Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.342
      1 /*	$NetBSD: kern_sig.c,v 1.342 2018/05/01 16:37:23 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.342 2018/05/01 16:37:23 kamil Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 
    104 #ifdef PAX_SEGVGUARD
    105 #include <sys/pax.h>
    106 #endif /* PAX_SEGVGUARD */
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #define	SIGQUEUE_MAX	32
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 sigset_t		contsigmask	__cacheline_aligned;
    116 static sigset_t		stopsigmask	__cacheline_aligned;
    117 sigset_t		sigcantmask	__cacheline_aligned;
    118 
    119 static void	ksiginfo_exechook(struct proc *, void *);
    120 static void	proc_stop(struct proc *, int);
    121 static void	proc_stop_done(struct proc *, int);
    122 static void	proc_stop_callout(void *);
    123 static int	sigchecktrace(void);
    124 static int	sigpost(struct lwp *, sig_t, int, int);
    125 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    126 static int	sigunwait(struct proc *, const ksiginfo_t *);
    127 
    128 static void	sigacts_poolpage_free(struct pool *, void *);
    129 static void	*sigacts_poolpage_alloc(struct pool *, int);
    130 
    131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    132 int (*coredump_vec)(struct lwp *, const char *) =
    133     (int (*)(struct lwp *, const char *))enosys;
    134 
    135 /*
    136  * DTrace SDT provider definitions
    137  */
    138 SDT_PROVIDER_DECLARE(proc);
    139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    140     "struct lwp *", 	/* target thread */
    141     "struct proc *", 	/* target process */
    142     "int");		/* signal */
    143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    144     "struct lwp *",	/* target thread */
    145     "struct proc *",	/* target process */
    146     "int");  		/* signal */
    147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    148     "int", 		/* signal */
    149     "ksiginfo_t *", 	/* signal info */
    150     "void (*)(void)");	/* handler address */
    151 
    152 
    153 static struct pool_allocator sigactspool_allocator = {
    154 	.pa_alloc = sigacts_poolpage_alloc,
    155 	.pa_free = sigacts_poolpage_free
    156 };
    157 
    158 #ifdef DEBUG
    159 int	kern_logsigexit = 1;
    160 #else
    161 int	kern_logsigexit = 0;
    162 #endif
    163 
    164 static const char logcoredump[] =
    165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    166 static const char lognocoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    168 
    169 static kauth_listener_t signal_listener;
    170 
    171 static int
    172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    173     void *arg0, void *arg1, void *arg2, void *arg3)
    174 {
    175 	struct proc *p;
    176 	int result, signum;
    177 
    178 	result = KAUTH_RESULT_DEFER;
    179 	p = arg0;
    180 	signum = (int)(unsigned long)arg1;
    181 
    182 	if (action != KAUTH_PROCESS_SIGNAL)
    183 		return result;
    184 
    185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    187 		result = KAUTH_RESULT_ALLOW;
    188 
    189 	return result;
    190 }
    191 
    192 /*
    193  * signal_init:
    194  *
    195  *	Initialize global signal-related data structures.
    196  */
    197 void
    198 signal_init(void)
    199 {
    200 
    201 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    202 
    203 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    204 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    205 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    206 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    207 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    208 
    209 	exechook_establish(ksiginfo_exechook, NULL);
    210 
    211 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    212 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    213 
    214 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    215 	    signal_listener_cb, NULL);
    216 }
    217 
    218 /*
    219  * sigacts_poolpage_alloc:
    220  *
    221  *	Allocate a page for the sigacts memory pool.
    222  */
    223 static void *
    224 sigacts_poolpage_alloc(struct pool *pp, int flags)
    225 {
    226 
    227 	return (void *)uvm_km_alloc(kernel_map,
    228 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    229 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    230 	    | UVM_KMF_WIRED);
    231 }
    232 
    233 /*
    234  * sigacts_poolpage_free:
    235  *
    236  *	Free a page on behalf of the sigacts memory pool.
    237  */
    238 static void
    239 sigacts_poolpage_free(struct pool *pp, void *v)
    240 {
    241 
    242 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigactsinit:
    247  *
    248  *	Create an initial sigacts structure, using the same signal state
    249  *	as of specified process.  If 'share' is set, share the sigacts by
    250  *	holding a reference, otherwise just copy it from parent.
    251  */
    252 struct sigacts *
    253 sigactsinit(struct proc *pp, int share)
    254 {
    255 	struct sigacts *ps = pp->p_sigacts, *ps2;
    256 
    257 	if (__predict_false(share)) {
    258 		atomic_inc_uint(&ps->sa_refcnt);
    259 		return ps;
    260 	}
    261 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    262 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    263 	ps2->sa_refcnt = 1;
    264 
    265 	mutex_enter(&ps->sa_mutex);
    266 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    267 	mutex_exit(&ps->sa_mutex);
    268 	return ps2;
    269 }
    270 
    271 /*
    272  * sigactsunshare:
    273  *
    274  *	Make this process not share its sigacts, maintaining all signal state.
    275  */
    276 void
    277 sigactsunshare(struct proc *p)
    278 {
    279 	struct sigacts *ps, *oldps = p->p_sigacts;
    280 
    281 	if (__predict_true(oldps->sa_refcnt == 1))
    282 		return;
    283 
    284 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    285 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    286 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    287 	ps->sa_refcnt = 1;
    288 
    289 	p->p_sigacts = ps;
    290 	sigactsfree(oldps);
    291 }
    292 
    293 /*
    294  * sigactsfree;
    295  *
    296  *	Release a sigacts structure.
    297  */
    298 void
    299 sigactsfree(struct sigacts *ps)
    300 {
    301 
    302 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    303 		mutex_destroy(&ps->sa_mutex);
    304 		pool_cache_put(sigacts_cache, ps);
    305 	}
    306 }
    307 
    308 /*
    309  * siginit:
    310  *
    311  *	Initialize signal state for process 0; set to ignore signals that
    312  *	are ignored by default and disable the signal stack.  Locking not
    313  *	required as the system is still cold.
    314  */
    315 void
    316 siginit(struct proc *p)
    317 {
    318 	struct lwp *l;
    319 	struct sigacts *ps;
    320 	int signo, prop;
    321 
    322 	ps = p->p_sigacts;
    323 	sigemptyset(&contsigmask);
    324 	sigemptyset(&stopsigmask);
    325 	sigemptyset(&sigcantmask);
    326 	for (signo = 1; signo < NSIG; signo++) {
    327 		prop = sigprop[signo];
    328 		if (prop & SA_CONT)
    329 			sigaddset(&contsigmask, signo);
    330 		if (prop & SA_STOP)
    331 			sigaddset(&stopsigmask, signo);
    332 		if (prop & SA_CANTMASK)
    333 			sigaddset(&sigcantmask, signo);
    334 		if (prop & SA_IGNORE && signo != SIGCONT)
    335 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    336 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    337 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    338 	}
    339 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    340 	p->p_sflag &= ~PS_NOCLDSTOP;
    341 
    342 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    343 	sigemptyset(&p->p_sigpend.sp_set);
    344 
    345 	/*
    346 	 * Reset per LWP state.
    347 	 */
    348 	l = LIST_FIRST(&p->p_lwps);
    349 	l->l_sigwaited = NULL;
    350 	l->l_sigstk = SS_INIT;
    351 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    352 	sigemptyset(&l->l_sigpend.sp_set);
    353 
    354 	/* One reference. */
    355 	ps->sa_refcnt = 1;
    356 }
    357 
    358 /*
    359  * execsigs:
    360  *
    361  *	Reset signals for an exec of the specified process.
    362  */
    363 void
    364 execsigs(struct proc *p)
    365 {
    366 	struct sigacts *ps;
    367 	struct lwp *l;
    368 	int signo, prop;
    369 	sigset_t tset;
    370 	ksiginfoq_t kq;
    371 
    372 	KASSERT(p->p_nlwps == 1);
    373 
    374 	sigactsunshare(p);
    375 	ps = p->p_sigacts;
    376 
    377 	/*
    378 	 * Reset caught signals.  Held signals remain held through
    379 	 * l->l_sigmask (unless they were caught, and are now ignored
    380 	 * by default).
    381 	 *
    382 	 * No need to lock yet, the process has only one LWP and
    383 	 * at this point the sigacts are private to the process.
    384 	 */
    385 	sigemptyset(&tset);
    386 	for (signo = 1; signo < NSIG; signo++) {
    387 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    388 			prop = sigprop[signo];
    389 			if (prop & SA_IGNORE) {
    390 				if ((prop & SA_CONT) == 0)
    391 					sigaddset(&p->p_sigctx.ps_sigignore,
    392 					    signo);
    393 				sigaddset(&tset, signo);
    394 			}
    395 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    396 		}
    397 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    398 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    399 	}
    400 	ksiginfo_queue_init(&kq);
    401 
    402 	mutex_enter(p->p_lock);
    403 	sigclearall(p, &tset, &kq);
    404 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    405 
    406 	/*
    407 	 * Reset no zombies if child dies flag as Solaris does.
