kern_sig.c revision 1.350 1 /* $NetBSD: kern_sig.c,v 1.350 2018/11/29 10:27:36 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.350 2018/11/29 10:27:36 maxv Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107
108 #include <uvm/uvm_extern.h>
109
110 #define SIGQUEUE_MAX 32
111 static pool_cache_t sigacts_cache __read_mostly;
112 static pool_cache_t ksiginfo_cache __read_mostly;
113 static callout_t proc_stop_ch __cacheline_aligned;
114
115 sigset_t contsigmask __cacheline_aligned;
116 sigset_t stopsigmask __cacheline_aligned;
117 static sigset_t vforksigmask __cacheline_aligned;
118 sigset_t sigcantmask __cacheline_aligned;
119
120 static void ksiginfo_exechook(struct proc *, void *);
121 static void proc_stop(struct proc *, int);
122 static void proc_stop_done(struct proc *, int);
123 static void proc_stop_callout(void *);
124 static int sigchecktrace(void);
125 static int sigpost(struct lwp *, sig_t, int, int);
126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int sigunwait(struct proc *, const ksiginfo_t *);
128
129 static void sigacts_poolpage_free(struct pool *, void *);
130 static void *sigacts_poolpage_alloc(struct pool *, int);
131
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134 (int (*)(struct lwp *, const char *))enosys;
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 */
715 int
716 sigispending(struct lwp *l, int signo)
717 {
718 struct proc *p = l->l_proc;
719 sigset_t tset;
720
721 membar_consumer();
722
723 tset = l->l_sigpend.sp_set;
724 sigplusset(&p->p_sigpend.sp_set, &tset);
725 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
726 sigminusset(&l->l_sigmask, &tset);
727
728 if (signo == 0) {
729 return firstsig(&tset);
730 }
731 return sigismember(&tset, signo) ? signo : 0;
732 }
733
734 void
735 getucontext(struct lwp *l, ucontext_t *ucp)
736 {
737 struct proc *p = l->l_proc;
738
739 KASSERT(mutex_owned(p->p_lock));
740
741 ucp->uc_flags = 0;
742 ucp->uc_link = l->l_ctxlink;
743 ucp->uc_sigmask = l->l_sigmask;
744 ucp->uc_flags |= _UC_SIGMASK;
745
746 /*
747 * The (unsupplied) definition of the `current execution stack'
748 * in the System V Interface Definition appears to allow returning
749 * the main context stack.
750 */
751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
755 } else {
756 /* Simply copy alternate signal execution stack. */
757 ucp->uc_stack = l->l_sigstk;
758 }
759 ucp->uc_flags |= _UC_STACK;
760 mutex_exit(p->p_lock);
761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
762 mutex_enter(p->p_lock);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * killpg1: common code for kill process group/broadcast kill.
803 */
804 int
805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
806 {
807 struct proc *p, *cp;
808 kauth_cred_t pc;
809 struct pgrp *pgrp;
810 int nfound;
811 int signo = ksi->ksi_signo;
812
813 cp = l->l_proc;
814 pc = l->l_cred;
815 nfound = 0;
816
817 mutex_enter(proc_lock);
818 if (all) {
819 /*
820 * Broadcast.
821 */
822 PROCLIST_FOREACH(p, &allproc) {
823 if (p->p_pid <= 1 || p == cp ||
824 (p->p_flag & PK_SYSTEM) != 0)
825 continue;
826 mutex_enter(p->p_lock);
827 if (kauth_authorize_process(pc,
828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
829 NULL) == 0) {
830 nfound++;
831 if (signo)
832 kpsignal2(p, ksi);
833 }
834 mutex_exit(p->p_lock);
835 }
836 } else {
837 if (pgid == 0)
838 /* Zero pgid means send to my process group. */
839 pgrp = cp->p_pgrp;
840 else {
841 pgrp = pgrp_find(pgid);
842 if (pgrp == NULL)
843 goto out;
844 }
845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
847 continue;
848 mutex_enter(p->p_lock);
849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
850 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
851 nfound++;
852 if (signo && P_ZOMBIE(p) == 0)
853 kpsignal2(p, ksi);
854 }
855 mutex_exit(p->p_lock);
856 }
857 }
858 out:
859 mutex_exit(proc_lock);
860 return nfound ? 0 : ESRCH;
861 }
862
863 /*
864 * Send a signal to a process group. If checktty is set, limit to members
865 * which have a controlling terminal.
866 */
867 void
868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
869 {
870 ksiginfo_t ksi;
871
872 KASSERT(!cpu_intr_p());
873 KASSERT(mutex_owned(proc_lock));
874
875 KSI_INIT_EMPTY(&ksi);
876 ksi.ksi_signo = sig;
877 kpgsignal(pgrp, &ksi, NULL, checkctty);
878 }
879
880 void
881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
882 {
883 struct proc *p;
884
885 KASSERT(!cpu_intr_p());
886 KASSERT(mutex_owned(proc_lock));
887 KASSERT(pgrp != NULL);
888
889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
891 kpsignal(p, ksi, data);
892 }
893
894 /*
895 * Send a signal caused by a trap to the current LWP. If it will be caught
896 * immediately, deliver it with correct code. Otherwise, post it normally.
897 */
898 void
899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
900 {
901 struct proc *p;
902 struct sigacts *ps;
903 int signo = ksi->ksi_signo;
904 sigset_t *mask;
905
906 KASSERT(KSI_TRAP_P(ksi));
907
908 ksi->ksi_lid = l->l_lid;
909 p = l->l_proc;
910
911 KASSERT(!cpu_intr_p());
912 mutex_enter(proc_lock);
913 mutex_enter(p->p_lock);
914 mask = &l->l_sigmask;
915 ps = p->p_sigacts;
916
917 const bool traced = (p->p_slflag & PSL_TRACED) != 0;
918 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
919 const bool masked = sigismember(mask, signo);
920 if (!traced && caught && !masked) {
921 mutex_exit(proc_lock);
922 l->l_ru.ru_nsignals++;
923 kpsendsig(l, ksi, mask);
924 mutex_exit(p->p_lock);
925 if (ktrpoint(KTR_PSIG)) {
926 if (p->p_emul->e_ktrpsig)
927 p->p_emul->e_ktrpsig(signo,
928 SIGACTION_PS(ps, signo).sa_handler,
929 mask, ksi);
930 else
931 ktrpsig(signo,
932 SIGACTION_PS(ps, signo).sa_handler,
933 mask, ksi);
934 }
935 return;
936 }
937
938 /*
939 * If the signal is masked or ignored, then unmask it and
940 * reset it to the default action so that the process or
941 * its tracer will be notified.
