Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.345
      1 /*	$NetBSD: kern_sig.c,v 1.345 2018/05/19 02:42:58 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.345 2018/05/19 02:42:58 kamil Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 
    104 #ifdef PAX_SEGVGUARD
    105 #include <sys/pax.h>
    106 #endif /* PAX_SEGVGUARD */
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #define	SIGQUEUE_MAX	32
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 sigset_t		contsigmask	__cacheline_aligned;
    116 static sigset_t		stopsigmask	__cacheline_aligned;
    117 static sigset_t		vforksigmask	__cacheline_aligned;
    118 sigset_t		sigcantmask	__cacheline_aligned;
    119 
    120 static void	ksiginfo_exechook(struct proc *, void *);
    121 static void	proc_stop(struct proc *, int);
    122 static void	proc_stop_done(struct proc *, int);
    123 static void	proc_stop_callout(void *);
    124 static int	sigchecktrace(void);
    125 static int	sigpost(struct lwp *, sig_t, int, int);
    126 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    127 static int	sigunwait(struct proc *, const ksiginfo_t *);
    128 
    129 static void	sigacts_poolpage_free(struct pool *, void *);
    130 static void	*sigacts_poolpage_alloc(struct pool *, int);
    131 
    132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    133 int (*coredump_vec)(struct lwp *, const char *) =
    134     (int (*)(struct lwp *, const char *))enosys;
    135 
    136 /*
    137  * DTrace SDT provider definitions
    138  */
    139 SDT_PROVIDER_DECLARE(proc);
    140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    141     "struct lwp *", 	/* target thread */
    142     "struct proc *", 	/* target process */
    143     "int");		/* signal */
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    145     "struct lwp *",	/* target thread */
    146     "struct proc *",	/* target process */
    147     "int");  		/* signal */
    148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    149     "int", 		/* signal */
    150     "ksiginfo_t *", 	/* signal info */
    151     "void (*)(void)");	/* handler address */
    152 
    153 
    154 static struct pool_allocator sigactspool_allocator = {
    155 	.pa_alloc = sigacts_poolpage_alloc,
    156 	.pa_free = sigacts_poolpage_free
    157 };
    158 
    159 #ifdef DEBUG
    160 int	kern_logsigexit = 1;
    161 #else
    162 int	kern_logsigexit = 0;
    163 #endif
    164 
    165 static const char logcoredump[] =
    166     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    167 static const char lognocoredump[] =
    168     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    169 
    170 static kauth_listener_t signal_listener;
    171 
    172 static int
    173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    174     void *arg0, void *arg1, void *arg2, void *arg3)
    175 {
    176 	struct proc *p;
    177 	int result, signum;
    178 
    179 	result = KAUTH_RESULT_DEFER;
    180 	p = arg0;
    181 	signum = (int)(unsigned long)arg1;
    182 
    183 	if (action != KAUTH_PROCESS_SIGNAL)
    184 		return result;
    185 
    186 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    187 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    188 		result = KAUTH_RESULT_ALLOW;
    189 
    190 	return result;
    191 }
    192 
    193 /*
    194  * signal_init:
    195  *
    196  *	Initialize global signal-related data structures.
    197  */
    198 void
    199 signal_init(void)
    200 {
    201 
    202 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    203 
    204 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    205 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    206 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    207 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    208 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    209 
    210 	exechook_establish(ksiginfo_exechook, NULL);
    211 
    212 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    213 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    214 
    215 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    216 	    signal_listener_cb, NULL);
    217 }
    218 
    219 /*
    220  * sigacts_poolpage_alloc:
    221  *
    222  *	Allocate a page for the sigacts memory pool.
    223  */
    224 static void *
    225 sigacts_poolpage_alloc(struct pool *pp, int flags)
    226 {
    227 
    228 	return (void *)uvm_km_alloc(kernel_map,
    229 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    230 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    231 	    | UVM_KMF_WIRED);
    232 }
    233 
    234 /*
    235  * sigacts_poolpage_free:
    236  *
    237  *	Free a page on behalf of the sigacts memory pool.
    238  */
    239 static void
    240 sigacts_poolpage_free(struct pool *pp, void *v)
    241 {
    242 
    243 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    244 }
    245 
    246 /*
    247  * sigactsinit:
    248  *
    249  *	Create an initial sigacts structure, using the same signal state
    250  *	as of specified process.  If 'share' is set, share the sigacts by
    251  *	holding a reference, otherwise just copy it from parent.
    252  */
    253 struct sigacts *
    254 sigactsinit(struct proc *pp, int share)
    255 {
    256 	struct sigacts *ps = pp->p_sigacts, *ps2;
    257 
    258 	if (__predict_false(share)) {
    259 		atomic_inc_uint(&ps->sa_refcnt);
    260 		return ps;
    261 	}
    262 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    263 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    264 	ps2->sa_refcnt = 1;
    265 
    266 	mutex_enter(&ps->sa_mutex);
    267 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    268 	mutex_exit(&ps->sa_mutex);
    269 	return ps2;
    270 }
    271 
    272 /*
    273  * sigactsunshare:
    274  *
    275  *	Make this process not share its sigacts, maintaining all signal state.
    276  */
    277 void
    278 sigactsunshare(struct proc *p)
    279 {
    280 	struct sigacts *ps, *oldps = p->p_sigacts;
    281 
    282 	if (__predict_true(oldps->sa_refcnt == 1))
    283 		return;
    284 
    285 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    286 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    287 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    288 	ps->sa_refcnt = 1;
    289 
    290 	p->p_sigacts = ps;
    291 	sigactsfree(oldps);
    292 }
    293 
    294 /*
    295  * sigactsfree;
    296  *
    297  *	Release a sigacts structure.
    298  */
    299 void
    300 sigactsfree(struct sigacts *ps)
    301 {
    302 
    303 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    304 		mutex_destroy(&ps->sa_mutex);
    305 		pool_cache_put(sigacts_cache, ps);
    306 	}
    307 }
    308 
    309 /*
    310  * siginit:
    311  *
    312  *	Initialize signal state for process 0; set to ignore signals that
    313  *	are ignored by default and disable the signal stack.  Locking not
    314  *	required as the system is still cold.
    315  */
    316 void
    317 siginit(struct proc *p)
    318 {
    319 	struct lwp *l;
    320 	struct sigacts *ps;
    321 	int signo, prop;
    322 
    323 	ps = p->p_sigacts;
    324 	sigemptyset(&contsigmask);
    325 	sigemptyset(&stopsigmask);
    326 	sigemptyset(&vforksigmask);
    327 	sigemptyset(&sigcantmask);
    328 	for (signo = 1; signo < NSIG; signo++) {
    329 		prop = sigprop[signo];
    330 		if (prop & SA_CONT)
    331 			sigaddset(&contsigmask, signo);
    332 		if (prop & SA_STOP)
    333 			sigaddset(&stopsigmask, signo);
    334 		if (prop & SA_STOP && signo != SIGSTOP)
    335 			sigaddset(&vforksigmask, signo);
    336 		if (prop & SA_CANTMASK)
    337 			sigaddset(&sigcantmask, signo);
    338 		if (prop & SA_IGNORE && signo != SIGCONT)
    339 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    340 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    341 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    342 	}
    343 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    344 	p->p_sflag &= ~PS_NOCLDSTOP;
    345 
    346 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    347 	sigemptyset(&p->p_sigpend.sp_set);
    348 
    349 	/*
    350 	 * Reset per LWP state.
    351 	 */
    352 	l = LIST_FIRST(&p->p_lwps);
    353 	l->l_sigwaited = NULL;
    354 	l->l_sigstk = SS_INIT;
    355 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    356 	sigemptyset(&l->l_sigpend.sp_set);
    357 
    358 	/* One reference. */
    359 	ps->sa_refcnt = 1;
    360 }
    361 
    362 /*
    363  * execsigs:
    364  *
    365  *	Reset signals for an exec of the specified process.
    366  */
    367 void
    368 execsigs(struct proc *p)
    369 {
    370 	struct sigacts *ps;
    371 	struct lwp *l;
    372 	int signo, prop;
    373 	sigset_t tset;
    374 	ksiginfoq_t kq;
    375 
    376 	KASSERT(p->p_nlwps == 1);
    377 
    378 	sigactsunshare(p);
    379 	ps = p->p_sigacts;
    380 
    381 	/*
    382 	 * Reset caught signals.  Held signals remain held through
    383 	 * l->l_sigmask (unless they were caught, and are now ignored
    384 	 * by default).
    385 	 *
    386 	 * No need to lock yet, the process has only one LWP and
    387 	 * at this point the sigacts are private to the process.
