syscall), return the signal number.
   1631  *
   1632  * Stop signals with default action are processed immediately, then cleared;
   1633  * they aren't returned.  This is checked after each entry to the system for
   1634  * a syscall or trap.
   1635  *
   1636  * We will also return -1 if the process is exiting and the current LWP must
   1637  * follow suit.
   1638  */
   1639 int
   1640 issignal(struct lwp *l)
   1641 {
   1642 	struct proc *p;
   1643 	int signo, prop;
   1644 	sigpend_t *sp;
   1645 	sigset_t ss;
   1646 
   1647 	p = l->l_proc;
   1648 	sp = NULL;
   1649 	signo = 0;
   1650 
   1651 	KASSERT(p == curproc);
   1652 	KASSERT(mutex_owned(p->p_lock));
   1653 
   1654 	for (;;) {
   1655 		/* Discard any signals that we have decided not to take. */
   1656 		if (signo != 0) {
   1657 			(void)sigget(sp, NULL, signo, NULL);
   1658 		}
   1659 
   1660 		/*
   1661 		 * If the process is stopped/stopping, then stop ourselves
   1662 		 * now that we're on the kernel/userspace boundary.  When
   1663 		 * we awaken, check for a signal from the debugger.
   1664 		 */
   1665 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1666 			sigswitch(true, PS_NOCLDSTOP, 0);
   1667 			signo = sigchecktrace();
   1668 		} else
   1669 			signo = 0;
   1670 
   1671 		/* Signals from the debugger are "out of band". */
   1672 		sp = NULL;
   1673 
   1674 		/*
   1675 		 * If the debugger didn't provide a signal, find a pending
   1676 		 * signal from our set.  Check per-LWP signals first, and
   1677 		 * then per-process.
   1678 		 */
   1679 		if (signo == 0) {
   1680 			sp = &l->l_sigpend;
   1681 			ss = sp->sp_set;
   1682 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1683 				sigminusset(&stopsigmask, &ss);
   1684 			sigminusset(&l->l_sigmask, &ss);
   1685 
   1686 			if ((signo = firstsig(&ss)) == 0) {
   1687 				sp = &p->p_sigpend;
   1688 				ss = sp->sp_set;
   1689 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1690 					sigminusset(&stopsigmask, &ss);
   1691 				sigminusset(&l->l_sigmask, &ss);
   1692 
   1693 				if ((signo = firstsig(&ss)) == 0) {
   1694 					/*
   1695 					 * No signal pending - clear the
   1696 					 * indicator and bail out.
   1697 					 */
   1698 					lwp_lock(l);
   1699 					l->l_flag &= ~LW_PENDSIG;
   1700 					lwp_unlock(l);
   1701 					sp = NULL;
   1702 					break;
   1703 				}
   1704 			}
   1705 		}
   1706 
   1707 		/*
   1708 		 * We should see pending but ignored signals only if
   1709 		 * we are being traced.
   1710 		 */
   1711 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1712 		    (p->p_slflag & PSL_TRACED) == 0) {
   1713 			/* Discard the signal. */
   1714 			continue;
   1715 		}
   1716 
   1717 		/*
   1718 		 * If traced, always stop, and stay stopped until released
   1719 		 * by the debugger.  If the our parent process is waiting
   1720 		 * for us, don't hang as we could deadlock.
   1721 		 */
   1722 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1723 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1724 			/*
   1725 			 * Take the signal, but don't remove it from the
   1726 			 * siginfo queue, because the debugger can send
   1727 			 * it later.
   1728 			 */
   1729 			if (sp)
   1730 				sigdelset(&sp->sp_set, signo);
   1731 			p->p_xsig = signo;
   1732 
   1733 			/* Emulation-specific handling of signal trace */
   1734 			if (p->p_emul->e_tracesig == NULL ||
   1735 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1736 				sigswitch(1, 0, signo);
   1737 
   1738 			/* Check for a signal from the debugger. */
   1739 			if ((signo = sigchecktrace()) == 0)
   1740 				continue;
   1741 
   1742 			/* Signals from the debugger are "out of band". */
   1743 			sp = NULL;
   1744 		}
   1745 
   1746 		prop = sigprop[signo];
   1747 
   1748 		/*
   1749 		 * Decide whether the signal should be returned.