942 */
943 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
944 if (masked || ignored) {
945 mutex_enter(&ps->sa_mutex);
946 sigdelset(mask, signo);
947 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
948 sigdelset(&p->p_sigctx.ps_sigignore, signo);
949 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
950 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
951 mutex_exit(&ps->sa_mutex);
952 }
953
954 kpsignal2(p, ksi);
955 mutex_exit(p->p_lock);
956 mutex_exit(proc_lock);
957 }
958
959 /*
960 * Fill in signal information and signal the parent for a child status change.
961 */
962 void
963 child_psignal(struct proc *p, int mask)
964 {
965 ksiginfo_t ksi;
966 struct proc *q;
967 int xsig;
968
969 KASSERT(mutex_owned(proc_lock));
970 KASSERT(mutex_owned(p->p_lock));
971
972 xsig = p->p_xsig;
973
974 KSI_INIT(&ksi);
975 ksi.ksi_signo = SIGCHLD;
976 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
977 ksi.ksi_pid = p->p_pid;
978 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
979 ksi.ksi_status = xsig;
980 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
981 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
982
983 q = p->p_pptr;
984
985 mutex_exit(p->p_lock);
986 mutex_enter(q->p_lock);
987
988 if ((q->p_sflag & mask) == 0)
989 kpsignal2(q, &ksi);
990
991 mutex_exit(q->p_lock);
992 mutex_enter(p->p_lock);
993 }
994
995 void
996 psignal(struct proc *p, int signo)
997 {
998 ksiginfo_t ksi;
999
1000 KASSERT(!cpu_intr_p());
1001 KASSERT(mutex_owned(proc_lock));
1002
1003 KSI_INIT_EMPTY(&ksi);
1004 ksi.ksi_signo = signo;
1005 mutex_enter(p->p_lock);
1006 kpsignal2(p, &ksi);
1007 mutex_exit(p->p_lock);
1008 }
1009
1010 void
1011 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1012 {
1013 fdfile_t *ff;
1014 file_t *fp;
1015 fdtab_t *dt;
1016
1017 KASSERT(!cpu_intr_p());
1018 KASSERT(mutex_owned(proc_lock));
1019
1020 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1021 size_t fd;
1022 filedesc_t *fdp = p->p_fd;
1023
1024 /* XXXSMP locking */
1025 ksi->ksi_fd = -1;
1026 dt = fdp->fd_dt;
1027 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1028 if ((ff = dt->dt_ff[fd]) == NULL)
1029 continue;
1030 if ((fp = ff->ff_file) == NULL)
1031 continue;
1032 if (fp->f_data == data) {
1033 ksi->ksi_fd = fd;
1034 break;
1035 }
1036 }
1037 }
1038 mutex_enter(p->p_lock);
1039 kpsignal2(p, ksi);
1040 mutex_exit(p->p_lock);
1041 }
1042
1043 /*
1044 * sigismasked:
1045 *
1046 * Returns true if signal is ignored or masked for the specified LWP.
1047 */
1048 int
1049 sigismasked(struct lwp *l, int sig)
1050 {
1051 struct proc *p = l->l_proc;
1052
1053 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1054 sigismember(&l->l_sigmask, sig);
1055 }
1056
1057 /*
1058 * sigpost:
1059 *
1060 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1061 * be able to take the signal.
1062 */
1063 static int
1064 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1065 {
1066 int rv, masked;
1067 struct proc *p = l->l_proc;
1068
1069 KASSERT(mutex_owned(p->p_lock));
1070
1071 /*
1072 * If the LWP is on the way out, sigclear() will be busy draining all
1073 * pending signals. Don't give it more.
1074 */
1075 if (l->l_refcnt == 0)
1076 return 0;
1077
1078 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1079
1080 /*
1081 * Have the LWP check for signals. This ensures that even if no LWP
1082 * is found to take the signal immediately, it should be taken soon.
1083 */
1084 lwp_lock(l);
1085 l->l_flag |= LW_PENDSIG;
1086
1087 /*
1088 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1089 * Note: SIGKILL and SIGSTOP cannot be masked.
1090 */
1091 masked = sigismember(&l->l_sigmask, sig);
1092 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1093 lwp_unlock(l);
1094 return 0;
1095 }
1096
1097 /*
1098 * If killing the process, make it run fast.
1099 */
1100 if (__predict_false((prop & SA_KILL) != 0) &&
1101 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1102 KASSERT(l->l_class == SCHED_OTHER);
1103 lwp_changepri(l, MAXPRI_USER);
1104 }
1105
1106 /*
1107 * If the LWP is running or on a run queue, then we win. If it's
1108 * sleeping interruptably, wake it and make it take the signal. If
1109 * the sleep isn't interruptable, then the chances are it will get
1110 * to see the signal soon anyhow. If suspended, it can't take the
1111 * signal right now. If it's LWP private or for all LWPs, save it
1112 * for later; otherwise punt.
1113 */
1114 rv = 0;
1115
1116 switch (l->l_stat) {
1117 case LSRUN:
1118 case LSONPROC:
1119 lwp_need_userret(l);
1120 rv = 1;
1121 break;
1122
1123 case LSSLEEP:
1124 if ((l->l_flag & LW_SINTR) != 0) {
1125 /* setrunnable() will release the lock. */
1126 setrunnable(l);
1127 return 1;
1128 }
1129 break;
1130
1131 case LSSUSPENDED:
1132 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1133 /* lwp_continue() will release the lock. */
1134 lwp_continue(l);
1135 return 1;
1136 }
1137 break;
1138
1139 case LSSTOP:
1140 if ((prop & SA_STOP) != 0)
1141 break;
1142
1143 /*
1144 * If the LWP is stopped and we are sending a continue
1145 * signal, then start it again.