    388 	 */
    389 	sigemptyset(&tset);
    390 	for (signo = 1; signo < NSIG; signo++) {
    391 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    392 			prop = sigprop[signo];
    393 			if (prop & SA_IGNORE) {
    394 				if ((prop & SA_CONT) == 0)
    395 					sigaddset(&p->p_sigctx.ps_sigignore,
    396 					    signo);
    397 				sigaddset(&tset, signo);
    398 			}
    399 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    400 		}
    401 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    402 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    403 	}
    404 	ksiginfo_queue_init(&kq);
    405 
    406 	mutex_enter(p->p_lock);
    407 	sigclearall(p, &tset, &kq);
    408 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    409 
    410 	/*
    411 	 * Reset no zombies if child dies flag as Solaris does.
    412 	 */
    413 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    414 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    415 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    416 
    417 	/*
    418 	 * Reset per-LWP state.
    419 	 */
    420 	l = LIST_FIRST(&p->p_lwps);
    421 	l->l_sigwaited = NULL;
    422 	l->l_sigstk = SS_INIT;
    423 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    424 	sigemptyset(&l->l_sigpend.sp_set);
    425 	mutex_exit(p->p_lock);
    426 
    427 	ksiginfo_queue_drain(&kq);
    428 }
    429 
    430 /*
    431  * ksiginfo_exechook:
    432  *
    433  *	Free all pending ksiginfo entries from a process on exec.
    434  *	Additionally, drain any unused ksiginfo structures in the
    435  *	system back to the pool.
    436  *
    437  *	XXX This should not be a hook, every process has signals.
    438  */
    439 static void
    440 ksiginfo_exechook(struct proc *p, void *v)
    441 {
    442 	ksiginfoq_t kq;
    443 
    444 	ksiginfo_queue_init(&kq);
    445 
    446 	mutex_enter(p->p_lock);
    447 	sigclearall(p, NULL, &kq);
    448 	mutex_exit(p->p_lock);
    449 
    450 	ksiginfo_queue_drain(&kq);
    451 }
    452 
    453 /*
    454  * ksiginfo_alloc:
    455  *
    456  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    457  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    458  *	has not been queued somewhere, then just return it.  Additionally,
    459  *	if the existing ksiginfo_t does not contain any information beyond
    460  *	the signal number, then just return it.
    461  */
    462 ksiginfo_t *
    463 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    464 {
    465 	ksiginfo_t *kp;
    466 
    467 	if (ok != NULL) {
    468 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    469 		    KSI_FROMPOOL)
    470 			return ok;
    471 		if (KSI_EMPTY_P(ok))
    472 			return ok;
    473 	}
    474 
    475 	kp = pool_cache_get(ksiginfo_cache, flags);
    476 	if (kp == NULL) {
    477 #ifdef DIAGNOSTIC
    478 		printf("Out of memory allocating ksiginfo for pid %d\n",
    479 		    p->p_pid);
    480 #endif
    481 		return NULL;
    482 	}
    483 
    484 	if (ok != NULL) {
    485 		memcpy(kp, ok, sizeof(*kp));
    486 		kp->ksi_flags &= ~KSI_QUEUED;
    487 	} else
    488 		KSI_INIT_EMPTY(kp);
    489 
    490 	kp->ksi_flags |= KSI_FROMPOOL;
    491 
    492 	return kp;
    493 }
    494 
    495 /*
    496  * ksiginfo_free:
    497  *
    498  *	If the given ksiginfo_t is from the pool and has not been queued,
    499  *	then free it.
    500  */
    501 void
    502 ksiginfo_free(ksiginfo_t *kp)
    503 {
    504 
    505 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    506 		return;
    507 	pool_cache_put(ksiginfo_cache, kp);
    508 }
    509 
    510 /*
    511  * ksiginfo_queue_drain:
    512  *
    513  *	Drain a non-empty ksiginfo_t queue.
    514  */
    515 void
    516 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    517 {
    518 	ksiginfo_t *ksi;
    519 
    520 	KASSERT(!TAILQ_EMPTY(kq));
    521 
    522 	while (!TAILQ_EMPTY(kq)) {
    523 		ksi = TAILQ_FIRST(kq);
    524 		TAILQ_REMOVE(kq, ksi, ksi_list);
    525 		pool_cache_put(ksiginfo_cache, ksi);
    526 	}
    527 }
    528 
    529 static int
    530 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    531 {
    532 	ksiginfo_t *ksi, *nksi;
    533 
    534 	if (sp == NULL)
    535 		goto out;
    536 
    537 	/* Find siginfo and copy it out. */
    538 	int count = 0;
    539 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    540 		if (ksi->ksi_signo != signo)
    541 			continue;
    542 		if (count++ > 0) /* Only remove the first, count all of them */
    543 			continue;
    544 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    545 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    546 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    547 		ksi->ksi_flags &= ~KSI_QUEUED;
    548 		if (out != NULL) {
    549 			memcpy(out, ksi, sizeof(*out));
    550 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    551 		}
    552 		ksiginfo_free(ksi);
    553 	}
    554 	if (count)
    555 		return count;
    556 
    557 out:
    558 	/* If there is no siginfo, then manufacture it. */
    559 	if (out != NULL) {
    560 		KSI_INIT(out);
    561 		out->ksi_info._signo = signo;
    562 		out->ksi_info._code = SI_NOINFO;
    563 	}
    564 	return 0;
    565 }
    566 
    567 /*
    568  * sigget:
    569  *
    570  *	Fetch the first pending signal from a set.  Optionally, also fetch
    571  *	or manufacture a ksiginfo element.  Returns the number of the first
    572  *	pending signal, or zero.
    573  */
    574 int
    575 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    576 {
    577 	sigset_t tset;
    578 	int count;
    579 
    580 	/* If there's no pending set, the signal is from the debugger. */
    581 	if (sp == NULL)
    582 		goto out;
    583 
    584 	/* Construct mask from signo, and 'mask'. */
    585 	if (signo == 0) {
    586 		if (mask != NULL) {
    587 			tset = *mask;
    588 			__sigandset(&sp->sp_set, &tset);
    589 		} else
    590 			tset = sp->sp_set;
    591 
    592 		/* If there are no signals pending - return. */
    593 		if ((signo = firstsig(&tset)) == 0)
    594 			goto out;
    595 	} else {
    596 		KASSERT(sigismember(&sp->sp_set, signo));
    597 	}
    598 
    599 	sigdelset(&sp->sp_set, signo);
    600 out:
    601 	count = siggetinfo(sp, out, signo);
    602 	if (count > 1)
    603 		sigaddset(&sp->sp_set, signo);
    604 	return signo;
    605 }
    606 
    607 /*
    608  * sigput:
    609  *
    610  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    611  */
    612 static int
    613 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    614 {
    615 	ksiginfo_t *kp;
    616 
    617 	KASSERT(mutex_owned(p->p_lock));
    618 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    619 
    620 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    621 
    622 	/*
    623 	 * If there is no siginfo, we are done.
    624 	 */
    625 	if (KSI_EMPTY_P(ksi))
    626 		return 0;
    627 
    628 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    629 
    630 	size_t count = 0;
    631 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    632 		count++;
    633 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    634 			continue;
    635 		if (kp->ksi_signo == ksi->ksi_signo) {
    636 			KSI_COPY(ksi, kp);
    637 			kp->ksi_flags |= KSI_QUEUED;
    638 			return 0;
    639 		}
    640 	}
    641 
    642 	if (count >= SIGQUEUE_MAX) {
    643 #ifdef DIAGNOSTIC
    644 		printf("%s(%d): Signal queue is full signal=%d\n",
    645 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    646 #endif
    647 		return EAGAIN;
    648 	}
    649 	ksi->ksi_flags |= KSI_QUEUED;
    650 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    651 
    652 	return 0;
    653 }
    654 
    655 /*
    656  * sigclear:
    657  *
    658  *	Clear all pending signals in the specified set.
    659  */
    660 void
    661 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    662 {
    663 	ksiginfo_t *ksi, *next;
    664 
    665 	if (mask == NULL)
    666 		sigemptyset(&sp->sp_set);
    667 	else
    668 		sigminusset(mask, &sp->sp_set);
    669 
    670 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    671 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    672 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    673 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    674 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    675 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    676 		}
    677 	}
    678 }
    679 
    680 /*
    681  * sigclearall:
    682  *
    683  *	Clear all pending signals in the specified set from a process and
    684  *	its LWPs.
    685  */
    686 void
    687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    688 {
    689 	struct lwp *l;
    690 
    691 	KASSERT(mutex_owned(p->p_lock));
    692 
    693 	sigclear(&p->p_sigpend, mask, kq);
    694 
    695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    696 		sigclear(&l->l_sigpend, mask, kq);
    697 	}
    698 }
    699 
    700 /*
    701  * sigispending:
    702  *
    703  *	Return the first signal number if there are pending signals for the
    704  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    705  *	and that the signal has been posted to the appopriate queue before
    706  *	LW_PENDSIG is set.