    408 	 */
    409 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    410 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    411 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    412 
    413 	/*
    414 	 * Reset per-LWP state.
    415 	 */
    416 	l = LIST_FIRST(&p->p_lwps);
    417 	l->l_sigwaited = NULL;
    418 	l->l_sigstk = SS_INIT;
    419 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    420 	sigemptyset(&l->l_sigpend.sp_set);
    421 	mutex_exit(p->p_lock);
    422 
    423 	ksiginfo_queue_drain(&kq);
    424 }
    425 
    426 /*
    427  * ksiginfo_exechook:
    428  *
    429  *	Free all pending ksiginfo entries from a process on exec.
    430  *	Additionally, drain any unused ksiginfo structures in the
    431  *	system back to the pool.
    432  *
    433  *	XXX This should not be a hook, every process has signals.
    434  */
    435 static void
    436 ksiginfo_exechook(struct proc *p, void *v)
    437 {
    438 	ksiginfoq_t kq;
    439 
    440 	ksiginfo_queue_init(&kq);
    441 
    442 	mutex_enter(p->p_lock);
    443 	sigclearall(p, NULL, &kq);
    444 	mutex_exit(p->p_lock);
    445 
    446 	ksiginfo_queue_drain(&kq);
    447 }
    448 
    449 /*
    450  * ksiginfo_alloc:
    451  *
    452  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    453  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    454  *	has not been queued somewhere, then just return it.  Additionally,
    455  *	if the existing ksiginfo_t does not contain any information beyond
    456  *	the signal number, then just return it.
    457  */
    458 ksiginfo_t *
    459 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    460 {
    461 	ksiginfo_t *kp;
    462 
    463 	if (ok != NULL) {
    464 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    465 		    KSI_FROMPOOL)
    466 			return ok;
    467 		if (KSI_EMPTY_P(ok))
    468 			return ok;
    469 	}
    470 
    471 	kp = pool_cache_get(ksiginfo_cache, flags);
    472 	if (kp == NULL) {
    473 #ifdef DIAGNOSTIC
    474 		printf("Out of memory allocating ksiginfo for pid %d\n",
    475 		    p->p_pid);
    476 #endif
    477 		return NULL;
    478 	}
    479 
    480 	if (ok != NULL) {
    481 		memcpy(kp, ok, sizeof(*kp));
    482 		kp->ksi_flags &= ~KSI_QUEUED;
    483 	} else
    484 		KSI_INIT_EMPTY(kp);
    485 
    486 	kp->ksi_flags |= KSI_FROMPOOL;
    487 
    488 	return kp;
    489 }
    490 
    491 /*
    492  * ksiginfo_free:
    493  *
    494  *	If the given ksiginfo_t is from the pool and has not been queued,
    495  *	then free it.
    496  */
    497 void
    498 ksiginfo_free(ksiginfo_t *kp)
    499 {
    500 
    501 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    502 		return;
    503 	pool_cache_put(ksiginfo_cache, kp);
    504 }
    505 
    506 /*
    507  * ksiginfo_queue_drain:
    508  *
    509  *	Drain a non-empty ksiginfo_t queue.
    510  */
    511 void
    512 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    513 {
    514 	ksiginfo_t *ksi;
    515 
    516 	KASSERT(!TAILQ_EMPTY(kq));
    517 
    518 	while (!TAILQ_EMPTY(kq)) {
    519 		ksi = TAILQ_FIRST(kq);
    520 		TAILQ_REMOVE(kq, ksi, ksi_list);
    521 		pool_cache_put(ksiginfo_cache, ksi);
    522 	}
    523 }
    524 
    525 static int
    526 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    527 {
    528 	ksiginfo_t *ksi, *nksi;
    529 
    530 	if (sp == NULL)
    531 		goto out;
    532 
    533 	/* Find siginfo and copy it out. */
    534 	int count = 0;
    535 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    536 		if (ksi->ksi_signo != signo)
    537 			continue;
    538 		if (count++ > 0) /* Only remove the first, count all of them */
    539 			continue;
    540 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    541 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    542 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    543 		ksi->ksi_flags &= ~KSI_QUEUED;
    544 		if (out != NULL) {
    545 			memcpy(out, ksi, sizeof(*out));
    546 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    547 		}
    548 		ksiginfo_free(ksi);
    549 	}
    550 	if (count)
    551 		return count;
    552 
    553 out:
    554 	/* If there is no siginfo, then manufacture it. */
    555 	if (out != NULL) {
    556 		KSI_INIT(out);
    557 		out->ksi_info._signo = signo;
    558 		out->ksi_info._code = SI_NOINFO;
    559 	}
    560 	return 0;
    561 }
    562 
    563 /*
    564  * sigget:
    565  *
    566  *	Fetch the first pending signal from a set.  Optionally, also fetch
    567  *	or manufacture a ksiginfo element.  Returns the number of the first
    568  *	pending signal, or zero.
    569  */
    570 int
    571 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    572 {
    573 	sigset_t tset;
    574 	int count;
    575 
    576 	/* If there's no pending set, the signal is from the debugger. */
    577 	if (sp == NULL)
    578 		goto out;
    579 
    580 	/* Construct mask from signo, and 'mask'. */
    581 	if (signo == 0) {
    582 		if (mask != NULL) {
    583 			tset = *mask;
    584 			__sigandset(&sp->sp_set, &tset);
    585 		} else
    586 			tset = sp->sp_set;
    587 
    588 		/* If there are no signals pending - return. */
    589 		if ((signo = firstsig(&tset)) == 0)
    590 			goto out;
    591 	} else {
    592 		KASSERT(sigismember(&sp->sp_set, signo));
    593 	}
    594 
    595 	sigdelset(&sp->sp_set, signo);
    596 out:
    597 	count = siggetinfo(sp, out, signo);
    598 	if (count > 1)
    599 		sigaddset(&sp->sp_set, signo);
    600 	return signo;
    601 }
    602 
    603 /*
    604  * sigput:
    605  *
    606  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    607  */
    608 static int
    609 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    610 {
    611 	ksiginfo_t *kp;
    612 
    613 	KASSERT(mutex_owned(p->p_lock));
    614 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    615 
    616 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    617 
    618 	/*
    619 	 * If there is no siginfo, we are done.
    620 	 */
    621 	if (KSI_EMPTY_P(ksi))
    622 		return 0;
    623 
    624 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    625 
    626 	size_t count = 0;
    627 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    628 		count++;
    629 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    630 			continue;
    631 		if (kp->ksi_signo == ksi->ksi_signo) {
    632 			KSI_COPY(ksi, kp);
    633 			kp->ksi_flags |= KSI_QUEUED;
    634 			return 0;
    635 		}
    636 	}
    637 
    638 	if (count >= SIGQUEUE_MAX) {
    639 #ifdef DIAGNOSTIC
    640 		printf("%s(%d): Signal queue is full signal=%d\n",
    641 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    642 #endif
    643 		return EAGAIN;
    644 	}
    645 	ksi->ksi_flags |= KSI_QUEUED;
    646 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    647 
    648 	return 0;
    649 }
    650 
    651 /*
    652  * sigclear:
    653  *
    654  *	Clear all pending signals in the specified set.
    655  */
    656 void
    657 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    658 {
    659 	ksiginfo_t *ksi, *next;
    660 
    661 	if (mask == NULL)
    662 		sigemptyset(&sp->sp_set);
    663 	else
    664 		sigminusset(mask, &sp->sp_set);
    665 
    666 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    667 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    668 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    669 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    670 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    671 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    672 		}
    673 	}
    674 }
    675 
    676 /*
    677  * sigclearall:
    678  *
    679  *	Clear all pending signals in the specified set from a process and
    680  *	its LWPs.
    681  */
    682 void
    683 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    684 {
    685 	struct lwp *l;
    686 
    687 	KASSERT(mutex_owned(p->p_lock));
    688 
    689 	sigclear(&p->p_sigpend, mask, kq);
    690 
    691 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    692 		sigclear(&l->l_sigpend, mask, kq);
    693 	}
    694 }
    695 
    696 /*
    697  * sigispending:
    698  *
    699  *	Return the first signal number if there are pending signals for the
    700  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    701  *	and that the signal has been posted to the appopriate queue before
    702  *	LW_PENDSIG is set.