1146 */
1147 if ((prop & SA_CONT) != 0) {
1148 if (l->l_wchan != NULL) {
1149 l->l_stat = LSSLEEP;
1150 p->p_nrlwps++;
1151 rv = 1;
1152 break;
1153 }
1154 /* setrunnable() will release the lock. */
1155 setrunnable(l);
1156 return 1;
1157 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1158 /* setrunnable() will release the lock. */
1159 setrunnable(l);
1160 return 1;
1161 }
1162 break;
1163
1164 default:
1165 break;
1166 }
1167
1168 lwp_unlock(l);
1169 return rv;
1170 }
1171
1172 /*
1173 * Notify an LWP that it has a pending signal.
1174 */
1175 void
1176 signotify(struct lwp *l)
1177 {
1178 KASSERT(lwp_locked(l, NULL));
1179
1180 l->l_flag |= LW_PENDSIG;
1181 lwp_need_userret(l);
1182 }
1183
1184 /*
1185 * Find an LWP within process p that is waiting on signal ksi, and hand
1186 * it on.
1187 */
1188 static int
1189 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1190 {
1191 struct lwp *l;
1192 int signo;
1193
1194 KASSERT(mutex_owned(p->p_lock));
1195
1196 signo = ksi->ksi_signo;
1197
1198 if (ksi->ksi_lid != 0) {
1199 /*
1200 * Signal came via _lwp_kill(). Find the LWP and see if
1201 * it's interested.
1202 */
1203 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1204 return 0;
1205 if (l->l_sigwaited == NULL ||
1206 !sigismember(&l->l_sigwaitset, signo))
1207 return 0;
1208 } else {
1209 /*
1210 * Look for any LWP that may be interested.
1211 */
1212 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1213 KASSERT(l->l_sigwaited != NULL);
1214 if (sigismember(&l->l_sigwaitset, signo))
1215 break;
1216 }
1217 }
1218
1219 if (l != NULL) {
1220 l->l_sigwaited->ksi_info = ksi->ksi_info;
1221 l->l_sigwaited = NULL;
1222 LIST_REMOVE(l, l_sigwaiter);
1223 cv_signal(&l->l_sigcv);
1224 return 1;
1225 }
1226
1227 return 0;
1228 }
1229
1230 /*
1231 * Send the signal to the process. If the signal has an action, the action
1232 * is usually performed by the target process rather than the caller; we add
1233 * the signal to the set of pending signals for the process.
1234 *
1235 * Exceptions:
1236 * o When a stop signal is sent to a sleeping process that takes the
1237 * default action, the process is stopped without awakening it.
1238 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1239 * regardless of the signal action (eg, blocked or ignored).
1240 *
1241 * Other ignored signals are discarded immediately.
1242 */
1243 int
1244 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1245 {
1246 int prop, signo = ksi->ksi_signo;
1247 struct lwp *l = NULL;
1248 ksiginfo_t *kp;
1249 lwpid_t lid;
1250 sig_t action;
1251 bool toall, debtrap = false;
1252 int error = 0;
1253
1254 KASSERT(!cpu_intr_p());
1255 KASSERT(mutex_owned(proc_lock));
1256 KASSERT(mutex_owned(p->p_lock));
1257 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1258 KASSERT(signo > 0 && signo < NSIG);
1259
1260 /*
1261 * If the process is being created by fork, is a zombie or is
1262 * exiting, then just drop the signal here and bail out.
1263 */
1264 if (p->p_stat == SIDL && signo == SIGTRAP
1265 && (p->p_slflag & PSL_TRACED)) {
1266 /* allow an initial SIGTRAP for traced processes */
1267 debtrap = true;
1268 } else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1269 return 0;
1270 }
1271
1272 /* XXX for core dump/debugger */
1273 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1274 p->p_sigctx.ps_info = ksi->ksi_info;
1275
1276 /*
1277 * Notify any interested parties of the signal.
1278 */
1279 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1280
1281 /*
1282 * Some signals including SIGKILL must act on the entire process.
1283 */
1284 kp = NULL;
1285 prop = sigprop[signo];
1286 toall = ((prop & SA_TOALL) != 0);
1287 lid = toall ? 0 : ksi->ksi_lid;
1288
1289 /*
1290 * If proc is traced, always give parent a chance.
1291 */
1292 if (p->p_slflag & PSL_TRACED) {
1293 action = SIG_DFL;
1294
1295 if (lid == 0) {
1296 /*
1297 * If the process is being traced and the signal
1298 * is being caught, make sure to save any ksiginfo.
1299 */
1300 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1301 goto discard;
1302 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1303 goto out;
1304 }
1305 } else {
1306
1307 /*
1308 * If the signal is being ignored, then drop it. Note: we
1309 * don't set SIGCONT in ps_sigignore, and if it is set to
1310 * SIG_IGN, action will be SIG_DFL here.
1311 */
1312 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1313 goto discard;
1314
1315 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1316 action = SIG_CATCH;
1317 else {
1318 action = SIG_DFL;
1319
1320 /*
1321 * If sending a tty stop signal to a member of an
1322 * orphaned process group, discard the signal here if
1323 * the action is default; don't stop the process below
1324 * if sleeping, and don't clear any pending SIGCONT.
1325 */
1326 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1327 goto discard;
1328
1329 if (prop & SA_KILL && p->p_nice > NZERO)
1330 p->p_nice = NZERO;
1331 }
1332 }
1333
1334 /*
1335 * If stopping or continuing a process, discard any pending
1336 * signals that would do the inverse.
1337 */
1338 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1339 ksiginfoq_t kq;
1340
1341 ksiginfo_queue_init(&kq);
1342 if ((prop & SA_CONT) != 0)
1343 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1344 if ((prop & SA_STOP) != 0)
1345 sigclear(&p->p_sigpend, &contsigmask, &kq);
1346 ksiginfo_queue_drain(&kq); /* XXXSMP */
1347 }
1348
1349 /*
1350 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1351 * please!), check if any LWPs are waiting on it. If yes, pass on
1352 * the signal info. The signal won't be processed further here.