    707  */
    708 int
    709 sigispending(struct lwp *l, int signo)
    710 {
    711 	struct proc *p = l->l_proc;
    712 	sigset_t tset;
    713 
    714 	membar_consumer();
    715 
    716 	tset = l->l_sigpend.sp_set;
    717 	sigplusset(&p->p_sigpend.sp_set, &tset);
    718 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    719 	sigminusset(&l->l_sigmask, &tset);
    720 
    721 	if (signo == 0) {
    722 		return firstsig(&tset);
    723 	}
    724 	return sigismember(&tset, signo) ? signo : 0;
    725 }
    726 
    727 void
    728 getucontext(struct lwp *l, ucontext_t *ucp)
    729 {
    730 	struct proc *p = l->l_proc;
    731 
    732 	KASSERT(mutex_owned(p->p_lock));
    733 
    734 	ucp->uc_flags = 0;
    735 	ucp->uc_link = l->l_ctxlink;
    736 	ucp->uc_sigmask = l->l_sigmask;
    737 	ucp->uc_flags |= _UC_SIGMASK;
    738 
    739 	/*
    740 	 * The (unsupplied) definition of the `current execution stack'
    741 	 * in the System V Interface Definition appears to allow returning
    742 	 * the main context stack.
    743 	 */
    744 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    745 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    746 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    747 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    748 	} else {
    749 		/* Simply copy alternate signal execution stack. */
    750 		ucp->uc_stack = l->l_sigstk;
    751 	}
    752 	ucp->uc_flags |= _UC_STACK;
    753 	mutex_exit(p->p_lock);
    754 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    755 	mutex_enter(p->p_lock);
    756 }
    757 
    758 int
    759 setucontext(struct lwp *l, const ucontext_t *ucp)
    760 {
    761 	struct proc *p = l->l_proc;
    762 	int error;
    763 
    764 	KASSERT(mutex_owned(p->p_lock));
    765 
    766 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    767 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    768 		if (error != 0)
    769 			return error;
    770 	}
    771 
    772 	mutex_exit(p->p_lock);
    773 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    774 	mutex_enter(p->p_lock);
    775 	if (error != 0)
    776 		return (error);
    777 
    778 	l->l_ctxlink = ucp->uc_link;
    779 
    780 	/*
    781 	 * If there was stack information, update whether or not we are
    782 	 * still running on an alternate signal stack.
    783 	 */
    784 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    785 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    786 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    787 		else
    788 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    789 	}
    790 
    791 	return 0;
    792 }
    793 
    794 /*
    795  * killpg1: common code for kill process group/broadcast kill.
    796  */
    797 int
    798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    799 {
    800 	struct proc	*p, *cp;
    801 	kauth_cred_t	pc;
    802 	struct pgrp	*pgrp;
    803 	int		nfound;
    804 	int		signo = ksi->ksi_signo;
    805 
    806 	cp = l->l_proc;
    807 	pc = l->l_cred;
    808 	nfound = 0;
    809 
    810 	mutex_enter(proc_lock);
    811 	if (all) {
    812 		/*
    813 		 * Broadcast.
    814 		 */
    815 		PROCLIST_FOREACH(p, &allproc) {
    816 			if (p->p_pid <= 1 || p == cp ||
    817 			    (p->p_flag & PK_SYSTEM) != 0)
    818 				continue;
    819 			mutex_enter(p->p_lock);
    820 			if (kauth_authorize_process(pc,
    821 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    822 			    NULL) == 0) {
    823 				nfound++;
    824 				if (signo)
    825 					kpsignal2(p, ksi);
    826 			}
    827 			mutex_exit(p->p_lock);
    828 		}
    829 	} else {
    830 		if (pgid == 0)
    831 			/* Zero pgid means send to my process group. */
    832 			pgrp = cp->p_pgrp;
    833 		else {
    834 			pgrp = pgrp_find(pgid);
    835 			if (pgrp == NULL)
    836 				goto out;
    837 		}
    838 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    839 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    840 				continue;
    841 			mutex_enter(p->p_lock);
    842 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    843 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    844 				nfound++;
    845 				if (signo && P_ZOMBIE(p) == 0)
    846 					kpsignal2(p, ksi);
    847 			}
    848 			mutex_exit(p->p_lock);
    849 		}
    850 	}
    851 out:
    852 	mutex_exit(proc_lock);
    853 	return nfound ? 0 : ESRCH;
    854 }
    855 
    856 /*
    857  * Send a signal to a process group.  If checktty is set, limit to members
    858  * which have a controlling terminal.
    859  */
    860 void
    861 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    862 {
    863 	ksiginfo_t ksi;
    864 
    865 	KASSERT(!cpu_intr_p());
    866 	KASSERT(mutex_owned(proc_lock));
    867 
    868 	KSI_INIT_EMPTY(&ksi);
    869 	ksi.ksi_signo = sig;
    870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    871 }
    872 
    873 void
    874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    875 {
    876 	struct proc *p;
    877 
    878 	KASSERT(!cpu_intr_p());
    879 	KASSERT(mutex_owned(proc_lock));
    880 	KASSERT(pgrp != NULL);
    881 
    882 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    883 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    884 			kpsignal(p, ksi, data);
    885 }
    886 
    887 /*
    888  * Send a signal caused by a trap to the current LWP.  If it will be caught
    889  * immediately, deliver it with correct code.  Otherwise, post it normally.
    890  */
    891 void
    892 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    893 {
    894 	struct proc	*p;
    895 	struct sigacts	*ps;
    896 	int signo = ksi->ksi_signo;
    897 	sigset_t *mask;
    898 
    899 	KASSERT(KSI_TRAP_P(ksi));
    900 
    901 	ksi->ksi_lid = l->l_lid;
    902 	p = l->l_proc;
    903 
    904 	KASSERT(!cpu_intr_p());
    905 	mutex_enter(proc_lock);
    906 	mutex_enter(p->p_lock);
    907 	mask = &l->l_sigmask;
    908 	ps = p->p_sigacts;
    909 
    910 	const bool traced = (p->p_slflag & PSL_TRACED) != 0;
    911 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    912 	const bool masked = sigismember(mask, signo);
    913 	if (!traced && caught && !masked) {
    914 		mutex_exit(proc_lock);
    915 		l->l_ru.ru_nsignals++;
    916 		kpsendsig(l, ksi, mask);
    917 		mutex_exit(p->p_lock);
    918 		if (ktrpoint(KTR_PSIG)) {
    919 			if (p->p_emul->e_ktrpsig)
    920 				p->p_emul->e_ktrpsig(signo,
    921 				    SIGACTION_PS(ps, signo).sa_handler,
    922 				    mask, ksi);
    923 			else
    924 				ktrpsig(signo,
    925 				    SIGACTION_PS(ps, signo).sa_handler,
    926 				    mask, ksi);
    927 		}
    928 		return;
    929 	}
    930 
    931 	/*
    932 	 * If the signal is masked or ignored, then unmask it and
    933 	 * reset it to the default action so that the process or
    934 	 * its tracer will be notified.
    935 	 */
    936 	const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
    937 	if (masked || ignored) {
    938 		mutex_enter(&ps->sa_mutex);
    939 		sigdelset(mask, signo);
    940 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    941 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    942 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    943 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    944 		mutex_exit(&ps->sa_mutex);
    945 	}
    946 
    947 	kpsignal2(p, ksi);
    948 	mutex_exit(p->p_lock);
    949 	mutex_exit(proc_lock);
    950 }
    951 
    952 /*
    953  * Fill in signal information and signal the parent for a child status change.
    954  */
    955 void
    956 child_psignal(struct proc *p, int mask)
    957 {
    958 	ksiginfo_t ksi;
    959 	struct proc *q;
    960 	int xsig;
    961 
    962 	KASSERT(mutex_owned(proc_lock));
    963 	KASSERT(mutex_owned(p->p_lock));
    964 
    965 	xsig = p->p_xsig;
    966 
    967 	KSI_INIT(&ksi);
    968 	ksi.ksi_signo = SIGCHLD;
    969 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    970 	ksi.ksi_pid = p->p_pid;
    971 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    972 	ksi.ksi_status = xsig;
    973 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    974 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    975 
    976 	q = p->p_pptr;
    977 
    978 	mutex_exit(p->p_lock);
    979 	mutex_enter(q->p_lock);
    980 
    981 	if ((q->p_sflag & mask) == 0)
    982 		kpsignal2(q, &ksi);
    983 
    984 	mutex_exit(q->p_lock);
    985 	mutex_enter(p->p_lock);
    986 }
    987 
    988 void
    989 psignal(struct proc *p, int signo)
    990 {
    991 	ksiginfo_t ksi;
    992 
    993 	KASSERT(!cpu_intr_p());
    994 	KASSERT(mutex_owned(proc_lock));
    995 
    996 	KSI_INIT_EMPTY(&ksi);
    997 	ksi.ksi_signo = signo;
    998 	mutex_enter(p->p_lock);
    999 	kpsignal2(p, &ksi);
   1000 	mutex_exit(p->p_lock);
   1001 }
   1002 
   1003 void
   1004 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1005 {
   1006 	fdfile_t *ff;
   1007 	file_t *fp;
   1008 	fdtab_t *dt;
   1009 
   1010 	KASSERT(!cpu_intr_p());
   1011 	KASSERT(mutex_owned(proc_lock));
   1012 
   1013 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1014 		size_t fd;
   1015 		filedesc_t *fdp = p->p_fd;
   1016 
   1017 		/* XXXSMP locking */
   1018 		ksi->ksi_fd = -1;
   1019 		dt = fdp->fd_dt;
   1020 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1021 			if ((ff = dt->dt_ff[fd]) == NULL)
   1022 				continue;
   1023 			if ((fp = ff->ff_file) == NULL)
   1024 				continue;
   1025 			if (fp->f_data == data) {
   1026 				ksi->ksi_fd = fd;
   1027 				break;
   1028 			}
   1029 		}
   1030 	}
   1031 	mutex_enter(p->p_lock);
   1032 	kpsignal2(p, ksi);
   1033 	mutex_exit(p->p_lock);
   1034 }
   1035 
   1036 /*
   1037  * sigismasked:
   1038  *
   1039  *	Returns true if signal is ignored or masked for the specified LWP.