   1750 		 */
   1751 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1752 		case (long)SIG_DFL:
   1753 			/*
   1754 			 * Don't take default actions on system processes.
   1755 			 */
   1756 			if (p->p_pid <= 1) {
   1757 #ifdef DIAGNOSTIC
   1758 				/*
   1759 				 * Are you sure you want to ignore SIGSEGV
   1760 				 * in init? XXX
   1761 				 */
   1762 				printf_nolog("Process (pid %d) got sig %d\n",
   1763 				    p->p_pid, signo);
   1764 #endif
   1765 				continue;
   1766 			}
   1767 
   1768 			/*
   1769 			 * If there is a pending stop signal to process with
   1770 			 * default action, stop here, then clear the signal.
   1771 			 * However, if process is member of an orphaned
   1772 			 * process group, ignore tty stop signals.
   1773 			 */
   1774 			if (prop & SA_STOP) {
   1775 				/*
   1776 				 * XXX Don't hold proc_lock for p_lflag,
   1777 				 * but it's not a big deal.
   1778 				 */
   1779 				if (p->p_slflag & PSL_TRACED ||
   1780 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1781 				    prop & SA_TTYSTOP)) {
   1782 					/* Ignore the signal. */
   1783 					continue;
   1784 				}
   1785 				/* Take the signal. */
   1786 				(void)sigget(sp, NULL, signo, NULL);
   1787 				p->p_xsig = signo;
   1788 				p->p_sflag &= ~PS_CONTINUED;
   1789 				signo = 0;
   1790 				sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
   1791 			} else if (prop & SA_IGNORE) {
   1792 				/*
   1793 				 * Except for SIGCONT, shouldn't get here.
   1794 				 * Default action is to ignore; drop it.
   1795 				 */
   1796 				continue;
   1797 			}
   1798 			break;
   1799 
   1800 		case (long)SIG_IGN:
   1801 #ifdef DEBUG_ISSIGNAL
   1802 			/*
   1803 			 * Masking above should prevent us ever trying
   1804 			 * to take action on an ignored signal other
   1805 			 * than SIGCONT, unless process is traced.
   1806 			 */
   1807 			if ((prop & SA_CONT) == 0 &&
   1808 			    (p->p_slflag & PSL_TRACED) == 0)
   1809 				printf_nolog("issignal\n");
   1810 #endif
   1811 			continue;
   1812 
   1813 		default:
   1814 			/*
   1815 			 * This signal has an action, let postsig() process
   1816 			 * it.
   1817 			 */
   1818 			break;
   1819 		}
   1820 
   1821 		break;
   1822 	}
   1823 
   1824 	l->l_sigpendset = sp;
   1825 	return signo;
   1826 }
   1827 
   1828 /*
   1829  * Take the action for the specified signal
   1830  * from the current set of pending signals.
   1831  */
   1832 void
   1833 postsig(int signo)
   1834 {
   1835 	struct lwp	*l;
   1836 	struct proc	*p;
   1837 	struct sigacts	*ps;
   1838 	sig_t		action;
   1839 	sigset_t	*returnmask;
   1840 	ksiginfo_t	ksi;
   1841 
   1842 	l = curlwp;
   1843 	p = l->l_proc;
   1844 	ps = p->p_sigacts;
   1845 
   1846 	KASSERT(mutex_owned(p->p_lock));
   1847 	KASSERT(signo > 0);
   1848 
   1849 	/*
   1850 	 * Set the new mask value and also defer further occurrences of this
   1851 	 * signal.
   1852 	 *
   1853 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1854 	 * not of interest, but rather the mask from before the sigsuspend is
   1855 	 * what we want restored after the signal processing is completed.