    703  */
    704 int
    705 sigispending(struct lwp *l, int signo)
    706 {
    707 	struct proc *p = l->l_proc;
    708 	sigset_t tset;
    709 
    710 	membar_consumer();
    711 
    712 	tset = l->l_sigpend.sp_set;
    713 	sigplusset(&p->p_sigpend.sp_set, &tset);
    714 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    715 	sigminusset(&l->l_sigmask, &tset);
    716 
    717 	if (signo == 0) {
    718 		return firstsig(&tset);
    719 	}
    720 	return sigismember(&tset, signo) ? signo : 0;
    721 }
    722 
    723 void
    724 getucontext(struct lwp *l, ucontext_t *ucp)
    725 {
    726 	struct proc *p = l->l_proc;
    727 
    728 	KASSERT(mutex_owned(p->p_lock));
    729 
    730 	ucp->uc_flags = 0;
    731 	ucp->uc_link = l->l_ctxlink;
    732 	ucp->uc_sigmask = l->l_sigmask;
    733 	ucp->uc_flags |= _UC_SIGMASK;
    734 
    735 	/*
    736 	 * The (unsupplied) definition of the `current execution stack'
    737 	 * in the System V Interface Definition appears to allow returning
    738 	 * the main context stack.
    739 	 */
    740 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    741 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    742 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    743 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    744 	} else {
    745 		/* Simply copy alternate signal execution stack. */
    746 		ucp->uc_stack = l->l_sigstk;
    747 	}
    748 	ucp->uc_flags |= _UC_STACK;
    749 	mutex_exit(p->p_lock);
    750 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    751 	mutex_enter(p->p_lock);
    752 }
    753 
    754 int
    755 setucontext(struct lwp *l, const ucontext_t *ucp)
    756 {
    757 	struct proc *p = l->l_proc;
    758 	int error;
    759 
    760 	KASSERT(mutex_owned(p->p_lock));
    761 
    762 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    763 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    764 		if (error != 0)
    765 			return error;
    766 	}
    767 
    768 	mutex_exit(p->p_lock);
    769 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    770 	mutex_enter(p->p_lock);
    771 	if (error != 0)
    772 		return (error);
    773 
    774 	l->l_ctxlink = ucp->uc_link;
    775 
    776 	/*
    777 	 * If there was stack information, update whether or not we are
    778 	 * still running on an alternate signal stack.
    779 	 */
    780 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    781 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    782 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    783 		else
    784 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    785 	}
    786 
    787 	return 0;
    788 }
    789 
    790 /*
    791  * killpg1: common code for kill process group/broadcast kill.
    792  */
    793 int
    794 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    795 {
    796 	struct proc	*p, *cp;
    797 	kauth_cred_t	pc;
    798 	struct pgrp	*pgrp;
    799 	int		nfound;
    800 	int		signo = ksi->ksi_signo;
    801 
    802 	cp = l->l_proc;
    803 	pc = l->l_cred;
    804 	nfound = 0;
    805 
    806 	mutex_enter(proc_lock);
    807 	if (all) {
    808 		/*
    809 		 * Broadcast.
    810 		 */
    811 		PROCLIST_FOREACH(p, &allproc) {
    812 			if (p->p_pid <= 1 || p == cp ||
    813 			    (p->p_flag & PK_SYSTEM) != 0)
    814 				continue;
    815 			mutex_enter(p->p_lock);
    816 			if (kauth_authorize_process(pc,
    817 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    818 			    NULL) == 0) {
    819 				nfound++;
    820 				if (signo)
    821 					kpsignal2(p, ksi);
    822 			}
    823 			mutex_exit(p->p_lock);
    824 		}
    825 	} else {
    826 		if (pgid == 0)
    827 			/* Zero pgid means send to my process group. */
    828 			pgrp = cp->p_pgrp;
    829 		else {
    830 			pgrp = pgrp_find(pgid);
    831 			if (pgrp == NULL)
    832 				goto out;
    833 		}
    834 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    835 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    836 				continue;
    837 			mutex_enter(p->p_lock);
    838 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    839 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    840 				nfound++;
    841 				if (signo && P_ZOMBIE(p) == 0)
    842 					kpsignal2(p, ksi);
    843 			}
    844 			mutex_exit(p->p_lock);
    845 		}
    846 	}
    847 out:
    848 	mutex_exit(proc_lock);
    849 	return nfound ? 0 : ESRCH;
    850 }
    851 
    852 /*
    853  * Send a signal to a process group.  If checktty is set, limit to members
    854  * which have a controlling terminal.
    855  */
    856 void
    857 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    858 {
    859 	ksiginfo_t ksi;
    860 
    861 	KASSERT(!cpu_intr_p());
    862 	KASSERT(mutex_owned(proc_lock));
    863 
    864 	KSI_INIT_EMPTY(&ksi);
    865 	ksi.ksi_signo = sig;
    866 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    867 }
    868 
    869 void
    870 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    871 {
    872 	struct proc *p;
    873 
    874 	KASSERT(!cpu_intr_p());
    875 	KASSERT(mutex_owned(proc_lock));
    876 	KASSERT(pgrp != NULL);
    877 
    878 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    879 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    880 			kpsignal(p, ksi, data);
    881 }
    882 
    883 /*
    884  * Send a signal caused by a trap to the current LWP.  If it will be caught
    885  * immediately, deliver it with correct code.  Otherwise, post it normally.
    886  */
    887 void
    888 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    889 {
    890 	struct proc	*p;
    891 	struct sigacts	*ps;
    892 	int signo = ksi->ksi_signo;
    893 	sigset_t *mask;
    894 
    895 	KASSERT(KSI_TRAP_P(ksi));
    896 
    897 	ksi->ksi_lid = l->l_lid;
    898 	p = l->l_proc;
    899 
    900 	KASSERT(!cpu_intr_p());
    901 	mutex_enter(proc_lock);
    902 	mutex_enter(p->p_lock);
    903 	mask = &l->l_sigmask;
    904 	ps = p->p_sigacts;
    905 
    906 	const bool traced = (p->p_slflag & PSL_TRACED) != 0;
    907 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    908 	const bool masked = sigismember(mask, signo);
    909 	if (!traced && caught && !masked) {
    910 		mutex_exit(proc_lock);
    911 		l->l_ru.ru_nsignals++;
    912 		kpsendsig(l, ksi, mask);
    913 		mutex_exit(p->p_lock);
    914 		if (ktrpoint(KTR_PSIG)) {
    915 			if (p->p_emul->e_ktrpsig)
    916 				p->p_emul->e_ktrpsig(signo,
    917 				    SIGACTION_PS(ps, signo).sa_handler,
    918 				    mask, ksi);
    919 			else
    920 				ktrpsig(signo,
    921 				    SIGACTION_PS(ps, signo).sa_handler,
    922 				    mask, ksi);
    923 		}
    924 		return;
    925 	}
    926 
    927 	/*
    928 	 * If the signal is masked or ignored, then unmask it and
    929 	 * reset it to the default action so that the process or
    930 	 * its tracer will be notified.
    931 	 */
    932 	const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
    933 	if (masked || ignored) {
    934 		mutex_enter(&ps->sa_mutex);
    935 		sigdelset(mask, signo);
    936 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    937 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    938 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    939 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    940 		mutex_exit(&ps->sa_mutex);
    941 	}
    942 
    943 	kpsignal2(p, ksi);
    944 	mutex_exit(p->p_lock);
    945 	mutex_exit(proc_lock);
    946 }
    947 
    948 /*
    949  * Fill in signal information and signal the parent for a child status change.
    950  */
    951 void
    952 child_psignal(struct proc *p, int mask)
    953 {
    954 	ksiginfo_t ksi;
    955 	struct proc *q;
    956 	int xsig;
    957 
    958 	KASSERT(mutex_owned(proc_lock));
    959 	KASSERT(mutex_owned(p->p_lock));
    960 
    961 	xsig = p->p_xsig;
    962 
    963 	KSI_INIT(&ksi);
    964 	ksi.ksi_signo = SIGCHLD;
    965 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    966 	ksi.ksi_pid = p->p_pid;
    967 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    968 	ksi.ksi_status = xsig;
    969 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    970 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    971 
    972 	q = p->p_pptr;
    973 
    974 	mutex_exit(p->p_lock);
    975 	mutex_enter(q->p_lock);
    976 
    977 	if ((q->p_sflag & mask) == 0)
    978 		kpsignal2(q, &ksi);
    979 
    980 	mutex_exit(q->p_lock);
    981 	mutex_enter(p->p_lock);
    982 }
    983 
    984 void
    985 psignal(struct proc *p, int signo)
    986 {
    987 	ksiginfo_t ksi;
    988 
    989 	KASSERT(!cpu_intr_p());
    990 	KASSERT(mutex_owned(proc_lock));
    991 
    992 	KSI_INIT_EMPTY(&ksi);
    993 	ksi.ksi_signo = signo;
    994 	mutex_enter(p->p_lock);
    995 	kpsignal2(p, &ksi);
    996 	mutex_exit(p->p_lock);
    997 }
    998 
    999 void
   1000 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1001 {
   1002 	fdfile_t *ff;
   1003 	file_t *fp;
   1004 	fdtab_t *dt;
   1005 
   1006 	KASSERT(!cpu_intr_p());
   1007 	KASSERT(mutex_owned(proc_lock));
   1008 
   1009 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1010 		size_t fd;
   1011 		filedesc_t *fdp = p->p_fd;
   1012 
   1013 		/* XXXSMP locking */
   1014 		ksi->ksi_fd = -1;
   1015 		dt = fdp->fd_dt;
   1016 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1017 			if ((ff = dt->dt_ff[fd]) == NULL)
   1018 				continue;
   1019 			if ((fp = ff->ff_file) == NULL)
   1020 				continue;
   1021 			if (fp->f_data == data) {
   1022 				ksi->ksi_fd = fd;
   1023 				break;
   1024 			}
   1025 		}
   1026 	}
   1027 	mutex_enter(p->p_lock);
   1028 	kpsignal2(p, ksi);
   1029 	mutex_exit(p->p_lock);
   1030 }
   1031 
   1032 /*
   1033  * sigismasked:
   1034  *
   1035  *	Returns true if signal is ignored or masked for the specified LWP.