   1040  */
   1041 int
   1042 sigismasked(struct lwp *l, int sig)
   1043 {
   1044 	struct proc *p = l->l_proc;
   1045 
   1046 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1047 	    sigismember(&l->l_sigmask, sig);
   1048 }
   1049 
   1050 /*
   1051  * sigpost:
   1052  *
   1053  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1054  *	be able to take the signal.
   1055  */
   1056 static int
   1057 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1058 {
   1059 	int rv, masked;
   1060 	struct proc *p = l->l_proc;
   1061 
   1062 	KASSERT(mutex_owned(p->p_lock));
   1063 
   1064 	/*
   1065 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1066 	 * pending signals.  Don't give it more.
   1067 	 */
   1068 	if (l->l_refcnt == 0)
   1069 		return 0;
   1070 
   1071 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1072 
   1073 	/*
   1074 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1075 	 * is found to take the signal immediately, it should be taken soon.
   1076 	 */
   1077 	lwp_lock(l);
   1078 	l->l_flag |= LW_PENDSIG;
   1079 
   1080 	/*
   1081 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1082 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1083 	 */
   1084 	masked = sigismember(&l->l_sigmask, sig);
   1085 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1086 		lwp_unlock(l);
   1087 		return 0;
   1088 	}
   1089 
   1090 	/*
   1091 	 * If killing the process, make it run fast.
   1092 	 */
   1093 	if (__predict_false((prop & SA_KILL) != 0) &&
   1094 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1095 		KASSERT(l->l_class == SCHED_OTHER);
   1096 		lwp_changepri(l, MAXPRI_USER);
   1097 	}
   1098 
   1099 	/*
   1100 	 * If the LWP is running or on a run queue, then we win.  If it's
   1101 	 * sleeping interruptably, wake it and make it take the signal.  If
   1102 	 * the sleep isn't interruptable, then the chances are it will get
   1103 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1104 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1105 	 * for later; otherwise punt.
   1106 	 */
   1107 	rv = 0;
   1108 
   1109 	switch (l->l_stat) {
   1110 	case LSRUN:
   1111 	case LSONPROC:
   1112 		lwp_need_userret(l);
   1113 		rv = 1;
   1114 		break;
   1115 
   1116 	case LSSLEEP:
   1117 		if ((l->l_flag & LW_SINTR) != 0) {
   1118 			/* setrunnable() will release the lock. */
   1119 			setrunnable(l);
   1120 			return 1;
   1121 		}
   1122 		break;
   1123 
   1124 	case LSSUSPENDED:
   1125 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1126 			/* lwp_continue() will release the lock. */
   1127 			lwp_continue(l);
   1128 			return 1;
   1129 		}
   1130 		break;
   1131 
   1132 	case LSSTOP:
   1133 		if ((prop & SA_STOP) != 0)
   1134 			break;
   1135 
   1136 		/*
   1137 		 * If the LWP is stopped and we are sending a continue
   1138 		 * signal, then start it again.
   1139 		 */
   1140 		if ((prop & SA_CONT) != 0) {
   1141 			if (l->l_wchan != NULL) {
   1142 				l->l_stat = LSSLEEP;
   1143 				p->p_nrlwps++;
   1144 				rv = 1;
   1145 				break;
   1146 			}
   1147 			/* setrunnable() will release the lock. */
   1148 			setrunnable(l);
   1149 			return 1;
   1150 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1151 			/* setrunnable() will release the lock. */
   1152 			setrunnable(l);
   1153 			return 1;
   1154 		}
   1155 		break;
   1156 
   1157 	default:
   1158 		break;
   1159 	}
   1160 
   1161 	lwp_unlock(l);
   1162 	return rv;
   1163 }
   1164 
   1165 /*
   1166  * Notify an LWP that it has a pending signal.
   1167  */
   1168 void
   1169 signotify(struct lwp *l)
   1170 {
   1171 	KASSERT(lwp_locked(l, NULL));
   1172 
   1173 	l->l_flag |= LW_PENDSIG;
   1174 	lwp_need_userret(l);
   1175 }
   1176 
   1177 /*
   1178  * Find an LWP within process p that is waiting on signal ksi, and hand
   1179  * it on.
   1180  */
   1181 static int
   1182 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1183 {
   1184 	struct lwp *l;
   1185 	int signo;
   1186 
   1187 	KASSERT(mutex_owned(p->p_lock));
   1188 
   1189 	signo = ksi->ksi_signo;
   1190 
   1191 	if (ksi->ksi_lid != 0) {
   1192 		/*
   1193 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1194 		 * it's interested.
   1195 		 */
   1196 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1197 			return 0;
   1198 		if (l->l_sigwaited == NULL ||
   1199 		    !sigismember(&l->l_sigwaitset, signo))
   1200 			return 0;
   1201 	} else {
   1202 		/*
   1203 		 * Look for any LWP that may be interested.
   1204 		 */
   1205 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1206 			KASSERT(l->l_sigwaited != NULL);
   1207 			if (sigismember(&l->l_sigwaitset, signo))
   1208 				break;
   1209 		}
   1210 	}
   1211 
   1212 	if (l != NULL) {
   1213 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1214 		l->l_sigwaited = NULL;
   1215 		LIST_REMOVE(l, l_sigwaiter);
   1216 		cv_signal(&l->l_sigcv);
   1217 		return 1;
   1218 	}
   1219 
   1220 	return 0;
   1221 }
   1222 
   1223 /*
   1224  * Send the signal to the process.  If the signal has an action, the action
   1225  * is usually performed by the target process rather than the caller; we add
   1226  * the signal to the set of pending signals for the process.
   1227  *
   1228  * Exceptions:
   1229  *   o When a stop signal is sent to a sleeping process that takes the
   1230  *     default action, the process is stopped without awakening it.
   1231  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1232  *     regardless of the signal action (eg, blocked or ignored).
   1233  *
   1234  * Other ignored signals are discarded immediately.
   1235  */
   1236 int
   1237 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1238 {
   1239 	int prop, signo = ksi->ksi_signo;
   1240 	struct lwp *l = NULL;
   1241 	ksiginfo_t *kp;
   1242 	lwpid_t lid;
   1243 	sig_t action;
   1244 	bool toall, debtrap = false;
   1245 	int error = 0;
   1246 
   1247 	KASSERT(!cpu_intr_p());
   1248 	KASSERT(mutex_owned(proc_lock));
   1249 	KASSERT(mutex_owned(p->p_lock));
   1250 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1251 	KASSERT(signo > 0 && signo < NSIG);
   1252 
   1253 	/*
   1254 	 * If the process is being created by fork, is a zombie or is
   1255 	 * exiting, then just drop the signal here and bail out.
   1256 	 */
   1257 	if (p->p_stat == SIDL && signo == SIGTRAP
   1258 	    && (p->p_slflag & PSL_TRACED)) {
   1259 		/* allow an initial SIGTRAP for traced processes */
   1260 		debtrap = true;
   1261 	} else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
   1262 		return 0;
   1263 	}
   1264 
   1265 	/* XXX for core dump/debugger */
   1266 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1267 	p->p_sigctx.ps_info = ksi->ksi_info;
   1268 
   1269 	/*
   1270 	 * Notify any interested parties of the signal.
   1271 	 */
   1272 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1273 
   1274 	/*
   1275 	 * Some signals including SIGKILL must act on the entire process.
   1276 	 */
   1277 	kp = NULL;
   1278 	prop = sigprop[signo];
   1279 	toall = ((prop & SA_TOALL) != 0);
   1280 	lid = toall ? 0 : ksi->ksi_lid;
   1281 
   1282 	/*
   1283 	 * If proc is traced, always give parent a chance.