   1856 	 */
   1857 	if (l->l_sigrestore) {
   1858 		returnmask = &l->l_sigoldmask;
   1859 		l->l_sigrestore = 0;
   1860 	} else
   1861 		returnmask = &l->l_sigmask;
   1862 
   1863 	/*
   1864 	 * Commit to taking the signal before releasing the mutex.
   1865 	 */
   1866 	action = SIGACTION_PS(ps, signo).sa_handler;
   1867 	l->l_ru.ru_nsignals++;
   1868 	if (l->l_sigpendset == NULL) {
   1869 		/* From the debugger */
   1870 		if (p->p_sigctx.ps_faked &&
   1871 		    signo == p->p_sigctx.ps_info._signo) {
   1872 			KSI_INIT(&ksi);
   1873 			ksi.ksi_info = p->p_sigctx.ps_info;
   1874 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   1875 			p->p_sigctx.ps_faked = false;
   1876 		} else {
   1877 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1878 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1879 		}
   1880 	} else
   1881 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1882 
   1883 	if (ktrpoint(KTR_PSIG)) {
   1884 		mutex_exit(p->p_lock);
   1885 		if (p->p_emul->e_ktrpsig)
   1886 			p->p_emul->e_ktrpsig(signo, action,
   1887 			    returnmask, &ksi);
   1888 		else
   1889 			ktrpsig(signo, action, returnmask, &ksi);
   1890 		mutex_enter(p->p_lock);
   1891 	}
   1892 
   1893 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1894 
   1895 	if (action == SIG_DFL) {
   1896 		/*
   1897 		 * Default action, where the default is to kill
   1898 		 * the process.  (Other cases were ignored above.)
   1899 		 */
   1900 		sigexit(l, signo);
   1901 		return;
   1902 	}
   1903 
   1904 	/*
   1905 	 * If we get here, the signal must be caught.
   1906 	 */
   1907 #ifdef DIAGNOSTIC
   1908 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1909 		panic("postsig action");
   1910 #endif
   1911 
   1912 	kpsendsig(l, &ksi, returnmask);
   1913 }
   1914 
   1915 /*
   1916  * sendsig:
   1917  *
   1918  *	Default signal delivery method for NetBSD.
   1919  */
   1920 void
   1921 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1922 {
   1923 	struct sigacts *sa;
   1924 	int sig;
   1925 
   1926 	sig = ksi->ksi_signo;
   1927 	sa = curproc->p_sigacts;
   1928 
   1929 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1930 	case 0:
   1931 	case 1:
   1932 		/* Compat for 1.6 and earlier. */
   1933 		if (sendsig_sigcontext_vec == NULL) {
   1934 			break;
   1935 		}
   1936 		(*sendsig_sigcontext_vec)(ksi, mask);
   1937 		return;
   1938 	case 2:
   1939 	case 3:
   1940 		sendsig_siginfo(ksi, mask);
   1941 		return;
   1942 	default:
   1943 		break;
   1944 	}
   1945 
   1946 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1947 	sigexit(curlwp, SIGILL);
   1948 }
   1949 
   1950 /*
   1951  * sendsig_reset:
   1952  *
   1953  *	Reset the signal action.  Called from emulation specific sendsig()
   1954  *	before unlocking to deliver the signal.
   1955  */
   1956 void
   1957 sendsig_reset(struct lwp *l, int signo)
   1958 {
   1959 	struct proc *p = l->l_proc;
   1960 	struct sigacts *ps = p->p_sigacts;
   1961 
   1962 	KASSERT(mutex_owned(p->p_lock));
   1963 
   1964 	p->p_sigctx.ps_lwp = 0;
   1965 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   1966 
   1967 	mutex_enter(&ps->sa_mutex);
   1968 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1969 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1970 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1971 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1972 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1973 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1974 	}
   1975 	mutex_exit(&ps->sa_mutex);
   1976 }
   1977 
   1978 /*
   1979  * Kill the current process for stated reason.