   1036  */
   1037 int
   1038 sigismasked(struct lwp *l, int sig)
   1039 {
   1040 	struct proc *p = l->l_proc;
   1041 
   1042 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1043 	    sigismember(&l->l_sigmask, sig);
   1044 }
   1045 
   1046 /*
   1047  * sigpost:
   1048  *
   1049  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1050  *	be able to take the signal.
   1051  */
   1052 static int
   1053 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1054 {
   1055 	int rv, masked;
   1056 	struct proc *p = l->l_proc;
   1057 
   1058 	KASSERT(mutex_owned(p->p_lock));
   1059 
   1060 	/*
   1061 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1062 	 * pending signals.  Don't give it more.
   1063 	 */
   1064 	if (l->l_refcnt == 0)
   1065 		return 0;
   1066 
   1067 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1068 
   1069 	/*
   1070 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1071 	 * is found to take the signal immediately, it should be taken soon.
   1072 	 */
   1073 	lwp_lock(l);
   1074 	l->l_flag |= LW_PENDSIG;
   1075 
   1076 	/*
   1077 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1078 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1079 	 */
   1080 	masked = sigismember(&l->l_sigmask, sig);
   1081 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1082 		lwp_unlock(l);
   1083 		return 0;
   1084 	}
   1085 
   1086 	/*
   1087 	 * If killing the process, make it run fast.
   1088 	 */
   1089 	if (__predict_false((prop & SA_KILL) != 0) &&
   1090 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1091 		KASSERT(l->l_class == SCHED_OTHER);
   1092 		lwp_changepri(l, MAXPRI_USER);
   1093 	}
   1094 
   1095 	/*
   1096 	 * If the LWP is running or on a run queue, then we win.  If it's
   1097 	 * sleeping interruptably, wake it and make it take the signal.  If
   1098 	 * the sleep isn't interruptable, then the chances are it will get
   1099 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1100 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1101 	 * for later; otherwise punt.
   1102 	 */
   1103 	rv = 0;
   1104 
   1105 	switch (l->l_stat) {
   1106 	case LSRUN:
   1107 	case LSONPROC:
   1108 		lwp_need_userret(l);
   1109 		rv = 1;
   1110 		break;
   1111 
   1112 	case LSSLEEP:
   1113 		if ((l->l_flag & LW_SINTR) != 0) {
   1114 			/* setrunnable() will release the lock. */
   1115 			setrunnable(l);
   1116 			return 1;
   1117 		}
   1118 		break;
   1119 
   1120 	case LSSUSPENDED:
   1121 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1122 			/* lwp_continue() will release the lock. */
   1123 			lwp_continue(l);
   1124 			return 1;
   1125 		}
   1126 		break;
   1127 
   1128 	case LSSTOP:
   1129 		if ((prop & SA_STOP) != 0)
   1130 			break;
   1131 
   1132 		/*
   1133 		 * If the LWP is stopped and we are sending a continue
   1134 		 * signal, then start it again.
   1135 		 */
   1136 		if ((prop & SA_CONT) != 0) {
   1137 			if (l->l_wchan != NULL) {
   1138 				l->l_stat = LSSLEEP;
   1139 				p->p_nrlwps++;
   1140 				rv = 1;
   1141 				break;
   1142 			}
   1143 			/* setrunnable() will release the lock. */
   1144 			setrunnable(l);
   1145 			return 1;
   1146 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1147 			/* setrunnable() will release the lock. */
   1148 			setrunnable(l);
   1149 			return 1;
   1150 		}
   1151 		break;
   1152 
   1153 	default:
   1154 		break;
   1155 	}
   1156 
   1157 	lwp_unlock(l);
   1158 	return rv;
   1159 }
   1160 
   1161 /*
   1162  * Notify an LWP that it has a pending signal.
   1163  */
   1164 void
   1165 signotify(struct lwp *l)
   1166 {
   1167 	KASSERT(lwp_locked(l, NULL));
   1168 
   1169 	l->l_flag |= LW_PENDSIG;
   1170 	lwp_need_userret(l);
   1171 }
   1172 
   1173 /*
   1174  * Find an LWP within process p that is waiting on signal ksi, and hand
   1175  * it on.
   1176  */
   1177 static int
   1178 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1179 {
   1180 	struct lwp *l;
   1181 	int signo;
   1182 
   1183 	KASSERT(mutex_owned(p->p_lock));
   1184 
   1185 	signo = ksi->ksi_signo;
   1186 
   1187 	if (ksi->ksi_lid != 0) {
   1188 		/*
   1189 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1190 		 * it's interested.
   1191 		 */
   1192 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1193 			return 0;
   1194 		if (l->l_sigwaited == NULL ||
   1195 		    !sigismember(&l->l_sigwaitset, signo))
   1196 			return 0;
   1197 	} else {
   1198 		/*
   1199 		 * Look for any LWP that may be interested.
   1200 		 */
   1201 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1202 			KASSERT(l->l_sigwaited != NULL);
   1203 			if (sigismember(&l->l_sigwaitset, signo))
   1204 				break;
   1205 		}
   1206 	}
   1207 
   1208 	if (l != NULL) {
   1209 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1210 		l->l_sigwaited = NULL;
   1211 		LIST_REMOVE(l, l_sigwaiter);
   1212 		cv_signal(&l->l_sigcv);
   1213 		return 1;
   1214 	}
   1215 
   1216 	return 0;
   1217 }
   1218 
   1219 /*
   1220  * Send the signal to the process.  If the signal has an action, the action
   1221  * is usually performed by the target process rather than the caller; we add
   1222  * the signal to the set of pending signals for the process.
   1223  *
   1224  * Exceptions:
   1225  *   o When a stop signal is sent to a sleeping process that takes the
   1226  *     default action, the process is stopped without awakening it.
   1227  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1228  *     regardless of the signal action (eg, blocked or ignored).
   1229  *
   1230  * Other ignored signals are discarded immediately.
   1231  */
   1232 int
   1233 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1234 {
   1235 	int prop, signo = ksi->ksi_signo;
   1236 	struct lwp *l = NULL;
   1237 	ksiginfo_t *kp;
   1238 	lwpid_t lid;
   1239 	sig_t action;
   1240 	bool toall, debtrap = false;
   1241 	int error = 0;
   1242 
   1243 	KASSERT(!cpu_intr_p());
   1244 	KASSERT(mutex_owned(proc_lock));
   1245 	KASSERT(mutex_owned(p->p_lock));
   1246 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1247 	KASSERT(signo > 0 && signo < NSIG);
   1248 
   1249 	/*
   1250 	 * If the process is being created by fork, is a zombie or is
   1251 	 * exiting, then just drop the signal here and bail out.
   1252 	 */
   1253 	if (p->p_stat == SIDL && signo == SIGTRAP
   1254 	    && (p->p_slflag & PSL_TRACED)) {
   1255 		/* allow an initial SIGTRAP for traced processes */
   1256 		debtrap = true;
   1257 	} else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
   1258 		return 0;
   1259 	}
   1260 
   1261 	/* XXX for core dump/debugger */
   1262 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1263 	p->p_sigctx.ps_info = ksi->ksi_info;
   1264 
   1265 	/*
   1266 	 * Notify any interested parties of the signal.
   1267 	 */
   1268 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1269 
   1270 	/*
   1271 	 * Some signals including SIGKILL must act on the entire process.
   1272 	 */
   1273 	kp = NULL;
   1274 	prop = sigprop[signo];
   1275 	toall = ((prop & SA_TOALL) != 0);
   1276 	lid = toall ? 0 : ksi->ksi_lid;
   1277 
   1278 	/*
   1279 	 * If proc is traced, always give parent a chance.