   1284 	 */
   1285 	if (p->p_slflag & PSL_TRACED) {
   1286 		action = SIG_DFL;
   1287 
   1288 		if (lid == 0) {
   1289 			/*
   1290 			 * If the process is being traced and the signal
   1291 			 * is being caught, make sure to save any ksiginfo.
   1292 			 */
   1293 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1294 				goto discard;
   1295 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1296 				goto out;
   1297 		}
   1298 	} else {
   1299 
   1300 		/*
   1301 		 * If the signal is being ignored, then drop it.  Note: we
   1302 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1303 		 * SIG_IGN, action will be SIG_DFL here.
   1304 		 */
   1305 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1306 			goto discard;
   1307 
   1308 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1309 			action = SIG_CATCH;
   1310 		else {
   1311 			action = SIG_DFL;
   1312 
   1313 			/*
   1314 			 * If sending a tty stop signal to a member of an
   1315 			 * orphaned process group, discard the signal here if
   1316 			 * the action is default; don't stop the process below
   1317 			 * if sleeping, and don't clear any pending SIGCONT.
   1318 			 */
   1319 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1320 				goto discard;
   1321 
   1322 			if (prop & SA_KILL && p->p_nice > NZERO)
   1323 				p->p_nice = NZERO;
   1324 		}
   1325 	}
   1326 
   1327 	/*
   1328 	 * If stopping or continuing a process, discard any pending
   1329 	 * signals that would do the inverse.
   1330 	 */
   1331 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1332 		ksiginfoq_t kq;
   1333 
   1334 		ksiginfo_queue_init(&kq);
   1335 		if ((prop & SA_CONT) != 0)
   1336 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1337 		if ((prop & SA_STOP) != 0)
   1338 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1339 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1340 	}
   1341 
   1342 	/*
   1343 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1344 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1345 	 * the signal info.  The signal won't be processed further here.
   1346 	 */
   1347 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1348 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1349 	    sigunwait(p, ksi))
   1350 		goto discard;
   1351 
   1352 	/*
   1353 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1354 	 * here.
   1355 	 */
   1356 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1357 		goto discard;
   1358 
   1359 	/*
   1360 	 * LWP private signals are easy - just find the LWP and post
   1361 	 * the signal to it.
   1362 	 */
   1363 	if (lid != 0) {
   1364 		if (__predict_false(debtrap)) {
   1365 			l = LIST_FIRST(&p->p_lwps);
   1366 			if (l->l_lid != lid)
   1367 				l = NULL;
   1368 		} else {
   1369 			l = lwp_find(p, lid);
   1370 		}
   1371 		if (l != NULL) {
   1372 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1373 				goto out;
   1374 			membar_producer();
   1375 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1376 				signo = -1;
   1377 		}
   1378 		goto out;
   1379 	}
   1380 
   1381 	/*
   1382 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1383 	 * or for an SA process.
   1384 	 */
   1385 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1386 		if ((p->p_slflag & PSL_TRACED) != 0)
   1387 			goto deliver;
   1388 
   1389 		/*
   1390 		 * If SIGCONT is default (or ignored) and process is
   1391 		 * asleep, we are finished; the process should not
   1392 		 * be awakened.
   1393 		 */
   1394 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1395 			goto out;
   1396 	} else {
   1397 		/*
   1398 		 * Process is stopped or stopping.
   1399 		 * - If traced, then no action is needed, unless killing.
   1400 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1401 		 */
   1402 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1403 			goto out;
   1404 		}
   1405 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1406 			/*
   1407 			 * Re-adjust p_nstopchild if the process was
   1408 			 * stopped but not yet collected by its parent.
   1409 			 */
   1410 			if (p->p_stat == SSTOP && !p->p_waited)
   1411 				p->p_pptr->p_nstopchild--;
   1412 			p->p_stat = SACTIVE;
   1413 			p->p_sflag &= ~PS_STOPPING;
   1414 			if (p->p_slflag & PSL_TRACED) {
   1415 				KASSERT(signo == SIGKILL);
   1416 				goto deliver;
   1417 			}
   1418 			/*
   1419 			 * Do not make signal pending if SIGCONT is default.
   1420 			 *
   1421 			 * If the process catches SIGCONT, let it handle the
   1422 			 * signal itself (if waiting on event - process runs,
   1423 			 * otherwise continues sleeping).
   1424 			 */
   1425 			if ((prop & SA_CONT) != 0) {
   1426 				p->p_xsig = SIGCONT;
   1427 				p->p_sflag |= PS_CONTINUED;
   1428 				child_psignal(p, 0);
   1429 				if (action == SIG_DFL) {
   1430 					KASSERT(signo != SIGKILL);
   1431 					goto deliver;
   1432 				}
   1433 			}
   1434 		} else if ((prop & SA_STOP) != 0) {
   1435 			/*
   1436 			 * Already stopped, don't need to stop again.
   1437 			 * (If we did the shell could get confused.)
   1438 			 */
   1439 			goto out;
   1440 		}
   1441 	}
   1442 	/*
   1443 	 * Make signal pending.
   1444 	 */
   1445 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1446 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1447 		goto out;
   1448 deliver:
   1449 	/*
   1450 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1451 	 * visible on the per process list (for sigispending()).  This
   1452 	 * is unlikely to be needed in practice, but...
   1453 	 */
   1454 	membar_producer();
   1455 
   1456 	/*
   1457 	 * Try to find an LWP that can take the signal.
   1458 	 */
   1459 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1460 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1461 			break;
   1462 	}
   1463 	signo = -1;
   1464 out:
   1465 	/*
   1466 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1467 	 * with locks held.  The caller should take care of this.
   1468 	 */
   1469 	ksiginfo_free(kp);
   1470 	if (signo == -1)
   1471 		return error;
   1472 discard:
   1473 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1474 	return error;
   1475 }
   1476 
   1477 void
   1478 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1479 {
   1480 	struct proc *p = l->l_proc;
   1481 
   1482 	KASSERT(mutex_owned(p->p_lock));
   1483 	(*p->p_emul->e_sendsig)(ksi, mask);
   1484 }
   1485 
   1486 /*
   1487  * Stop any LWPs sleeping interruptably.
   1488  */
   1489 static void
   1490 proc_stop_lwps(struct proc *p)
   1491 {
   1492 	struct lwp *l;
   1493 
   1494 	KASSERT(mutex_owned(p->p_lock));
   1495 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1496 
   1497 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1498 		lwp_lock(l);
   1499 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1500 			l->l_stat = LSSTOP;
   1501 			p->p_nrlwps--;
   1502 		}
   1503 		lwp_unlock(l);
   1504 	}
   1505 }
   1506 
   1507 /*
   1508  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1509  *
   1510  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1511  */
   1512 static void
   1513 proc_stop_done(struct proc *p, int ppmask)
   1514 {
   1515 
   1516 	KASSERT(mutex_owned(proc_lock));
   1517 	KASSERT(mutex_owned(p->p_lock));
   1518 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1519 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1520 
   1521 	p->p_sflag &= ~PS_STOPPING;
   1522 	p->p_stat = SSTOP;
   1523 	p->p_waited = 0;
   1524 	p->p_pptr->p_nstopchild++;
   1525 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1526 		/* child_psignal drops p_lock briefly. */
   1527 		child_psignal(p, ppmask);
   1528 		cv_broadcast(&p->p_pptr->p_waitcv);
   1529 	}
   1530 }
   1531 
   1532 /*
   1533  * Stop the current process and switch away when being stopped or traced.
   1534  */
   1535 void
   1536 sigswitch(int ppmask, int signo, bool relock)
   1537 {
   1538 	struct lwp *l = curlwp;
   1539 	struct proc *p = l->l_proc;
   1540 	int biglocks;
   1541 
   1542 	KASSERT(mutex_owned(p->p_lock));
   1543 	KASSERT(l->l_stat == LSONPROC);
   1544 	KASSERT(p->p_nrlwps > 0);
   1545 
   1546 	/*
   1547 	 * On entry we know that the process needs to stop.  If it's
   1548 	 * the result of a 'sideways' stop signal that has been sourced
   1549 	 * through issignal(), then stop other LWPs in the process too.
   1550 	 */
   1551 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1552 		KASSERT(signo != 0);
   1553 		proc_stop(p, signo);
   1554 		KASSERT(p->p_nrlwps > 0);
   1555 	}
   1556 
   1557 	/*
   1558 	 * If we are the last live LWP, and the stop was a result of
   1559 	 * a new signal, then signal the parent.
   1560 	 */
   1561 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1562 		if (relock && !mutex_tryenter(proc_lock)) {
   1563 			mutex_exit(p->p_lock);
   1564 			mutex_enter(proc_lock);
   1565 			mutex_enter(p->p_lock);
   1566 		}
   1567 
   1568 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1569 			/*
   1570 			 * Note that proc_stop_done() can drop
   1571 			 * p->p_lock briefly.