1353 */
1354 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1355 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1356 sigunwait(p, ksi))
1357 goto discard;
1358
1359 /*
1360 * XXXSMP Should be allocated by the caller, we're holding locks
1361 * here.
1362 */
1363 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1364 goto discard;
1365
1366 /*
1367 * LWP private signals are easy - just find the LWP and post
1368 * the signal to it.
1369 */
1370 if (lid != 0) {
1371 if (__predict_false(debtrap)) {
1372 l = LIST_FIRST(&p->p_lwps);
1373 if (l->l_lid != lid)
1374 l = NULL;
1375 } else {
1376 l = lwp_find(p, lid);
1377 }
1378 if (l != NULL) {
1379 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1380 goto out;
1381 membar_producer();
1382 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1383 signo = -1;
1384 }
1385 goto out;
1386 }
1387
1388 /*
1389 * Some signals go to all LWPs, even if posted with _lwp_kill()
1390 * or for an SA process.
1391 */
1392 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1393 if ((p->p_slflag & PSL_TRACED) != 0)
1394 goto deliver;
1395
1396 /*
1397 * If SIGCONT is default (or ignored) and process is
1398 * asleep, we are finished; the process should not
1399 * be awakened.
1400 */
1401 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1402 goto out;
1403 } else {
1404 /*
1405 * Process is stopped or stopping.
1406 * - If traced, then no action is needed, unless killing.
1407 * - Run the process only if sending SIGCONT or SIGKILL.
1408 */
1409 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1410 goto out;
1411 }
1412 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1413 /*
1414 * Re-adjust p_nstopchild if the process was
1415 * stopped but not yet collected by its parent.
1416 */
1417 if (p->p_stat == SSTOP && !p->p_waited)
1418 p->p_pptr->p_nstopchild--;
1419 p->p_stat = SACTIVE;
1420 p->p_sflag &= ~PS_STOPPING;
1421 if (p->p_slflag & PSL_TRACED) {
1422 KASSERT(signo == SIGKILL);
1423 goto deliver;
1424 }
1425 /*
1426 * Do not make signal pending if SIGCONT is default.
1427 *
1428 * If the process catches SIGCONT, let it handle the
1429 * signal itself (if waiting on event - process runs,
1430 * otherwise continues sleeping).
1431 */
1432 if ((prop & SA_CONT) != 0) {
1433 p->p_xsig = SIGCONT;
1434 p->p_sflag |= PS_CONTINUED;
1435 child_psignal(p, 0);
1436 if (action == SIG_DFL) {
1437 KASSERT(signo != SIGKILL);
1438 goto deliver;
1439 }
1440 }
1441 } else if ((prop & SA_STOP) != 0) {
1442 /*
1443 * Already stopped, don't need to stop again.
1444 * (If we did the shell could get confused.)
1445 */
1446 goto out;
1447 }
1448 }
1449 /*
1450 * Make signal pending.
1451 */
1452 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1453 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1454 goto out;
1455 deliver:
1456 /*
1457 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1458 * visible on the per process list (for sigispending()). This
1459 * is unlikely to be needed in practice, but...
1460 */
1461 membar_producer();
1462
1463 /*
1464 * Try to find an LWP that can take the signal.
1465 */
1466 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1467 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1468 break;
1469 }
1470 signo = -1;
1471 out:
1472 /*
1473 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1474 * with locks held. The caller should take care of this.
1475 */
1476 ksiginfo_free(kp);
1477 if (signo == -1)
1478 return error;
1479 discard:
1480 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1481 return error;
1482 }
1483
1484 void
1485 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1486 {
1487 struct proc *p = l->l_proc;
1488
1489 KASSERT(mutex_owned(p->p_lock));
1490 (*p->p_emul->e_sendsig)(ksi, mask);
1491 }
1492
1493 /*
1494 * Stop any LWPs sleeping interruptably.
1495 */
1496 static void
1497 proc_stop_lwps(struct proc *p)
1498 {
1499 struct lwp *l;
1500
1501 KASSERT(mutex_owned(p->p_lock));
1502 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1503
1504 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1505 lwp_lock(l);
1506 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1507 l->l_stat = LSSTOP;
1508 p->p_nrlwps--;
1509 }
1510 lwp_unlock(l);
1511 }
1512 }
1513
1514 /*
1515 * Finish stopping of a process. Mark it stopped and notify the parent.
1516 *
1517 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1518 */
1519 static void
1520 proc_stop_done(struct proc *p, int ppmask)
1521 {
1522
1523 KASSERT(mutex_owned(proc_lock));
1524 KASSERT(mutex_owned(p->p_lock));
1525 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1526 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1527
1528 p->p_sflag &= ~PS_STOPPING;
1529 p->p_stat = SSTOP;
1530 p->p_waited = 0;
1531 p->p_pptr->p_nstopchild++;
1532 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1533 /* child_psignal drops p_lock briefly. */
1534 child_psignal(p, ppmask);
1535 cv_broadcast(&p->p_pptr->p_waitcv);
1536 }
1537 }
1538
1539 /*
1540 * Stop the current process and switch away when being stopped or traced.
1541 */
1542 void
1543 sigswitch(int ppmask, int signo, bool relock)
1544 {
1545 struct lwp *l = curlwp;
1546 struct proc *p = l->l_proc;
1547 int biglocks;
1548
1549 KASSERT(mutex_owned(p->p_lock));
1550 KASSERT(l->l_stat == LSONPROC);
1551 KASSERT(p->p_nrlwps > 0);
1552
1553 /*
1554 * On entry we know that the process needs to stop. If it's
1555 * the result of a 'sideways' stop signal that has been sourced
1556 * through issignal(), then stop other LWPs in the process too.
1557 */
1558 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1559 KASSERT(signo != 0);
1560 proc_stop(p, signo);
1561 KASSERT(p->p_nrlwps > 0);
1562 }
1563
1564 /*
1565 * If we are the last live LWP, and the stop was a result of
1566 * a new signal, then signal the parent.