   1980  */
   1981 void
   1982 killproc(struct proc *p, const char *why)
   1983 {
   1984 
   1985 	KASSERT(mutex_owned(proc_lock));
   1986 
   1987 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1988 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1989 	psignal(p, SIGKILL);
   1990 }
   1991 
   1992 /*
   1993  * Force the current process to exit with the specified signal, dumping core
   1994  * if appropriate.  We bypass the normal tests for masked and caught
   1995  * signals, allowing unrecoverable failures to terminate the process without
   1996  * changing signal state.  Mark the accounting record with the signal
   1997  * termination.  If dumping core, save the signal number for the debugger.
   1998  * Calls exit and does not return.
   1999  */
   2000 void
   2001 sigexit(struct lwp *l, int signo)
   2002 {
   2003 	int exitsig, error, docore;
   2004 	struct proc *p;
   2005 	struct lwp *t;
   2006 
   2007 	p = l->l_proc;
   2008 
   2009 	KASSERT(mutex_owned(p->p_lock));
   2010 	KERNEL_UNLOCK_ALL(l, NULL);
   2011 
   2012 	/*
   2013 	 * Don't permit coredump() multiple times in the same process.
   2014 	 * Call back into sigexit, where we will be suspended until
   2015 	 * the deed is done.  Note that this is a recursive call, but
   2016 	 * LW_WCORE will prevent us from coming back this way.
   2017 	 */
   2018 	if ((p->p_sflag & PS_WCORE) != 0) {
   2019 		lwp_lock(l);
   2020 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2021 		lwp_unlock(l);
   2022 		mutex_exit(p->p_lock);
   2023 		lwp_userret(l);
   2024 		panic("sigexit 1");
   2025 		/* NOTREACHED */
   2026 	}
   2027 
   2028 	/* If process is already on the way out, then bail now. */
   2029 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2030 		mutex_exit(p->p_lock);
   2031 		lwp_exit(l);
   2032 		panic("sigexit 2");
   2033 		/* NOTREACHED */
   2034 	}
   2035 
   2036 	/*
   2037 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2038 	 * so that their registers are available long enough to be dumped.
   2039  	 */
   2040 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2041 		p->p_sflag |= PS_WCORE;
   2042 		for (;;) {
   2043 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2044 				lwp_lock(t);
   2045 				if (t == l) {
   2046 					t->l_flag &= ~LW_WSUSPEND;
   2047 					lwp_unlock(t);
   2048 					continue;
   2049 				}
   2050 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2051 				lwp_suspend(l, t);
   2052 			}
   2053 
   2054 			if (p->p_nrlwps == 1)
   2055 				break;
   2056 
   2057 			/*
   2058 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2059 			 * for everyone else to stop before proceeding.
   2060 			 */
   2061 			p->p_nlwpwait++;
   2062 			cv_broadcast(&p->p_lwpcv);
   2063 			cv_wait(&p->p_lwpcv, p->p_lock);
   2064 			p->p_nlwpwait--;
   2065 		}
   2066 	}
   2067 
   2068 	exitsig = signo;
   2069 	p->p_acflag |= AXSIG;
   2070 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2071 	p->p_sigctx.ps_info._signo = signo;
   2072 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2073 
   2074 	if (docore) {
   2075 		mutex_exit(p->p_lock);
   2076 		error = (*coredump_vec)(l, NULL);
   2077 
   2078 		if (kern_logsigexit) {
   2079 			int uid = l->l_cred ?
   2080 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2081 
   2082 			if (error)
   2083 				log(LOG_INFO, lognocoredump, p->p_pid,
   2084 				    p->p_comm, uid, signo, error);
   2085 			else
   2086 				log(LOG_INFO, logcoredump, p->p_pid,
   2087 				    p->p_comm, uid, signo);
   2088 		}
   2089 
   2090 #ifdef PAX_SEGVGUARD
   2091 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2092 #endif /* PAX_SEGVGUARD */
   2093 		/* Acquire the sched state mutex.  exit1() will release it. */
   2094 		mutex_enter(p->p_lock);
   2095 		if (error == 0)
   2096 			p->p_sflag |= PS_COREDUMP;
   2097 	}
   2098 
   2099 	/* No longer dumping core. */
   2100 	p->p_sflag &= ~PS_WCORE;
   2101 
   2102 	exit1(l, 0, exitsig);
   2103 	/* NOTREACHED */
   2104 }
   2105 
   2106 /*
   2107  * Put process 'p' into the stopped state and optionally, notify the parent.