   1280 	 */
   1281 	if (p->p_slflag & PSL_TRACED) {
   1282 		action = SIG_DFL;
   1283 
   1284 		if (lid == 0) {
   1285 			/*
   1286 			 * If the process is being traced and the signal
   1287 			 * is being caught, make sure to save any ksiginfo.
   1288 			 */
   1289 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1290 				goto discard;
   1291 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1292 				goto out;
   1293 		}
   1294 	} else {
   1295 
   1296 		/*
   1297 		 * If the signal is being ignored, then drop it.  Note: we
   1298 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1299 		 * SIG_IGN, action will be SIG_DFL here.
   1300 		 */
   1301 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1302 			goto discard;
   1303 
   1304 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1305 			action = SIG_CATCH;
   1306 		else {
   1307 			action = SIG_DFL;
   1308 
   1309 			/*
   1310 			 * If sending a tty stop signal to a member of an
   1311 			 * orphaned process group, discard the signal here if
   1312 			 * the action is default; don't stop the process below
   1313 			 * if sleeping, and don't clear any pending SIGCONT.
   1314 			 */
   1315 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1316 				goto discard;
   1317 
   1318 			if (prop & SA_KILL && p->p_nice > NZERO)
   1319 				p->p_nice = NZERO;
   1320 		}
   1321 	}
   1322 
   1323 	/*
   1324 	 * If stopping or continuing a process, discard any pending
   1325 	 * signals that would do the inverse.
   1326 	 */
   1327 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1328 		ksiginfoq_t kq;
   1329 
   1330 		ksiginfo_queue_init(&kq);
   1331 		if ((prop & SA_CONT) != 0)
   1332 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1333 		if ((prop & SA_STOP) != 0)
   1334 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1335 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1336 	}
   1337 
   1338 	/*
   1339 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1340 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1341 	 * the signal info.  The signal won't be processed further here.
   1342 	 */
   1343 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1344 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1345 	    sigunwait(p, ksi))
   1346 		goto discard;
   1347 
   1348 	/*
   1349 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1350 	 * here.
   1351 	 */
   1352 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1353 		goto discard;
   1354 
   1355 	/*
   1356 	 * LWP private signals are easy - just find the LWP and post
   1357 	 * the signal to it.
   1358 	 */
   1359 	if (lid != 0) {
   1360 		if (__predict_false(debtrap)) {
   1361 			l = LIST_FIRST(&p->p_lwps);
   1362 			if (l->l_lid != lid)
   1363 				l = NULL;
   1364 		} else {
   1365 			l = lwp_find(p, lid);
   1366 		}
   1367 		if (l != NULL) {
   1368 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1369 				goto out;
   1370 			membar_producer();
   1371 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1372 				signo = -1;
   1373 		}
   1374 		goto out;
   1375 	}
   1376 
   1377 	/*
   1378 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1379 	 * or for an SA process.
   1380 	 */
   1381 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1382 		if ((p->p_slflag & PSL_TRACED) != 0)
   1383 			goto deliver;
   1384 
   1385 		/*
   1386 		 * If SIGCONT is default (or ignored) and process is
   1387 		 * asleep, we are finished; the process should not
   1388 		 * be awakened.
   1389 		 */
   1390 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1391 			goto out;
   1392 	} else {
   1393 		/*
   1394 		 * Process is stopped or stopping.
   1395 		 * - If traced, then no action is needed, unless killing.
   1396 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1397 		 */
   1398 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1399 			goto out;
   1400 		}
   1401 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1402 			/*
   1403 			 * Re-adjust p_nstopchild if the process was
   1404 			 * stopped but not yet collected by its parent.
   1405 			 */
   1406 			if (p->p_stat == SSTOP && !p->p_waited)
   1407 				p->p_pptr->p_nstopchild--;
   1408 			p->p_stat = SACTIVE;
   1409 			p->p_sflag &= ~PS_STOPPING;
   1410 			if (p->p_slflag & PSL_TRACED) {
   1411 				KASSERT(signo == SIGKILL);
   1412 				goto deliver;
   1413 			}
   1414 			/*
   1415 			 * Do not make signal pending if SIGCONT is default.
   1416 			 *
   1417 			 * If the process catches SIGCONT, let it handle the
   1418 			 * signal itself (if waiting on event - process runs,
   1419 			 * otherwise continues sleeping).
   1420 			 */
   1421 			if ((prop & SA_CONT) != 0) {
   1422 				p->p_xsig = SIGCONT;
   1423 				p->p_sflag |= PS_CONTINUED;
   1424 				child_psignal(p, 0);
   1425 				if (action == SIG_DFL) {
   1426 					KASSERT(signo != SIGKILL);
   1427 					goto deliver;
   1428 				}
   1429 			}
   1430 		} else if ((prop & SA_STOP) != 0) {
   1431 			/*
   1432 			 * Already stopped, don't need to stop again.
   1433 			 * (If we did the shell could get confused.)
   1434 			 */
   1435 			goto out;
   1436 		}
   1437 	}
   1438 	/*
   1439 	 * Make signal pending.
   1440 	 */
   1441 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1442 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1443 		goto out;
   1444 deliver:
   1445 	/*
   1446 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1447 	 * visible on the per process list (for sigispending()).  This
   1448 	 * is unlikely to be needed in practice, but...
   1449 	 */
   1450 	membar_producer();
   1451 
   1452 	/*
   1453 	 * Try to find an LWP that can take the signal.
   1454 	 */
   1455 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1456 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1457 			break;
   1458 	}
   1459 	signo = -1;
   1460 out:
   1461 	/*
   1462 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1463 	 * with locks held.  The caller should take care of this.
   1464 	 */
   1465 	ksiginfo_free(kp);
   1466 	if (signo == -1)
   1467 		return error;
   1468 discard:
   1469 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1470 	return error;
   1471 }
   1472 
   1473 void
   1474 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1475 {
   1476 	struct proc *p = l->l_proc;
   1477 
   1478 	KASSERT(mutex_owned(p->p_lock));
   1479 	(*p->p_emul->e_sendsig)(ksi, mask);
   1480 }
   1481 
   1482 /*
   1483  * Stop any LWPs sleeping interruptably.
   1484  */
   1485 static void
   1486 proc_stop_lwps(struct proc *p)
   1487 {
   1488 	struct lwp *l;
   1489 
   1490 	KASSERT(mutex_owned(p->p_lock));
   1491 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1492 
   1493 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1494 		lwp_lock(l);
   1495 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1496 			l->l_stat = LSSTOP;
   1497 			p->p_nrlwps--;
   1498 		}
   1499 		lwp_unlock(l);
   1500 	}
   1501 }
   1502 
   1503 /*
   1504  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1505  *
   1506  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1507  */
   1508 static void
   1509 proc_stop_done(struct proc *p, int ppmask)
   1510 {
   1511 
   1512 	KASSERT(mutex_owned(proc_lock));
   1513 	KASSERT(mutex_owned(p->p_lock));
   1514 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1515 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1516 
   1517 	p->p_sflag &= ~PS_STOPPING;
   1518 	p->p_stat = SSTOP;
   1519 	p->p_waited = 0;
   1520 	p->p_pptr->p_nstopchild++;
   1521 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1522 		/* child_psignal drops p_lock briefly. */
   1523 		child_psignal(p, ppmask);
   1524 		cv_broadcast(&p->p_pptr->p_waitcv);
   1525 	}
   1526 }
   1527 
   1528 /*
   1529  * Stop the current process and switch away when being stopped or traced.
   1530  */
   1531 void
   1532 sigswitch(int ppmask, int signo, bool relock)
   1533 {
   1534 	struct lwp *l = curlwp;
   1535 	struct proc *p = l->l_proc;
   1536 	int biglocks;
   1537 
   1538 	KASSERT(mutex_owned(p->p_lock));
   1539 	KASSERT(l->l_stat == LSONPROC);
   1540 	KASSERT(p->p_nrlwps > 0);
   1541 
   1542 	/*
   1543 	 * On entry we know that the process needs to stop.  If it's
   1544 	 * the result of a 'sideways' stop signal that has been sourced
   1545 	 * through issignal(), then stop other LWPs in the process too.
   1546 	 */
   1547 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1548 		KASSERT(signo != 0);
   1549 		proc_stop(p, signo);
   1550 		KASSERT(p->p_nrlwps > 0);
   1551 	}
   1552 
   1553 	/*
   1554 	 * If we are the last live LWP, and the stop was a result of
   1555 	 * a new signal, then signal the parent.
   1556 	 */
   1557 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1558 		if (relock && !mutex_tryenter(proc_lock)) {
   1559 			mutex_exit(p->p_lock);
   1560 			mutex_enter(proc_lock);
   1561 			mutex_enter(p->p_lock);
   1562 		}
   1563 
   1564 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1565 			/*
   1566 			 * Note that proc_stop_done() can drop
   1567 			 * p->p_lock briefly.