1567 */
1568 if ((p->p_sflag & PS_STOPPING) != 0) {
1569 if (relock && !mutex_tryenter(proc_lock)) {
1570 mutex_exit(p->p_lock);
1571 mutex_enter(proc_lock);
1572 mutex_enter(p->p_lock);
1573 }
1574
1575 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1576 /*
1577 * Note that proc_stop_done() can drop
1578 * p->p_lock briefly.
1579 */
1580 proc_stop_done(p, ppmask);
1581 }
1582
1583 mutex_exit(proc_lock);
1584 }
1585
1586 /*
1587 * Unlock and switch away.
1588 */
1589 KERNEL_UNLOCK_ALL(l, &biglocks);
1590 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1591 p->p_nrlwps--;
1592 lwp_lock(l);
1593 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1594 l->l_stat = LSSTOP;
1595 lwp_unlock(l);
1596 }
1597
1598 mutex_exit(p->p_lock);
1599 lwp_lock(l);
1600 mi_switch(l);
1601 KERNEL_LOCK(biglocks, l);
1602 mutex_enter(p->p_lock);
1603 }
1604
1605 /*
1606 * Check for a signal from the debugger.
1607 */
1608 static int
1609 sigchecktrace(void)
1610 {
1611 struct lwp *l = curlwp;
1612 struct proc *p = l->l_proc;
1613 int signo;
1614
1615 KASSERT(mutex_owned(p->p_lock));
1616
1617 /* If there's a pending SIGKILL, process it immediately. */
1618 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1619 return 0;
1620
1621 /*
1622 * If we are no longer being traced, or the parent didn't
1623 * give us a signal, or we're stopping, look for more signals.
1624 */
1625 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1626 (p->p_sflag & PS_STOPPING) != 0)
1627 return 0;
1628
1629 /*
1630 * If the new signal is being masked, look for other signals.
1631 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1632 */
1633 signo = p->p_xsig;
1634 p->p_xsig = 0;
1635 if (sigismember(&l->l_sigmask, signo)) {
1636 signo = 0;
1637 }
1638 return signo;
1639 }
1640
1641 /*
1642 * If the current process has received a signal (should be caught or cause
1643 * termination, should interrupt current syscall), return the signal number.
1644 *
1645 * Stop signals with default action are processed immediately, then cleared;
1646 * they aren't returned. This is checked after each entry to the system for
1647 * a syscall or trap.
1648 *
1649 * We will also return -1 if the process is exiting and the current LWP must
1650 * follow suit.
1651 */
1652 int
1653 issignal(struct lwp *l)
1654 {
1655 struct proc *p;
1656 int signo, prop;
1657 sigpend_t *sp;
1658 sigset_t ss;
1659
1660 p = l->l_proc;
1661 sp = NULL;
1662 signo = 0;
1663
1664 KASSERT(p == curproc);
1665 KASSERT(mutex_owned(p->p_lock));
1666
1667 for (;;) {
1668 /* Discard any signals that we have decided not to take. */
1669 if (signo != 0) {
1670 (void)sigget(sp, NULL, signo, NULL);
1671 }
1672
1673 /*
1674 * If the process is stopped/stopping, then stop ourselves
1675 * now that we're on the kernel/userspace boundary. When
1676 * we awaken, check for a signal from the debugger.
1677 */
1678 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1679 sigswitch(PS_NOCLDSTOP, 0, true);
1680 signo = sigchecktrace();
1681 } else
1682 signo = 0;
1683
1684 /* Signals from the debugger are "out of band". */
1685 sp = NULL;
1686
1687 /*
1688 * If the debugger didn't provide a signal, find a pending
1689 * signal from our set. Check per-LWP signals first, and
1690 * then per-process.
1691 */
1692 if (signo == 0) {
1693 sp = &l->l_sigpend;
1694 ss = sp->sp_set;
1695 if ((p->p_lflag & PL_PPWAIT) != 0)
1696 sigminusset(&vforksigmask, &ss);
1697 sigminusset(&l->l_sigmask, &ss);
1698
1699 if ((signo = firstsig(&ss)) == 0) {
1700 sp = &p->p_sigpend;
1701 ss = sp->sp_set;
1702 if ((p->p_lflag & PL_PPWAIT) != 0)
1703 sigminusset(&vforksigmask, &ss);
1704 sigminusset(&l->l_sigmask, &ss);
1705
1706 if ((signo = firstsig(&ss)) == 0) {
1707 /*
1708 * No signal pending - clear the
1709 * indicator and bail out.
1710 */
1711 lwp_lock(l);
1712 l->l_flag &= ~LW_PENDSIG;
1713 lwp_unlock(l);
1714 sp = NULL;
1715 break;
1716 }
1717 }
1718 }
1719
1720 /*
1721 * We should see pending but ignored signals only if
1722 * we are being traced.
1723 */
1724 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1725 (p->p_slflag & PSL_TRACED) == 0) {
1726 /* Discard the signal. */
1727 continue;
1728 }
1729
1730 /*
1731 * If traced, always stop, and stay stopped until released
1732 * by the debugger. If the our parent is our debugger waiting
1733 * for us and we vforked, don't hang as we could deadlock.
1734 */
1735 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1736 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1737 (p->p_pptr == p->p_opptr))) {
1738 /*
1739 * Take the signal, but don't remove it from the
1740 * siginfo queue, because the debugger can send
1741 * it later.
1742 */
1743 if (sp)
1744 sigdelset(&sp->sp_set, signo);
1745 p->p_xsig = signo;
1746
1747 /* Handling of signal trace */
1748 sigswitch(0, signo, true);
1749
1750 /* Check for a signal from the debugger. */
1751 if ((signo = sigchecktrace()) == 0)
1752 continue;
1753
1754 /* Signals from the debugger are "out of band". */
1755 sp = NULL;
1756 }
1757
1758 prop = sigprop[signo];
1759
1760 /*
1761 * Decide whether the signal should be returned.
1762 */
1763 switch ((long)SIGACTION(p, signo).sa_handler) {
1764 case (long)SIG_DFL:
1765 /*
1766 * Don't take default actions on system processes.