   1572 			 */
   1573 			proc_stop_done(p, ppmask);
   1574 		}
   1575 
   1576 		mutex_exit(proc_lock);
   1577 	}
   1578 
   1579 	/*
   1580 	 * Unlock and switch away.
   1581 	 */
   1582 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1583 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1584 		p->p_nrlwps--;
   1585 		lwp_lock(l);
   1586 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1587 		l->l_stat = LSSTOP;
   1588 		lwp_unlock(l);
   1589 	}
   1590 
   1591 	mutex_exit(p->p_lock);
   1592 	lwp_lock(l);
   1593 	mi_switch(l);
   1594 	KERNEL_LOCK(biglocks, l);
   1595 	mutex_enter(p->p_lock);
   1596 }
   1597 
   1598 /*
   1599  * Check for a signal from the debugger.
   1600  */
   1601 static int
   1602 sigchecktrace(void)
   1603 {
   1604 	struct lwp *l = curlwp;
   1605 	struct proc *p = l->l_proc;
   1606 	int signo;
   1607 
   1608 	KASSERT(mutex_owned(p->p_lock));
   1609 
   1610 	/* If there's a pending SIGKILL, process it immediately. */
   1611 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1612 		return 0;
   1613 
   1614 	/*
   1615 	 * If we are no longer being traced, or the parent didn't
   1616 	 * give us a signal, or we're stopping, look for more signals.
   1617 	 */
   1618 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1619 	    (p->p_sflag & PS_STOPPING) != 0)
   1620 		return 0;
   1621 
   1622 	/*
   1623 	 * If the new signal is being masked, look for other signals.
   1624 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1625 	 */
   1626 	signo = p->p_xsig;
   1627 	p->p_xsig = 0;
   1628 	if (sigismember(&l->l_sigmask, signo)) {
   1629 		signo = 0;
   1630 	}
   1631 	return signo;
   1632 }
   1633 
   1634 /*
   1635  * If the current process has received a signal (should be caught or cause
   1636  * termination, should interrupt current syscall), return the signal number.
   1637  *
   1638  * Stop signals with default action are processed immediately, then cleared;
   1639  * they aren't returned.  This is checked after each entry to the system for
   1640  * a syscall or trap.
   1641  *
   1642  * We will also return -1 if the process is exiting and the current LWP must
   1643  * follow suit.
   1644  */
   1645 int
   1646 issignal(struct lwp *l)
   1647 {
   1648 	struct proc *p;
   1649 	int signo, prop;
   1650 	sigpend_t *sp;
   1651 	sigset_t ss;
   1652 
   1653 	p = l->l_proc;
   1654 	sp = NULL;
   1655 	signo = 0;
   1656 
   1657 	KASSERT(p == curproc);
   1658 	KASSERT(mutex_owned(p->p_lock));
   1659 
   1660 	for (;;) {
   1661 		/* Discard any signals that we have decided not to take. */
   1662 		if (signo != 0) {
   1663 			(void)sigget(sp, NULL, signo, NULL);
   1664 		}
   1665 
   1666 		/*
   1667 		 * If the process is stopped/stopping, then stop ourselves
   1668 		 * now that we're on the kernel/userspace boundary.  When
   1669 		 * we awaken, check for a signal from the debugger.
   1670 		 */
   1671 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1672 			sigswitch(PS_NOCLDSTOP, 0, true);
   1673 			signo = sigchecktrace();
   1674 		} else
   1675 			signo = 0;
   1676 
   1677 		/* Signals from the debugger are "out of band". */
   1678 		sp = NULL;
   1679 
   1680 		/*
   1681 		 * If the debugger didn't provide a signal, find a pending
   1682 		 * signal from our set.  Check per-LWP signals first, and
   1683 		 * then per-process.
   1684 		 */
   1685 		if (signo == 0) {
   1686 			sp = &l->l_sigpend;
   1687 			ss = sp->sp_set;
   1688 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1689 				sigminusset(&vforksigmask, &ss);
   1690 			sigminusset(&l->l_sigmask, &ss);
   1691 
   1692 			if ((signo = firstsig(&ss)) == 0) {
   1693 				sp = &p->p_sigpend;
   1694 				ss = sp->sp_set;
   1695 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1696 					sigminusset(&vforksigmask, &ss);
   1697 				sigminusset(&l->l_sigmask, &ss);
   1698 
   1699 				if ((signo = firstsig(&ss)) == 0) {
   1700 					/*
   1701 					 * No signal pending - clear the
   1702 					 * indicator and bail out.
   1703 					 */
   1704 					lwp_lock(l);
   1705 					l->l_flag &= ~LW_PENDSIG;
   1706 					lwp_unlock(l);
   1707 					sp = NULL;
   1708 					break;
   1709 				}
   1710 			}
   1711 		}
   1712 
   1713 		/*
   1714 		 * We should see pending but ignored signals only if
   1715 		 * we are being traced.
   1716 		 */
   1717 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1718 		    (p->p_slflag & PSL_TRACED) == 0) {
   1719 			/* Discard the signal. */
   1720 			continue;
   1721 		}
   1722 
   1723 		/*
   1724 		 * If traced, always stop, and stay stopped until released
   1725 		 * by the debugger.  If the our parent is our debugger waiting
   1726 		 * for us and we vforked, don't hang as we could deadlock.
   1727 		 */
   1728 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
   1729 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1730 		     (p->p_pptr == p->p_opptr))) {
   1731 			/*
   1732 			 * Take the signal, but don't remove it from the
   1733 			 * siginfo queue, because the debugger can send
   1734 			 * it later.
   1735 			 */
   1736 			if (sp)
   1737 				sigdelset(&sp->sp_set, signo);
   1738 			p->p_xsig = signo;
   1739 
   1740 			/* Handling of signal trace */
   1741 			sigswitch(0, signo, true);
   1742 
   1743 			/* Check for a signal from the debugger. */
   1744 			if ((signo = sigchecktrace()) == 0)
   1745 				continue;
   1746 
   1747 			/* Signals from the debugger are "out of band". */
   1748 			sp = NULL;
   1749 		}
   1750 
   1751 		prop = sigprop[signo];
   1752 
   1753 		/*
   1754 		 * Decide whether the signal should be returned.
   1755 		 */
   1756 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1757 		case (long)SIG_DFL:
   1758 			/*
   1759 			 * Don't take default actions on system processes.
   1760 			 */
   1761 			if (p->p_pid <= 1) {
   1762 #ifdef DIAGNOSTIC
   1763 				/*
   1764 				 * Are you sure you want to ignore SIGSEGV
   1765 				 * in init? XXX
   1766 				 */
   1767 				printf_nolog("Process (pid %d) got sig %d\n",
   1768 				    p->p_pid, signo);
   1769 #endif
   1770 				continue;
   1771 			}
   1772 
   1773 			/*
   1774 			 * If there is a pending stop signal to process with
   1775 			 * default action, stop here, then clear the signal.
   1776 			 * However, if process is member of an orphaned
   1777 			 * process group, ignore tty stop signals.
   1778 			 */
   1779 			if (prop & SA_STOP) {
   1780 				/*
   1781 				 * XXX Don't hold proc_lock for p_lflag,
   1782 				 * but it's not a big deal.
   1783 				 */
   1784 				if (p->p_slflag & PSL_TRACED ||
   1785 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1786 				    prop & SA_TTYSTOP)) {
   1787 					/* Ignore the signal. */
   1788 					continue;
   1789 				}
   1790 				/* Take the signal. */
   1791 				(void)sigget(sp, NULL, signo, NULL);
   1792 				p->p_xsig = signo;
   1793 				p->p_sflag &= ~PS_CONTINUED;
   1794 				signo = 0;
   1795 				sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
   1796 			} else if (prop & SA_IGNORE) {
   1797 				/*
   1798 				 * Except for SIGCONT, shouldn't get here.
   1799 				 * Default action is to ignore; drop it.
   1800 				 */
   1801 				continue;
   1802 			}
   1803 			break;
   1804 
   1805 		case (long)SIG_IGN:
   1806 #ifdef DEBUG_ISSIGNAL
   1807 			/*
   1808 			 * Masking above should prevent us ever trying
   1809 			 * to take action on an ignored signal other
   1810 			 * than SIGCONT, unless process is traced.
   1811 			 */
   1812 			if ((prop & SA_CONT) == 0 &&
   1813 			    (p->p_slflag & PSL_TRACED) == 0)
   1814 				printf_nolog("issignal\n");
   1815 #endif
   1816 			continue;
   1817 
   1818 		default:
   1819 			/*
   1820 			 * This signal has an action, let postsig() process
   1821 			 * it.