   1568 			 */
   1569 			proc_stop_done(p, ppmask);
   1570 		}
   1571 
   1572 		mutex_exit(proc_lock);
   1573 	}
   1574 
   1575 	/*
   1576 	 * Unlock and switch away.
   1577 	 */
   1578 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1579 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1580 		p->p_nrlwps--;
   1581 		lwp_lock(l);
   1582 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1583 		l->l_stat = LSSTOP;
   1584 		lwp_unlock(l);
   1585 	}
   1586 
   1587 	mutex_exit(p->p_lock);
   1588 	lwp_lock(l);
   1589 	mi_switch(l);
   1590 	KERNEL_LOCK(biglocks, l);
   1591 	mutex_enter(p->p_lock);
   1592 }
   1593 
   1594 /*
   1595  * Check for a signal from the debugger.
   1596  */
   1597 static int
   1598 sigchecktrace(void)
   1599 {
   1600 	struct lwp *l = curlwp;
   1601 	struct proc *p = l->l_proc;
   1602 	int signo;
   1603 
   1604 	KASSERT(mutex_owned(p->p_lock));
   1605 
   1606 	/* If there's a pending SIGKILL, process it immediately. */
   1607 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1608 		return 0;
   1609 
   1610 	/*
   1611 	 * If we are no longer being traced, or the parent didn't
   1612 	 * give us a signal, or we're stopping, look for more signals.
   1613 	 */
   1614 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1615 	    (p->p_sflag & PS_STOPPING) != 0)
   1616 		return 0;
   1617 
   1618 	/*
   1619 	 * If the new signal is being masked, look for other signals.
   1620 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1621 	 */
   1622 	signo = p->p_xsig;
   1623 	p->p_xsig = 0;
   1624 	if (sigismember(&l->l_sigmask, signo)) {
   1625 		signo = 0;
   1626 	}
   1627 	return signo;
   1628 }
   1629 
   1630 /*
   1631  * If the current process has received a signal (should be caught or cause
   1632  * termination, should interrupt current syscall), return the signal number.
   1633  *
   1634  * Stop signals with default action are processed immediately, then cleared;
   1635  * they aren't returned.  This is checked after each entry to the system for
   1636  * a syscall or trap.
   1637  *
   1638  * We will also return -1 if the process is exiting and the current LWP must
   1639  * follow suit.
   1640  */
   1641 int
   1642 issignal(struct lwp *l)
   1643 {
   1644 	struct proc *p;
   1645 	int signo, prop;
   1646 	sigpend_t *sp;
   1647 	sigset_t ss;
   1648 
   1649 	p = l->l_proc;
   1650 	sp = NULL;
   1651 	signo = 0;
   1652 
   1653 	KASSERT(p == curproc);
   1654 	KASSERT(mutex_owned(p->p_lock));
   1655 
   1656 	for (;;) {
   1657 		/* Discard any signals that we have decided not to take. */
   1658 		if (signo != 0) {
   1659 			(void)sigget(sp, NULL, signo, NULL);
   1660 		}
   1661 
   1662 		/*
   1663 		 * If the process is stopped/stopping, then stop ourselves
   1664 		 * now that we're on the kernel/userspace boundary.  When
   1665 		 * we awaken, check for a signal from the debugger.
   1666 		 */
   1667 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1668 			sigswitch(PS_NOCLDSTOP, 0, true);
   1669 			signo = sigchecktrace();
   1670 		} else
   1671 			signo = 0;
   1672 
   1673 		/* Signals from the debugger are "out of band". */
   1674 		sp = NULL;
   1675 
   1676 		/*
   1677 		 * If the debugger didn't provide a signal, find a pending
   1678 		 * signal from our set.  Check per-LWP signals first, and
   1679 		 * then per-process.
   1680 		 */
   1681 		if (signo == 0) {
   1682 			sp = &l->l_sigpend;
   1683 			ss = sp->sp_set;
   1684 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1685 				sigminusset(&stopsigmask, &ss);
   1686 			sigminusset(&l->l_sigmask, &ss);
   1687 
   1688 			if ((signo = firstsig(&ss)) == 0) {
   1689 				sp = &p->p_sigpend;
   1690 				ss = sp->sp_set;
   1691 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1692 					sigminusset(&stopsigmask, &ss);
   1693 				sigminusset(&l->l_sigmask, &ss);
   1694 
   1695 				if ((signo = firstsig(&ss)) == 0) {
   1696 					/*
   1697 					 * No signal pending - clear the
   1698 					 * indicator and bail out.
   1699 					 */
   1700 					lwp_lock(l);
   1701 					l->l_flag &= ~LW_PENDSIG;
   1702 					lwp_unlock(l);
   1703 					sp = NULL;
   1704 					break;
   1705 				}
   1706 			}
   1707 		}
   1708 
   1709 		/*
   1710 		 * We should see pending but ignored signals only if
   1711 		 * we are being traced.
   1712 		 */
   1713 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1714 		    (p->p_slflag & PSL_TRACED) == 0) {
   1715 			/* Discard the signal. */
   1716 			continue;
   1717 		}
   1718 
   1719 		/*
   1720 		 * If traced, always stop, and stay stopped until released
   1721 		 * by the debugger.  If the our parent is our debugger waiting
   1722 		 * for us and we vforked, don't hang as we could deadlock.
   1723 		 *
   1724 		 * XXX: support PT_TRACE_ME called after vfork(2)
   1725 		 */
   1726 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1727 			/*
   1728 			 * Take the signal, but don't remove it from the
   1729 			 * siginfo queue, because the debugger can send
   1730 			 * it later.
   1731 			 */
   1732 			if (sp)
   1733 				sigdelset(&sp->sp_set, signo);
   1734 			p->p_xsig = signo;
   1735 
   1736 			/* Emulation-specific handling of signal trace */
   1737 			if (p->p_emul->e_tracesig == NULL ||
   1738 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1739 				sigswitch(0, signo, true);
   1740 
   1741 			/* Check for a signal from the debugger. */
   1742 			if ((signo = sigchecktrace()) == 0)
   1743 				continue;
   1744 
   1745 			/* Signals from the debugger are "out of band". */
   1746 			sp = NULL;
   1747 		}
   1748 
   1749 		prop = sigprop[signo];
   1750 
   1751 		/*
   1752 		 * Decide whether the signal should be returned.
   1753 		 */
   1754 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1755 		case (long)SIG_DFL:
   1756 			/*
   1757 			 * Don't take default actions on system processes.
   1758 			 */
   1759 			if (p->p_pid <= 1) {
   1760 #ifdef DIAGNOSTIC
   1761 				/*
   1762 				 * Are you sure you want to ignore SIGSEGV
   1763 				 * in init? XXX
   1764 				 */
   1765 				printf_nolog("Process (pid %d) got sig %d\n",
   1766 				    p->p_pid, signo);
   1767 #endif
   1768 				continue;
   1769 			}
   1770 
   1771 			/*
   1772 			 * If there is a pending stop signal to process with
   1773 			 * default action, stop here, then clear the signal.
   1774 			 * However, if process is member of an orphaned
   1775 			 * process group, ignore tty stop signals.
   1776 			 */
   1777 			if (prop & SA_STOP) {
   1778 				/*
   1779 				 * XXX Don't hold proc_lock for p_lflag,
   1780 				 * but it's not a big deal.
   1781 				 */
   1782 				if (p->p_slflag & PSL_TRACED ||
   1783 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1784 				    prop & SA_TTYSTOP)) {
   1785 					/* Ignore the signal. */
   1786 					continue;
   1787 				}
   1788 				/* Take the signal. */
   1789 				(void)sigget(sp, NULL, signo, NULL);
   1790 				p->p_xsig = signo;
   1791 				p->p_sflag &= ~PS_CONTINUED;
   1792 				signo = 0;
   1793 				sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
   1794 			} else if (prop & SA_IGNORE) {
   1795 				/*
   1796 				 * Except for SIGCONT, shouldn't get here.
   1797 				 * Default action is to ignore; drop it.
   1798 				 */
   1799 				continue;
   1800 			}
   1801 			break;
   1802 
   1803 		case (long)SIG_IGN:
   1804 #ifdef DEBUG_ISSIGNAL
   1805 			/*
   1806 			 * Masking above should prevent us ever trying
   1807 			 * to take action on an ignored signal other
   1808 			 * than SIGCONT, unless process is traced.
   1809 			 */
   1810 			if ((prop & SA_CONT) == 0 &&
   1811 			    (p->p_slflag & PSL_TRACED) == 0)
   1812 				printf_nolog("issignal\n");
   1813 #endif
   1814 			continue;
   1815 
   1816 		default:
   1817 			/*
   1818 			 * This signal has an action, let postsig() process
   1819 			 * it.