1767 */
1768 if (p->p_pid <= 1) {
1769 #ifdef DIAGNOSTIC
1770 /*
1771 * Are you sure you want to ignore SIGSEGV
1772 * in init? XXX
1773 */
1774 printf_nolog("Process (pid %d) got sig %d\n",
1775 p->p_pid, signo);
1776 #endif
1777 continue;
1778 }
1779
1780 /*
1781 * If there is a pending stop signal to process with
1782 * default action, stop here, then clear the signal.
1783 * However, if process is member of an orphaned
1784 * process group, ignore tty stop signals.
1785 */
1786 if (prop & SA_STOP) {
1787 /*
1788 * XXX Don't hold proc_lock for p_lflag,
1789 * but it's not a big deal.
1790 */
1791 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1792 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1793 (p->p_pptr == p->p_opptr))) ||
1794 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1795 prop & SA_TTYSTOP)) {
1796 /* Ignore the signal. */
1797 continue;
1798 }
1799 /* Take the signal. */
1800 (void)sigget(sp, NULL, signo, NULL);
1801 p->p_xsig = signo;
1802 p->p_sflag &= ~PS_CONTINUED;
1803 signo = 0;
1804 sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1805 } else if (prop & SA_IGNORE) {
1806 /*
1807 * Except for SIGCONT, shouldn't get here.
1808 * Default action is to ignore; drop it.
1809 */
1810 continue;
1811 }
1812 break;
1813
1814 case (long)SIG_IGN:
1815 #ifdef DEBUG_ISSIGNAL
1816 /*
1817 * Masking above should prevent us ever trying
1818 * to take action on an ignored signal other
1819 * than SIGCONT, unless process is traced.
1820 */
1821 if ((prop & SA_CONT) == 0 &&
1822 (p->p_slflag & PSL_TRACED) == 0)
1823 printf_nolog("issignal\n");
1824 #endif
1825 continue;
1826
1827 default:
1828 /*
1829 * This signal has an action, let postsig() process
1830 * it.
1831 */
1832 break;
1833 }
1834
1835 break;
1836 }
1837
1838 l->l_sigpendset = sp;
1839 return signo;
1840 }
1841
1842 /*
1843 * Take the action for the specified signal
1844 * from the current set of pending signals.
1845 */
1846 void
1847 postsig(int signo)
1848 {
1849 struct lwp *l;
1850 struct proc *p;
1851 struct sigacts *ps;
1852 sig_t action;
1853 sigset_t *returnmask;
1854 ksiginfo_t ksi;
1855
1856 l = curlwp;
1857 p = l->l_proc;
1858 ps = p->p_sigacts;
1859
1860 KASSERT(mutex_owned(p->p_lock));
1861 KASSERT(signo > 0);
1862
1863 /*
1864 * Set the new mask value and also defer further occurrences of this
1865 * signal.
1866 *
1867 * Special case: user has done a sigsuspend. Here the current mask is
1868 * not of interest, but rather the mask from before the sigsuspend is
1869 * what we want restored after the signal processing is completed.
1870 */
1871 if (l->l_sigrestore) {
1872 returnmask = &l->l_sigoldmask;
1873 l->l_sigrestore = 0;
1874 } else
1875 returnmask = &l->l_sigmask;
1876
1877 /*
1878 * Commit to taking the signal before releasing the mutex.
1879 */
1880 action = SIGACTION_PS(ps, signo).sa_handler;
1881 l->l_ru.ru_nsignals++;
1882 if (l->l_sigpendset == NULL) {
1883 /* From the debugger */
1884 if (p->p_sigctx.ps_faked &&
1885 signo == p->p_sigctx.ps_info._signo) {
1886 KSI_INIT(&ksi);
1887 ksi.ksi_info = p->p_sigctx.ps_info;
1888 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1889 p->p_sigctx.ps_faked = false;
1890 } else {
1891 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1892 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1893 }
1894 } else
1895 sigget(l->l_sigpendset, &ksi, signo, NULL);
1896
1897 if (ktrpoint(KTR_PSIG)) {
1898 mutex_exit(p->p_lock);
1899 if (p->p_emul->e_ktrpsig)
1900 p->p_emul->e_ktrpsig(signo, action,
1901 returnmask, &ksi);
1902 else
1903 ktrpsig(signo, action, returnmask, &ksi);
1904 mutex_enter(p->p_lock);
1905 }
1906
1907 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1908
1909 if (action == SIG_DFL) {
1910 /*
1911 * Default action, where the default is to kill
1912 * the process. (Other cases were ignored above.)
1913 */
1914 sigexit(l, signo);
1915 return;
1916 }
1917
1918 /*
1919 * If we get here, the signal must be caught.
1920 */
1921 #ifdef DIAGNOSTIC
1922 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1923 panic("postsig action");
1924 #endif
1925
1926 kpsendsig(l, &ksi, returnmask);
1927 }
1928
1929 /*
1930 * sendsig:
1931 *
1932 * Default signal delivery method for NetBSD.
1933 */
1934 void
1935 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1936 {
1937 struct sigacts *sa;
1938 int sig;
1939
1940 sig = ksi->ksi_signo;
1941 sa = curproc->p_sigacts;
1942
1943 switch (sa->sa_sigdesc[sig].sd_vers) {
1944 case 0:
1945 case 1:
1946 /* Compat for 1.6 and earlier. */
1947 if (sendsig_sigcontext_vec == NULL) {
1948 break;
1949 }
1950 (*sendsig_sigcontext_vec)(ksi, mask);
1951 return;
1952 case 2:
1953 case 3:
1954 sendsig_siginfo(ksi, mask);
1955 return;
1956 default:
1957 break;
1958 }
1959
1960 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1961 sigexit(curlwp, SIGILL);
1962 }
1963
1964 /*
1965 * sendsig_reset:
1966 *
1967 * Reset the signal action. Called from emulation specific sendsig()
1968 * before unlocking to deliver the signal.