   1822 			 */
   1823 			break;
   1824 		}
   1825 
   1826 		break;
   1827 	}
   1828 
   1829 	l->l_sigpendset = sp;
   1830 	return signo;
   1831 }
   1832 
   1833 /*
   1834  * Take the action for the specified signal
   1835  * from the current set of pending signals.
   1836  */
   1837 void
   1838 postsig(int signo)
   1839 {
   1840 	struct lwp	*l;
   1841 	struct proc	*p;
   1842 	struct sigacts	*ps;
   1843 	sig_t		action;
   1844 	sigset_t	*returnmask;
   1845 	ksiginfo_t	ksi;
   1846 
   1847 	l = curlwp;
   1848 	p = l->l_proc;
   1849 	ps = p->p_sigacts;
   1850 
   1851 	KASSERT(mutex_owned(p->p_lock));
   1852 	KASSERT(signo > 0);
   1853 
   1854 	/*
   1855 	 * Set the new mask value and also defer further occurrences of this
   1856 	 * signal.
   1857 	 *
   1858 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1859 	 * not of interest, but rather the mask from before the sigsuspend is
   1860 	 * what we want restored after the signal processing is completed.
   1861 	 */
   1862 	if (l->l_sigrestore) {
   1863 		returnmask = &l->l_sigoldmask;
   1864 		l->l_sigrestore = 0;
   1865 	} else
   1866 		returnmask = &l->l_sigmask;
   1867 
   1868 	/*
   1869 	 * Commit to taking the signal before releasing the mutex.
   1870 	 */
   1871 	action = SIGACTION_PS(ps, signo).sa_handler;
   1872 	l->l_ru.ru_nsignals++;
   1873 	if (l->l_sigpendset == NULL) {
   1874 		/* From the debugger */
   1875 		if (p->p_sigctx.ps_faked &&
   1876 		    signo == p->p_sigctx.ps_info._signo) {
   1877 			KSI_INIT(&ksi);
   1878 			ksi.ksi_info = p->p_sigctx.ps_info;
   1879 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   1880 			p->p_sigctx.ps_faked = false;
   1881 		} else {
   1882 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1883 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1884 		}
   1885 	} else
   1886 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1887 
   1888 	if (ktrpoint(KTR_PSIG)) {
   1889 		mutex_exit(p->p_lock);
   1890 		if (p->p_emul->e_ktrpsig)
   1891 			p->p_emul->e_ktrpsig(signo, action,
   1892 			    returnmask, &ksi);
   1893 		else
   1894 			ktrpsig(signo, action, returnmask, &ksi);
   1895 		mutex_enter(p->p_lock);
   1896 	}
   1897 
   1898 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1899 
   1900 	if (action == SIG_DFL) {
   1901 		/*
   1902 		 * Default action, where the default is to kill
   1903 		 * the process.  (Other cases were ignored above.)
   1904 		 */
   1905 		sigexit(l, signo);
   1906 		return;
   1907 	}
   1908 
   1909 	/*
   1910 	 * If we get here, the signal must be caught.
   1911 	 */
   1912 #ifdef DIAGNOSTIC
   1913 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1914 		panic("postsig action");
   1915 #endif
   1916 
   1917 	kpsendsig(l, &ksi, returnmask);
   1918 }
   1919 
   1920 /*
   1921  * sendsig:
   1922  *
   1923  *	Default signal delivery method for NetBSD.
   1924  */
   1925 void
   1926 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1927 {
   1928 	struct sigacts *sa;
   1929 	int sig;
   1930 
   1931 	sig = ksi->ksi_signo;
   1932 	sa = curproc->p_sigacts;
   1933 
   1934 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1935 	case 0:
   1936 	case 1:
   1937 		/* Compat for 1.6 and earlier. */
   1938 		if (sendsig_sigcontext_vec == NULL) {
   1939 			break;
   1940 		}
   1941 		(*sendsig_sigcontext_vec)(ksi, mask);
   1942 		return;
   1943 	case 2:
   1944 	case 3:
   1945 		sendsig_siginfo(ksi, mask);
   1946 		return;
   1947 	default:
   1948 		break;
   1949 	}
   1950 
   1951 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1952 	sigexit(curlwp, SIGILL);
   1953 }
   1954 
   1955 /*
   1956  * sendsig_reset:
   1957  *
   1958  *	Reset the signal action.  Called from emulation specific sendsig()
   1959  *	before unlocking to deliver the signal.
   1960  */
   1961 void
   1962 sendsig_reset(struct lwp *l, int signo)
   1963 {
   1964 	struct proc *p = l->l_proc;
   1965 	struct sigacts *ps = p->p_sigacts;
   1966 
   1967 	KASSERT(mutex_owned(p->p_lock));
   1968 
   1969 	p->p_sigctx.ps_lwp = 0;
   1970 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   1971 
   1972 	mutex_enter(&ps->sa_mutex);
   1973 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1974 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1975 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1976 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1977 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1978 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1979 	}
   1980 	mutex_exit(&ps->sa_mutex);
   1981 }
   1982 
   1983 /*
   1984  * Kill the current process for stated reason.
   1985  */
   1986 void
   1987 killproc(struct proc *p, const char *why)
   1988 {
   1989 
   1990 	KASSERT(mutex_owned(proc_lock));
   1991 
   1992 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1993 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1994 	psignal(p, SIGKILL);
   1995 }
   1996 
   1997 /*
   1998  * Force the current process to exit with the specified signal, dumping core
   1999  * if appropriate.  We bypass the normal tests for masked and caught
   2000  * signals, allowing unrecoverable failures to terminate the process without
   2001  * changing signal state.  Mark the accounting record with the signal
   2002  * termination.  If dumping core, save the signal number for the debugger.
   2003  * Calls exit and does not return.
   2004  */
   2005 void
   2006 sigexit(struct lwp *l, int signo)
   2007 {
   2008 	int exitsig, error, docore;
   2009 	struct proc *p;
   2010 	struct lwp *t;
   2011 
   2012 	p = l->l_proc;
   2013 
   2014 	KASSERT(mutex_owned(p->p_lock));
   2015 	KERNEL_UNLOCK_ALL(l, NULL);
   2016 
   2017 	/*
   2018 	 * Don't permit coredump() multiple times in the same process.
   2019 	 * Call back into sigexit, where we will be suspended until
   2020 	 * the deed is done.  Note that this is a recursive call, but
   2021 	 * LW_WCORE will prevent us from coming back this way.
   2022 	 */
   2023 	if ((p->p_sflag & PS_WCORE) != 0) {
   2024 		lwp_lock(l);
   2025 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2026 		lwp_unlock(l);
   2027 		mutex_exit(p->p_lock);
   2028 		lwp_userret(l);
   2029 		panic("sigexit 1");
   2030 		/* NOTREACHED */
   2031 	}
   2032 
   2033 	/* If process is already on the way out, then bail now. */
   2034 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2035 		mutex_exit(p->p_lock);
   2036 		lwp_exit(l);
   2037 		panic("sigexit 2");
   2038 		/* NOTREACHED */
   2039 	}
   2040 
   2041 	/*
   2042 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2043 	 * so that their registers are available long enough to be dumped.
   2044  	 */
   2045 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2046 		p->p_sflag |= PS_WCORE;
   2047 		for (;;) {
   2048 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2049 				lwp_lock(t);
   2050 				if (t == l) {
   2051 					t->l_flag &= ~LW_WSUSPEND;
   2052 					lwp_unlock(t);
   2053 					continue;
   2054 				}
   2055 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2056 				lwp_suspend(l, t);
   2057 			}
   2058 
   2059 			if (p->p_nrlwps == 1)
   2060 				break;
   2061 
   2062 			/*
   2063 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2064 			 * for everyone else to stop before proceeding.
   2065 			 */
   2066 			p->p_nlwpwait++;
   2067 			cv_broadcast(&p->p_lwpcv);
   2068 			cv_wait(&p->p_lwpcv, p->p_lock);
   2069 			p->p_nlwpwait--;
   2070 		}
   2071 	}
   2072 
   2073 	exitsig = signo;
   2074 	p->p_acflag |= AXSIG;
   2075 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2076 	p->p_sigctx.ps_info._signo = signo;
   2077 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2078 
   2079 	if (docore) {
   2080 		mutex_exit(p->p_lock);
   2081 		error = (*coredump_vec)(l, NULL);
   2082 
   2083 		if (kern_logsigexit) {
   2084 			int uid = l->l_cred ?