   1820 			 */
   1821 			break;
   1822 		}
   1823 
   1824 		break;
   1825 	}
   1826 
   1827 	l->l_sigpendset = sp;
   1828 	return signo;
   1829 }
   1830 
   1831 /*
   1832  * Take the action for the specified signal
   1833  * from the current set of pending signals.
   1834  */
   1835 void
   1836 postsig(int signo)
   1837 {
   1838 	struct lwp	*l;
   1839 	struct proc	*p;
   1840 	struct sigacts	*ps;
   1841 	sig_t		action;
   1842 	sigset_t	*returnmask;
   1843 	ksiginfo_t	ksi;
   1844 
   1845 	l = curlwp;
   1846 	p = l->l_proc;
   1847 	ps = p->p_sigacts;
   1848 
   1849 	KASSERT(mutex_owned(p->p_lock));
   1850 	KASSERT(signo > 0);
   1851 
   1852 	/*
   1853 	 * Set the new mask value and also defer further occurrences of this
   1854 	 * signal.
   1855 	 *
   1856 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1857 	 * not of interest, but rather the mask from before the sigsuspend is
   1858 	 * what we want restored after the signal processing is completed.
   1859 	 */
   1860 	if (l->l_sigrestore) {
   1861 		returnmask = &l->l_sigoldmask;
   1862 		l->l_sigrestore = 0;
   1863 	} else
   1864 		returnmask = &l->l_sigmask;
   1865 
   1866 	/*
   1867 	 * Commit to taking the signal before releasing the mutex.
   1868 	 */
   1869 	action = SIGACTION_PS(ps, signo).sa_handler;
   1870 	l->l_ru.ru_nsignals++;
   1871 	if (l->l_sigpendset == NULL) {
   1872 		/* From the debugger */
   1873 		if (p->p_sigctx.ps_faked &&
   1874 		    signo == p->p_sigctx.ps_info._signo) {
   1875 			KSI_INIT(&ksi);
   1876 			ksi.ksi_info = p->p_sigctx.ps_info;
   1877 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   1878 			p->p_sigctx.ps_faked = false;
   1879 		} else {
   1880 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1881 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1882 		}
   1883 	} else
   1884 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1885 
   1886 	if (ktrpoint(KTR_PSIG)) {
   1887 		mutex_exit(p->p_lock);
   1888 		if (p->p_emul->e_ktrpsig)
   1889 			p->p_emul->e_ktrpsig(signo, action,
   1890 			    returnmask, &ksi);
   1891 		else
   1892 			ktrpsig(signo, action, returnmask, &ksi);
   1893 		mutex_enter(p->p_lock);
   1894 	}
   1895 
   1896 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1897 
   1898 	if (action == SIG_DFL) {
   1899 		/*
   1900 		 * Default action, where the default is to kill
   1901 		 * the process.  (Other cases were ignored above.)
   1902 		 */
   1903 		sigexit(l, signo);
   1904 		return;
   1905 	}
   1906 
   1907 	/*
   1908 	 * If we get here, the signal must be caught.
   1909 	 */
   1910 #ifdef DIAGNOSTIC
   1911 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1912 		panic("postsig action");
   1913 #endif
   1914 
   1915 	kpsendsig(l, &ksi, returnmask);
   1916 }
   1917 
   1918 /*
   1919  * sendsig:
   1920  *
   1921  *	Default signal delivery method for NetBSD.
   1922  */
   1923 void
   1924 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1925 {
   1926 	struct sigacts *sa;
   1927 	int sig;
   1928 
   1929 	sig = ksi->ksi_signo;
   1930 	sa = curproc->p_sigacts;
   1931 
   1932 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1933 	case 0:
   1934 	case 1:
   1935 		/* Compat for 1.6 and earlier. */
   1936 		if (sendsig_sigcontext_vec == NULL) {
   1937 			break;
   1938 		}
   1939 		(*sendsig_sigcontext_vec)(ksi, mask);
   1940 		return;
   1941 	case 2:
   1942 	case 3:
   1943 		sendsig_siginfo(ksi, mask);
   1944 		return;
   1945 	default:
   1946 		break;
   1947 	}
   1948 
   1949 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1950 	sigexit(curlwp, SIGILL);
   1951 }
   1952 
   1953 /*
   1954  * sendsig_reset:
   1955  *
   1956  *	Reset the signal action.  Called from emulation specific sendsig()
   1957  *	before unlocking to deliver the signal.
   1958  */
   1959 void
   1960 sendsig_reset(struct lwp *l, int signo)
   1961 {
   1962 	struct proc *p = l->l_proc;
   1963 	struct sigacts *ps = p->p_sigacts;
   1964 
   1965 	KASSERT(mutex_owned(p->p_lock));
   1966 
   1967 	p->p_sigctx.ps_lwp = 0;
   1968 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   1969 
   1970 	mutex_enter(&ps->sa_mutex);
   1971 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1972 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1973 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1974 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1975 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1976 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1977 	}
   1978 	mutex_exit(&ps->sa_mutex);
   1979 }
   1980 
   1981 /*
   1982  * Kill the current process for stated reason.
   1983  */
   1984 void
   1985 killproc(struct proc *p, const char *why)
   1986 {
   1987 
   1988 	KASSERT(mutex_owned(proc_lock));
   1989 
   1990 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1991 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1992 	psignal(p, SIGKILL);
   1993 }
   1994 
   1995 /*
   1996  * Force the current process to exit with the specified signal, dumping core
   1997  * if appropriate.  We bypass the normal tests for masked and caught
   1998  * signals, allowing unrecoverable failures to terminate the process without
   1999  * changing signal state.  Mark the accounting record with the signal
   2000  * termination.  If dumping core, save the signal number for the debugger.
   2001  * Calls exit and does not return.
   2002  */
   2003 void
   2004 sigexit(struct lwp *l, int signo)
   2005 {
   2006 	int exitsig, error, docore;
   2007 	struct proc *p;
   2008 	struct lwp *t;
   2009 
   2010 	p = l->l_proc;
   2011 
   2012 	KASSERT(mutex_owned(p->p_lock));
   2013 	KERNEL_UNLOCK_ALL(l, NULL);
   2014 
   2015 	/*
   2016 	 * Don't permit coredump() multiple times in the same process.
   2017 	 * Call back into sigexit, where we will be suspended until
   2018 	 * the deed is done.  Note that this is a recursive call, but
   2019 	 * LW_WCORE will prevent us from coming back this way.
   2020 	 */
   2021 	if ((p->p_sflag & PS_WCORE) != 0) {
   2022 		lwp_lock(l);
   2023 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2024 		lwp_unlock(l);
   2025 		mutex_exit(p->p_lock);
   2026 		lwp_userret(l);
   2027 		panic("sigexit 1");
   2028 		/* NOTREACHED */
   2029 	}
   2030 
   2031 	/* If process is already on the way out, then bail now. */
   2032 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2033 		mutex_exit(p->p_lock);
   2034 		lwp_exit(l);
   2035 		panic("sigexit 2");
   2036 		/* NOTREACHED */
   2037 	}
   2038 
   2039 	/*
   2040 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2041 	 * so that their registers are available long enough to be dumped.
   2042  	 */
   2043 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2044 		p->p_sflag |= PS_WCORE;
   2045 		for (;;) {
   2046 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2047 				lwp_lock(t);
   2048 				if (t == l) {
   2049 					t->l_flag &= ~LW_WSUSPEND;
   2050 					lwp_unlock(t);
   2051 					continue;
   2052 				}
   2053 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2054 				lwp_suspend(l, t);
   2055 			}
   2056 
   2057 			if (p->p_nrlwps == 1)
   2058 				break;
   2059 
   2060 			/*
   2061 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2062 			 * for everyone else to stop before proceeding.
   2063 			 */
   2064 			p->p_nlwpwait++;
   2065 			cv_broadcast(&p->p_lwpcv);
   2066 			cv_wait(&p->p_lwpcv, p->p_lock);
   2067 			p->p_nlwpwait--;
   2068 		}
   2069 	}
   2070 
   2071 	exitsig = signo;
   2072 	p->p_acflag |= AXSIG;
   2073 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2074 	p->p_sigctx.ps_info._signo = signo;
   2075 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2076 
   2077 	if (docore) {
   2078 		mutex_exit(p->p_lock);
   2079 		error = (*coredump_vec)(l, NULL);
   2080 
   2081 		if (kern_logsigexit) {
   2082 			int uid = l->l_cred ?
   2083 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2084 
   2085 			if (error)
   2086 				log(LOG_INFO, lognocoredump, p->p_pid,
   2087 				    p->p_comm, uid, signo, error);
   2088 			else
   2089 				log(LOG_INFO, logcoredump, p->p_pid,
   2090 				    p->p_comm, uid, signo);
   2091 		}
   2092 
   2093 #ifdef PAX_SEGVGUARD
   2094 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2095 #endif /* PAX_SEGVGUARD */
   2096 		/* Acquire the sched state mutex.  exit1() will release it. */
   2097 		mutex_enter(p->p_lock);
   2098 		if (error == 0)
   2099 			p->p_sflag |= PS_COREDUMP;
   2100 	}
   2101 
   2102 	/* No longer dumping core. */
   2103 	p->p_sflag &= ~PS_WCORE;
   2104 
   2105 	exit1(l, 0, exitsig);
   2106 	/* NOTREACHED */
   2107 }
   2108 
   2109 /*
   2110  * Put process 'p' into the stopped state and optionally, notify the parent.