   2108  */
   2109 void
   2110 proc_stop(struct proc *p, int signo)
   2111 {
   2112 	struct lwp *l;
   2113 
   2114 	KASSERT(mutex_owned(p->p_lock));
   2115 
   2116 	/*
   2117 	 * First off, set the stopping indicator and bring all sleeping
   2118 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2119 	 * unlock between here and the p->p_nrlwps check below.
   2120 	 */
   2121 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
   2122 	membar_producer();
   2123 
   2124 	proc_stop_lwps(p);
   2125 
   2126 	/*
   2127 	 * If there are no LWPs available to take the signal, then we
   2128 	 * signal the parent process immediately.  Otherwise, the last
   2129 	 * LWP to stop will take care of it.
   2130 	 */
   2131 
   2132 	if (p->p_nrlwps == 0) {
   2133 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2134 	} else {
   2135 		/*
   2136 		 * Have the remaining LWPs come to a halt, and trigger
   2137 		 * proc_stop_callout() to ensure that they do.
   2138 		 */
   2139 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2140 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2141 		}
   2142 		callout_schedule(&proc_stop_ch, 1);
   2143 	}
   2144 }
   2145 
   2146 /*
   2147  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2148  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2149  * to allow LWPs to release any locks that they may hold before stopping.
   2150  *
   2151  * Non-interruptable sleeps can be long, and there is the potential for an
   2152  * LWP to begin sleeping interruptably soon after the process has been set
   2153  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2154  * stopping, and so complete halt of the process and the return of status
   2155  * information to the parent could be delayed indefinitely.
   2156  *
   2157  * To handle this race, proc_stop_callout() runs once per tick while there
   2158  * are stopping processes in the system.  It sets LWPs that are sleeping
   2159  * interruptably into the LSSTOP state.
   2160  *
   2161  * Note that we are not concerned about keeping all LWPs stopped while the
   2162  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2163  * What we do need to ensure is that all LWPs in a stopping process have
   2164  * stopped at least once, so that notification can be sent to the parent
   2165  * process.
   2166  */
   2167 static void
   2168 proc_stop_callout(void *cookie)
   2169 {
   2170 	bool more, restart;
   2171 	struct proc *p;
   2172 
   2173 	(void)cookie;
   2174 
   2175 	do {
   2176 		restart = false;
   2177 		more = false;
   2178 
   2179 		mutex_enter(proc_lock);
   2180 		PROCLIST_FOREACH(p, &allproc) {
   2181 			mutex_enter(p->p_lock);
   2182 
   2183 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2184 				mutex_exit(p->p_lock);
   2185 				continue;
   2186 			}
   2187 
   2188 			/* Stop any LWPs sleeping interruptably. */
   2189 			proc_stop_lwps(p);
   2190 			if (p->p_nrlwps == 0) {
   2191 				/*
   2192 				 * We brought the process to a halt.
   2193 				 * Mark it as stopped and notify the
   2194 				 * parent.
   2195 				 */
   2196 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2197 					/*
   2198 					 * Note that proc_stop_done() will
   2199 					 * drop p->p_lock briefly.
   2200 					 * Arrange to restart and check
   2201 					 * all processes again.
   2202 					 */
   2203 					restart = true;
   2204 				}
   2205 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2206 			} else
   2207 				more = true;
   2208 
   2209 			mutex_exit(p->p_lock);
   2210 			if (restart)
   2211 				break;
   2212 		}
   2213 		mutex_exit(proc_lock);
   2214 	} while (restart);
   2215 
   2216 	/*
   2217 	 * If we noted processes that are stopping but still have
   2218 	 * running LWPs, then arrange to check again in 1 tick.