   2085 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2086 
   2087 			if (error)
   2088 				log(LOG_INFO, lognocoredump, p->p_pid,
   2089 				    p->p_comm, uid, signo, error);
   2090 			else
   2091 				log(LOG_INFO, logcoredump, p->p_pid,
   2092 				    p->p_comm, uid, signo);
   2093 		}
   2094 
   2095 #ifdef PAX_SEGVGUARD
   2096 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2097 #endif /* PAX_SEGVGUARD */
   2098 		/* Acquire the sched state mutex.  exit1() will release it. */
   2099 		mutex_enter(p->p_lock);
   2100 		if (error == 0)
   2101 			p->p_sflag |= PS_COREDUMP;
   2102 	}
   2103 
   2104 	/* No longer dumping core. */
   2105 	p->p_sflag &= ~PS_WCORE;
   2106 
   2107 	exit1(l, 0, exitsig);
   2108 	/* NOTREACHED */
   2109 }
   2110 
   2111 /*
   2112  * Put process 'p' into the stopped state and optionally, notify the parent.
   2113  */
   2114 void
   2115 proc_stop(struct proc *p, int signo)
   2116 {
   2117 	struct lwp *l;
   2118 
   2119 	KASSERT(mutex_owned(p->p_lock));
   2120 
   2121 	/*
   2122 	 * First off, set the stopping indicator and bring all sleeping
   2123 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2124 	 * unlock between here and the p->p_nrlwps check below.
   2125 	 */
   2126 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
   2127 	membar_producer();
   2128 
   2129 	proc_stop_lwps(p);
   2130 
   2131 	/*
   2132 	 * If there are no LWPs available to take the signal, then we
   2133 	 * signal the parent process immediately.  Otherwise, the last
   2134 	 * LWP to stop will take care of it.
   2135 	 */
   2136 
   2137 	if (p->p_nrlwps == 0) {
   2138 		proc_stop_done(p, PS_NOCLDSTOP);
   2139 	} else {
   2140 		/*
   2141 		 * Have the remaining LWPs come to a halt, and trigger
   2142 		 * proc_stop_callout() to ensure that they do.
   2143 		 */
   2144 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2145 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2146 		}
   2147 		callout_schedule(&proc_stop_ch, 1);
   2148 	}
   2149 }
   2150 
   2151 /*
   2152  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2153  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2154  * to allow LWPs to release any locks that they may hold before stopping.
   2155  *
   2156  * Non-interruptable sleeps can be long, and there is the potential for an
   2157  * LWP to begin sleeping interruptably soon after the process has been set
   2158  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2159  * stopping, and so complete halt of the process and the return of status
   2160  * information to the parent could be delayed indefinitely.
   2161  *
   2162  * To handle this race, proc_stop_callout() runs once per tick while there
   2163  * are stopping processes in the system.  It sets LWPs that are sleeping
   2164  * interruptably into the LSSTOP state.
   2165  *
   2166  * Note that we are not concerned about keeping all LWPs stopped while the
   2167  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2168  * What we do need to ensure is that all LWPs in a stopping process have
   2169  * stopped at least once, so that notification can be sent to the parent
   2170  * process.
   2171  */
   2172 static void
   2173 proc_stop_callout(void *cookie)
   2174 {
   2175 	bool more, restart;
   2176 	struct proc *p;
   2177 
   2178 	(void)cookie;
   2179 
   2180 	do {
   2181 		restart = false;
   2182 		more = false;
   2183 
   2184 		mutex_enter(proc_lock);
   2185 		PROCLIST_FOREACH(p, &allproc) {
   2186 			mutex_enter(p->p_lock);
   2187 
   2188 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2189 				mutex_exit(p->p_lock);
   2190 				continue;
   2191 			}
   2192 
   2193 			/* Stop any LWPs sleeping interruptably. */
   2194 			proc_stop_lwps(p);
   2195 			if (p->p_nrlwps == 0) {
   2196 				/*
   2197 				 * We brought the process to a halt.
   2198 				 * Mark it as stopped and notify the
   2199 				 * parent.
   2200 				 */
   2201 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2202 					/*
   2203 					 * Note that proc_stop_done() will
   2204 					 * drop p->p_lock briefly.
   2205 					 * Arrange to restart and check
   2206 					 * all processes again.
   2207 					 */
   2208 					restart = true;
   2209 				}
   2210 				proc_stop_done(p, PS_NOCLDSTOP);
   2211 			} else
   2212 				more = true;
   2213 
   2214 			mutex_exit(p->p_lock);
   2215 			if (restart)
   2216 				break;
   2217 		}
   2218 		mutex_exit(proc_lock);
   2219 	} while (restart);
   2220 
   2221 	/*
   2222 	 * If we noted processes that are stopping but still have
   2223 	 * running LWPs, then arrange to check again in 1 tick.
   2224 	 */
   2225 	if (more)
   2226 		callout_schedule(&proc_stop_ch, 1);
   2227 }
   2228 
   2229 /*
   2230  * Given a process in state SSTOP, set the state back to SACTIVE and
   2231  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2232  */
   2233 void
   2234 proc_unstop(struct proc *p)
   2235 {
   2236 	struct lwp *l;
   2237 	int sig;
   2238 
   2239 	KASSERT(mutex_owned(proc_lock));
   2240 	KASSERT(mutex_owned(p->p_lock));
   2241 
   2242 	p->p_stat = SACTIVE;
   2243 	p->p_sflag &= ~PS_STOPPING;
   2244 	sig = p->p_xsig;
   2245 
   2246 	if (!p->p_waited)
   2247 		p->p_pptr->p_nstopchild--;
   2248 
   2249 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2250 		lwp_lock(l);
   2251 		if (l->l_stat != LSSTOP) {
   2252 			lwp_unlock(l);
   2253 			continue;
   2254 		}
   2255 		if (l->l_wchan == NULL) {
   2256 			setrunnable(l);
   2257 			continue;
   2258 		}
   2259 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2260 			setrunnable(l);
   2261 			sig = 0;
   2262 		} else {
   2263 			l->l_stat = LSSLEEP;
   2264 			p->p_nrlwps++;
   2265 			lwp_unlock(l);
   2266 		}
   2267 	}
   2268 }
   2269 
   2270 void
   2271 proc_stoptrace(int trapno)
   2272 {
   2273 	struct lwp *l = curlwp;
   2274 	struct proc *p = l->l_proc;
   2275 	struct sigacts *ps;
   2276 	sigset_t *mask;
   2277 	sig_t action;
   2278 	ksiginfo_t ksi;
   2279 	const int signo = SIGTRAP;
   2280 
   2281 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2282 
   2283 	KSI_INIT_TRAP(&ksi);
   2284 	ksi.ksi_lid = l->l_lid;
   2285 	ksi.ksi_info._signo = signo;
   2286 	ksi.ksi_info._code = trapno;
   2287 
   2288 	mutex_enter(p->p_lock);
   2289 
   2290 	/* Needed for ktrace */
   2291 	ps = p->p_sigacts;
   2292 	action = SIGACTION_PS(ps, signo).sa_handler;
   2293 	mask = &l->l_sigmask;
   2294 
   2295 	/* initproc (PID1) cannot became a debugger */
   2296 	KASSERT(p->p_pptr != initproc);
   2297 
   2298 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2299 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2300 
   2301 	p->p_xsig = signo;
   2302 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2303 	p->p_sigctx.ps_info = ksi.ksi_info;
   2304 	sigswitch(0, signo, true);
   2305 	mutex_exit(p->p_lock);
   2306 
   2307 	if (ktrpoint(KTR_PSIG)) {
   2308 		if (p->p_emul->e_ktrpsig)
   2309 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2310 		else
   2311 			ktrpsig(signo, action, mask, &ksi);
   2312 	}
   2313 }
   2314 
   2315 static int
   2316 filt_sigattach(struct knote *kn)
   2317 {
   2318 	struct proc *p = curproc;
   2319 
   2320 	kn->kn_obj = p;
   2321 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2322 
   2323 	mutex_enter(p->p_lock);
   2324 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2325 	mutex_exit(p->p_lock);
   2326 
   2327 	return 0;
   2328 }
   2329 
   2330 static void
   2331 filt_sigdetach(struct knote *kn)
   2332 {
   2333 	struct proc *p = kn->kn_obj;
   2334 
   2335 	mutex_enter(p->p_lock);
   2336 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2337 	mutex_exit(p->p_lock);
   2338 }
   2339 
   2340 /*
   2341  * Signal knotes are shared with proc knotes, so we apply a mask to
   2342  * the hint in order to differentiate them from process hints.  This
   2343  * could be avoided by using a signal-specific knote list, but probably
   2344  * isn't worth the trouble.
   2345  */
   2346 static int
   2347 filt_signal(struct knote *kn, long hint)
   2348 {
   2349 
   2350 	if (hint & NOTE_SIGNAL) {
   2351 		hint &= ~NOTE_SIGNAL;
   2352 
   2353 		if (kn->kn_id == hint)
   2354 			kn->kn_data++;
   2355 	}
   2356 	return (kn->kn_data != 0);
   2357 }
   2358 
   2359 const struct filterops sig_filtops = {
   2360 		.f_isfd = 0,
   2361 		.f_attach = filt_sigattach,
   2362 		.f_detach = filt_sigdetach,
   2363 		.f_event = filt_signal,
   2364 };
   2365