   2111  */
   2112 void
   2113 proc_stop(struct proc *p, int signo)
   2114 {
   2115 	struct lwp *l;
   2116 
   2117 	KASSERT(mutex_owned(p->p_lock));
   2118 
   2119 	/*
   2120 	 * First off, set the stopping indicator and bring all sleeping
   2121 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2122 	 * unlock between here and the p->p_nrlwps check below.
   2123 	 */
   2124 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
   2125 	membar_producer();
   2126 
   2127 	proc_stop_lwps(p);
   2128 
   2129 	/*
   2130 	 * If there are no LWPs available to take the signal, then we
   2131 	 * signal the parent process immediately.  Otherwise, the last
   2132 	 * LWP to stop will take care of it.
   2133 	 */
   2134 
   2135 	if (p->p_nrlwps == 0) {
   2136 		proc_stop_done(p, PS_NOCLDSTOP);
   2137 	} else {
   2138 		/*
   2139 		 * Have the remaining LWPs come to a halt, and trigger
   2140 		 * proc_stop_callout() to ensure that they do.
   2141 		 */
   2142 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2143 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2144 		}
   2145 		callout_schedule(&proc_stop_ch, 1);
   2146 	}
   2147 }
   2148 
   2149 /*
   2150  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2151  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2152  * to allow LWPs to release any locks that they may hold before stopping.
   2153  *
   2154  * Non-interruptable sleeps can be long, and there is the potential for an
   2155  * LWP to begin sleeping interruptably soon after the process has been set
   2156  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2157  * stopping, and so complete halt of the process and the return of status
   2158  * information to the parent could be delayed indefinitely.
   2159  *
   2160  * To handle this race, proc_stop_callout() runs once per tick while there
   2161  * are stopping processes in the system.  It sets LWPs that are sleeping
   2162  * interruptably into the LSSTOP state.
   2163  *
   2164  * Note that we are not concerned about keeping all LWPs stopped while the
   2165  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2166  * What we do need to ensure is that all LWPs in a stopping process have
   2167  * stopped at least once, so that notification can be sent to the parent
   2168  * process.
   2169  */
   2170 static void
   2171 proc_stop_callout(void *cookie)
   2172 {
   2173 	bool more, restart;
   2174 	struct proc *p;
   2175 
   2176 	(void)cookie;
   2177 
   2178 	do {
   2179 		restart = false;
   2180 		more = false;
   2181 
   2182 		mutex_enter(proc_lock);
   2183 		PROCLIST_FOREACH(p, &allproc) {
   2184 			mutex_enter(p->p_lock);
   2185 
   2186 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2187 				mutex_exit(p->p_lock);
   2188 				continue;
   2189 			}
   2190 
   2191 			/* Stop any LWPs sleeping interruptably. */
   2192 			proc_stop_lwps(p);
   2193 			if (p->p_nrlwps == 0) {
   2194 				/*
   2195 				 * We brought the process to a halt.
   2196 				 * Mark it as stopped and notify the
   2197 				 * parent.
   2198 				 */
   2199 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2200 					/*
   2201 					 * Note that proc_stop_done() will
   2202 					 * drop p->p_lock briefly.
   2203 					 * Arrange to restart and check
   2204 					 * all processes again.
   2205 					 */
   2206 					restart = true;
   2207 				}
   2208 				proc_stop_done(p, PS_NOCLDSTOP);
   2209 			} else
   2210 				more = true;
   2211 
   2212 			mutex_exit(p->p_lock);
   2213 			if (restart)
   2214 				break;
   2215 		}
   2216 		mutex_exit(proc_lock);
   2217 	} while (restart);
   2218 
   2219 	/*
   2220 	 * If we noted processes that are stopping but still have
   2221 	 * running LWPs, then arrange to check again in 1 tick.
   2222 	 */
   2223 	if (more)
   2224 		callout_schedule(&proc_stop_ch, 1);
   2225 }
   2226 
   2227 /*
   2228  * Given a process in state SSTOP, set the state back to SACTIVE and
   2229  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2230  */
   2231 void
   2232 proc_unstop(struct proc *p)
   2233 {
   2234 	struct lwp *l;
   2235 	int sig;
   2236 
   2237 	KASSERT(mutex_owned(proc_lock));
   2238 	KASSERT(mutex_owned(p->p_lock));
   2239 
   2240 	p->p_stat = SACTIVE;
   2241 	p->p_sflag &= ~PS_STOPPING;
   2242 	sig = p->p_xsig;
   2243 
   2244 	if (!p->p_waited)
   2245 		p->p_pptr->p_nstopchild--;
   2246 
   2247 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2248 		lwp_lock(l);
   2249 		if (l->l_stat != LSSTOP) {
   2250 			lwp_unlock(l);
   2251 			continue;
   2252 		}
   2253 		if (l->l_wchan == NULL) {
   2254 			setrunnable(l);
   2255 			continue;
   2256 		}
   2257 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2258 			setrunnable(l);
   2259 			sig = 0;
   2260 		} else {
   2261 			l->l_stat = LSSLEEP;
   2262 			p->p_nrlwps++;
   2263 			lwp_unlock(l);
   2264 		}
   2265 	}
   2266 }
   2267 
   2268 void
   2269 proc_stoptrace(int trapno)
   2270 {
   2271 	struct lwp *l = curlwp;
   2272 	struct proc *p = l->l_proc;
   2273 	struct sigacts *ps;
   2274 	sigset_t *mask;
   2275 	sig_t action;
   2276 	ksiginfo_t ksi;
   2277 	const int signo = SIGTRAP;
   2278 
   2279 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2280 
   2281 	KSI_INIT_TRAP(&ksi);
   2282 	ksi.ksi_lid = l->l_lid;
   2283 	ksi.ksi_info._signo = signo;
   2284 	ksi.ksi_info._code = trapno;
   2285 
   2286 	mutex_enter(p->p_lock);
   2287 
   2288 	/* Needed for ktrace */
   2289 	ps = p->p_sigacts;
   2290 	action = SIGACTION_PS(ps, signo).sa_handler;
   2291 	mask = &l->l_sigmask;
   2292 
   2293 	/* initproc (PID1) cannot became a debugger */
   2294 	KASSERT(p->p_pptr != initproc);
   2295 
   2296 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2297 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2298 
   2299 	p->p_xsig = signo;
   2300 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2301 	p->p_sigctx.ps_info = ksi.ksi_info;
   2302 	sigswitch(0, signo, true);
   2303 	mutex_exit(p->p_lock);
   2304 
   2305 	if (ktrpoint(KTR_PSIG)) {
   2306 		if (p->p_emul->e_ktrpsig)
   2307 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2308 		else
   2309 			ktrpsig(signo, action, mask, &ksi);
   2310 	}
   2311 }
   2312 
   2313 static int
   2314 filt_sigattach(struct knote *kn)
   2315 {
   2316 	struct proc *p = curproc;
   2317 
   2318 	kn->kn_obj = p;
   2319 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2320 
   2321 	mutex_enter(p->p_lock);
   2322 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2323 	mutex_exit(p->p_lock);
   2324 
   2325 	return 0;
   2326 }
   2327 
   2328 static void
   2329 filt_sigdetach(struct knote *kn)
   2330 {
   2331 	struct proc *p = kn->kn_obj;
   2332 
   2333 	mutex_enter(p->p_lock);
   2334 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2335 	mutex_exit(p->p_lock);
   2336 }
   2337 
   2338 /*
   2339  * Signal knotes are shared with proc knotes, so we apply a mask to
   2340  * the hint in order to differentiate them from process hints.  This
   2341  * could be avoided by using a signal-specific knote list, but probably
   2342  * isn't worth the trouble.
   2343  */
   2344 static int
   2345 filt_signal(struct knote *kn, long hint)
   2346 {
   2347 
   2348 	if (hint & NOTE_SIGNAL) {
   2349 		hint &= ~NOTE_SIGNAL;
   2350 
   2351 		if (kn->kn_id == hint)
   2352 			kn->kn_data++;
   2353 	}
   2354 	return (kn->kn_data != 0);
   2355 }
   2356 
   2357 const struct filterops sig_filtops = {
   2358 		.f_isfd = 0,
   2359 		.f_attach = filt_sigattach,
   2360 		.f_detach = filt_sigdetach,
   2361 		.f_event = filt_signal,
   2362 };
   2363