   2219 	 */
   2220 	if (more)
   2221 		callout_schedule(&proc_stop_ch, 1);
   2222 }
   2223 
   2224 /*
   2225  * Given a process in state SSTOP, set the state back to SACTIVE and
   2226  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2227  */
   2228 void
   2229 proc_unstop(struct proc *p)
   2230 {
   2231 	struct lwp *l;
   2232 	int sig;
   2233 
   2234 	KASSERT(mutex_owned(proc_lock));
   2235 	KASSERT(mutex_owned(p->p_lock));
   2236 
   2237 	p->p_stat = SACTIVE;
   2238 	p->p_sflag &= ~PS_STOPPING;
   2239 	sig = p->p_xsig;
   2240 
   2241 	if (!p->p_waited)
   2242 		p->p_pptr->p_nstopchild--;
   2243 
   2244 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2245 		lwp_lock(l);
   2246 		if (l->l_stat != LSSTOP) {
   2247 			lwp_unlock(l);
   2248 			continue;
   2249 		}
   2250 		if (l->l_wchan == NULL) {
   2251 			setrunnable(l);
   2252 			continue;
   2253 		}
   2254 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2255 			setrunnable(l);
   2256 			sig = 0;
   2257 		} else {
   2258 			l->l_stat = LSSLEEP;
   2259 			p->p_nrlwps++;
   2260 			lwp_unlock(l);
   2261 		}
   2262 	}
   2263 }
   2264 
   2265 void
   2266 proc_stoptrace(int trapno)
   2267 {
   2268 	struct lwp *l = curlwp;
   2269 	struct proc *p = l->l_proc, *pp;
   2270 
   2271 	mutex_enter(p->p_lock);
   2272 	pp = p->p_pptr;
   2273 	if (pp->p_pid == 1) {
   2274 		CLR(p->p_slflag, PSL_SYSCALL);	/* XXXSMP */
   2275 		mutex_exit(p->p_lock);
   2276 		return;
   2277 	}
   2278 
   2279 	p->p_xsig = SIGTRAP;
   2280 	p->p_sigctx.ps_info._signo = p->p_xsig;
   2281 	p->p_sigctx.ps_info._code = trapno;
   2282 	sigswitch(true, 0, p->p_xsig);
   2283 	mutex_exit(p->p_lock);
   2284 }
   2285 
   2286 static int
   2287 filt_sigattach(struct knote *kn)
   2288 {
   2289 	struct proc *p = curproc;
   2290 
   2291 	kn->kn_obj = p;
   2292 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2293 
   2294 	mutex_enter(p->p_lock);
   2295 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2296 	mutex_exit(p->p_lock);
   2297 
   2298 	return 0;
   2299 }
   2300 
   2301 static void
   2302 filt_sigdetach(struct knote *kn)
   2303 {
   2304 	struct proc *p = kn->kn_obj;
   2305 
   2306 	mutex_enter(p->p_lock);
   2307 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2308 	mutex_exit(p->p_lock);
   2309 }
   2310 
   2311 /*
   2312  * Signal knotes are shared with proc knotes, so we apply a mask to
   2313  * the hint in order to differentiate them from process hints.  This
   2314  * could be avoided by using a signal-specific knote list, but probably
   2315  * isn't worth the trouble.
   2316  */
   2317 static int
   2318 filt_signal(struct knote *kn, long hint)
   2319 {
   2320 
   2321 	if (hint & NOTE_SIGNAL) {
   2322 		hint &= ~NOTE_SIGNAL;
   2323 
   2324 		if (kn->kn_id == hint)
   2325 			kn->kn_data++;
   2326 	}
   2327 	return (kn->kn_data != 0);
   2328 }
   2329 
   2330 const struct filterops sig_filtops = {
   2331 		.f_isfd = 0,
   2332 		.f_attach = filt_sigattach,
   2333 		.f_detach = filt_sigdetach,
   2334 		.f_event = filt_signal,
   2335 };
   2336