1969 */
1970 void
1971 sendsig_reset(struct lwp *l, int signo)
1972 {
1973 struct proc *p = l->l_proc;
1974 struct sigacts *ps = p->p_sigacts;
1975
1976 KASSERT(mutex_owned(p->p_lock));
1977
1978 p->p_sigctx.ps_lwp = 0;
1979 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1980
1981 mutex_enter(&ps->sa_mutex);
1982 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1983 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1984 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1985 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1986 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1987 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1988 }
1989 mutex_exit(&ps->sa_mutex);
1990 }
1991
1992 /*
1993 * Kill the current process for stated reason.
1994 */
1995 void
1996 killproc(struct proc *p, const char *why)
1997 {
1998
1999 KASSERT(mutex_owned(proc_lock));
2000
2001 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2002 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2003 psignal(p, SIGKILL);
2004 }
2005
2006 /*
2007 * Force the current process to exit with the specified signal, dumping core
2008 * if appropriate. We bypass the normal tests for masked and caught
2009 * signals, allowing unrecoverable failures to terminate the process without
2010 * changing signal state. Mark the accounting record with the signal
2011 * termination. If dumping core, save the signal number for the debugger.
2012 * Calls exit and does not return.
2013 */
2014 void
2015 sigexit(struct lwp *l, int signo)
2016 {
2017 int exitsig, error, docore;
2018 struct proc *p;
2019 struct lwp *t;
2020
2021 p = l->l_proc;
2022
2023 KASSERT(mutex_owned(p->p_lock));
2024 KERNEL_UNLOCK_ALL(l, NULL);
2025
2026 /*
2027 * Don't permit coredump() multiple times in the same process.
2028 * Call back into sigexit, where we will be suspended until
2029 * the deed is done. Note that this is a recursive call, but
2030 * LW_WCORE will prevent us from coming back this way.
2031 */
2032 if ((p->p_sflag & PS_WCORE) != 0) {
2033 lwp_lock(l);
2034 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2035 lwp_unlock(l);
2036 mutex_exit(p->p_lock);
2037 lwp_userret(l);
2038 panic("sigexit 1");
2039 /* NOTREACHED */
2040 }
2041
2042 /* If process is already on the way out, then bail now. */
2043 if ((p->p_sflag & PS_WEXIT) != 0) {
2044 mutex_exit(p->p_lock);
2045 lwp_exit(l);
2046 panic("sigexit 2");
2047 /* NOTREACHED */
2048 }
2049
2050 /*
2051 * Prepare all other LWPs for exit. If dumping core, suspend them
2052 * so that their registers are available long enough to be dumped.
2053 */
2054 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2055 p->p_sflag |= PS_WCORE;
2056 for (;;) {
2057 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2058 lwp_lock(t);
2059 if (t == l) {
2060 t->l_flag &= ~LW_WSUSPEND;
2061 lwp_unlock(t);
2062 continue;
2063 }
2064 t->l_flag |= (LW_WCORE | LW_WEXIT);
2065 lwp_suspend(l, t);
2066 }
2067
2068 if (p->p_nrlwps == 1)
2069 break;
2070
2071 /*
2072 * Kick any LWPs sitting in lwp_wait1(), and wait
2073 * for everyone else to stop before proceeding.
2074 */
2075 p->p_nlwpwait++;
2076 cv_broadcast(&p->p_lwpcv);
2077 cv_wait(&p->p_lwpcv, p->p_lock);
2078 p->p_nlwpwait--;
2079 }
2080 }
2081
2082 exitsig = signo;
2083 p->p_acflag |= AXSIG;
2084 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2085 p->p_sigctx.ps_info._signo = signo;
2086 p->p_sigctx.ps_info._code = SI_NOINFO;
2087
2088 if (docore) {
2089 mutex_exit(p->p_lock);
2090 error = (*coredump_vec)(l, NULL);
2091
2092 if (kern_logsigexit) {
2093 int uid = l->l_cred ?
2094 (int)kauth_cred_geteuid(l->l_cred) : -1;
2095
2096 if (error)
2097 log(LOG_INFO, lognocoredump, p->p_pid,
2098 p->p_comm, uid, signo, error);
2099 else
2100 log(LOG_INFO, logcoredump, p->p_pid,
2101 p->p_comm, uid, signo);
2102 }
2103
2104 #ifdef PAX_SEGVGUARD
2105 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2106 #endif /* PAX_SEGVGUARD */
2107 /* Acquire the sched state mutex. exit1() will release it. */
2108 mutex_enter(p->p_lock);
2109 if (error == 0)
2110 p->p_sflag |= PS_COREDUMP;
2111 }
2112
2113 /* No longer dumping core. */
2114 p->p_sflag &= ~PS_WCORE;
2115
2116 exit1(l, 0, exitsig);
2117 /* NOTREACHED */
2118 }
2119
2120 /*
2121 * Put process 'p' into the stopped state and optionally, notify the parent.
2122 */
2123 void
2124 proc_stop(struct proc *p, int signo)
2125 {
2126 struct lwp *l;
2127
2128 KASSERT(mutex_owned(p->p_lock));
2129
2130 /*
2131 * First off, set the stopping indicator and bring all sleeping
2132 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2133 * unlock between here and the p->p_nrlwps check below.
2134 */
2135 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2136 membar_producer();
2137
2138 proc_stop_lwps(p);
2139
2140 /*
2141 * If there are no LWPs available to take the signal, then we
2142 * signal the parent process immediately. Otherwise, the last
2143 * LWP to stop will take care of it.
2144 */
2145
2146 if (p->p_nrlwps == 0) {
2147 proc_stop_done(p, PS_NOCLDSTOP);
2148 } else {
2149 /*
2150 * Have the remaining LWPs come to a halt, and trigger
2151 * proc_stop_callout() to ensure that they do.
2152 */
2153 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2154 sigpost(l, SIG_DFL, SA_STOP, signo);
2155 }
2156 callout_schedule(&proc_stop_ch, 1);
2157 }
2158 }
2159
2160 /*
2161 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2162 * but wait for them to come to a halt at the kernel-user boundary. This is
2163 * to allow LWPs to release any locks that they may hold before stopping.
2164 *
2165 * Non-interruptable sleeps can be long, and there is the potential for an
2166 * LWP to begin sleeping interruptably soon after the process has been set
2167 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2168 * stopping, and so complete halt of the process and the return of status
2169 * information to the parent could be delayed indefinitely.
2170 *
2171 * To handle this race, proc_stop_callout() runs once per tick while there
2172 * are stopping processes in the system. It sets LWPs that are sleeping
2173 * interruptably into the LSSTOP state.
2174 *
2175 * Note that we are not concerned about keeping all LWPs stopped while the
2176 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2177 * What we do need to ensure is that all LWPs in a stopping process have
2178 * stopped at least once, so that notification can be sent to the parent
2179 * process.
2180 */
2181 static void
2182 proc_stop_callout(void *cookie)
2183 {
2184 bool more, restart;
2185 struct proc *p;
2186
2187 (void)cookie;
2188
2189 do {
2190 restart = false;
2191 more = false;
2192
2193 mutex_enter(proc_lock);
2194 PROCLIST_FOREACH(p, &allproc) {
2195 mutex_enter(p->p_lock);
2196
2197 if ((p->p_sflag & PS_STOPPING) == 0) {
2198 mutex_exit(p->p_lock);
2199 continue;
2200 }
2201
2202 /* Stop any LWPs sleeping interruptably. */
2203 proc_stop_lwps(p);
2204 if (p->p_nrlwps == 0) {
2205 /*
2206 * We brought the process to a halt.
2207 * Mark it as stopped and notify the
2208 * parent.
2209 */
2210 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2211 /*
2212 * Note that proc_stop_done() will
2213 * drop p->p_lock briefly.
2214 * Arrange to restart and check
2215 * all processes again.
2216 */
2217 restart = true;
2218 }
2219 proc_stop_done(p, PS_NOCLDSTOP);
2220 } else
2221 more = true;
2222
2223 mutex_exit(p->p_lock);
2224 if (restart)
2225 break;
2226 }
2227 mutex_exit(proc_lock);
2228 } while (restart);
2229
2230 /*
2231 * If we noted processes that are stopping but still have
2232 * running LWPs, then arrange to check again in 1 tick.
2233 */
2234 if (more)
2235 callout_schedule(&proc_stop_ch, 1);
2236 }
2237
2238 /*
2239 * Given a process in state SSTOP, set the state back to SACTIVE and
2240 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2241 */
2242 void
2243 proc_unstop(struct proc *p)
2244 {
2245 struct lwp *l;
2246 int sig;
2247
2248 KASSERT(mutex_owned(proc_lock));
2249 KASSERT(mutex_owned(p->p_lock));
2250
2251 p->p_stat = SACTIVE;
2252 p->p_sflag &= ~PS_STOPPING;
2253 sig = p->p_xsig;
2254
2255 if (!p->p_waited)
2256 p->p_pptr->p_nstopchild--;
2257
2258 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2259 lwp_lock(l);
2260 if (l->l_stat != LSSTOP) {
2261 lwp_unlock(l);
2262 continue;
2263 }
2264 if (l->l_wchan == NULL) {
2265 setrunnable(l);
2266 continue;
2267 }
2268 if (sig && (l->l_flag & LW_SINTR) != 0) {
2269 setrunnable(l);
2270 sig = 0;
2271 } else {
2272 l->l_stat = LSSLEEP;
2273 p->p_nrlwps++;
2274 lwp_unlock(l);
2275 }
2276 }
2277 }
2278
2279 void
2280 proc_stoptrace(int trapno)
2281 {
2282 struct lwp *l = curlwp;
2283 struct proc *p = l->l_proc;
2284 struct sigacts *ps;
2285 sigset_t *mask;
2286 sig_t action;
2287 ksiginfo_t ksi;
2288 const int signo = SIGTRAP;
2289
2290 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2291
2292 KSI_INIT_TRAP(&ksi);
2293 ksi.ksi_lid = l->l_lid;
2294 ksi.ksi_info._signo = signo;
2295 ksi.ksi_info._code = trapno;
2296
2297 mutex_enter(p->p_lock);
2298
2299 /* Needed for ktrace */
2300 ps = p->p_sigacts;
2301 action = SIGACTION_PS(ps, signo).sa_handler;
2302 mask = &l->l_sigmask;
2303
2304 /* initproc (PID1) cannot became a debugger */
2305 KASSERT(p->p_pptr != initproc);
2306
2307 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2308 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2309
2310 p->p_xsig = signo;
2311 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2312 p->p_sigctx.ps_info = ksi.ksi_info;
2313 sigswitch(0, signo, true);
2314 mutex_exit(p->p_lock);
2315
2316 if (ktrpoint(KTR_PSIG)) {
2317 if (p->p_emul->e_ktrpsig)
2318 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2319 else
2320 ktrpsig(signo, action, mask, &ksi);
2321 }
2322 }
2323
2324 static int
2325 filt_sigattach(struct knote *kn)
2326 {
2327 struct proc *p = curproc;
2328
2329 kn->kn_obj = p;
2330 kn->kn_flags |= EV_CLEAR; /* automatically set */
2331
2332 mutex_enter(p->p_lock);
2333 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2334 mutex_exit(p->p_lock);
2335
2336 return 0;
2337 }
2338
2339 static void
2340 filt_sigdetach(struct knote *kn)
2341 {
2342 struct proc *p = kn->kn_obj;
2343
2344 mutex_enter(p->p_lock);
2345 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2346 mutex_exit(p->p_lock);
2347 }
2348
2349 /*
2350 * Signal knotes are shared with proc knotes, so we apply a mask to
2351 * the hint in order to differentiate them from process hints. This
2352 * could be avoided by using a signal-specific knote list, but probably
2353 * isn't worth the trouble.
2354 */
2355 static int
2356 filt_signal(struct knote *kn, long hint)
2357 {
2358
2359 if (hint & NOTE_SIGNAL) {
2360 hint &= ~NOTE_SIGNAL;
2361
2362 if (kn->kn_id == hint)
2363 kn->kn_data++;
2364 }
2365 return (kn->kn_data != 0);
2366 }
2367
2368 const struct filterops sig_filtops = {
2369 .f_isfd = 0,
2370 .f_attach = filt_sigattach,
2371 .f_detach = filt_sigdetach,
2372 .f_event = filt_signal,
2373 };
2374