kern_sig.c revision 1.351 1 /* $NetBSD: kern_sig.c,v 1.351 2019/03/08 23:32:30 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.351 2019/03/08 23:32:30 kamil Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107
108 #include <uvm/uvm_extern.h>
109
110 #define SIGQUEUE_MAX 32
111 static pool_cache_t sigacts_cache __read_mostly;
112 static pool_cache_t ksiginfo_cache __read_mostly;
113 static callout_t proc_stop_ch __cacheline_aligned;
114
115 sigset_t contsigmask __cacheline_aligned;
116 sigset_t stopsigmask __cacheline_aligned;
117 static sigset_t vforksigmask __cacheline_aligned;
118 sigset_t sigcantmask __cacheline_aligned;
119
120 static void ksiginfo_exechook(struct proc *, void *);
121 static void proc_stop(struct proc *, int);
122 static void proc_stop_done(struct proc *, int);
123 static void proc_stop_callout(void *);
124 static int sigchecktrace(void);
125 static int sigpost(struct lwp *, sig_t, int, int);
126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int sigunwait(struct proc *, const ksiginfo_t *);
128
129 static void sigacts_poolpage_free(struct pool *, void *);
130 static void *sigacts_poolpage_alloc(struct pool *, int);
131
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134 (int (*)(struct lwp *, const char *))enosys;
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 */
715 int
716 sigispending(struct lwp *l, int signo)
717 {
718 struct proc *p = l->l_proc;
719 sigset_t tset;
720
721 membar_consumer();
722
723 tset = l->l_sigpend.sp_set;
724 sigplusset(&p->p_sigpend.sp_set, &tset);
725 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
726 sigminusset(&l->l_sigmask, &tset);
727
728 if (signo == 0) {
729 return firstsig(&tset);
730 }
731 return sigismember(&tset, signo) ? signo : 0;
732 }
733
734 void
735 getucontext(struct lwp *l, ucontext_t *ucp)
736 {
737 struct proc *p = l->l_proc;
738
739 KASSERT(mutex_owned(p->p_lock));
740
741 ucp->uc_flags = 0;
742 ucp->uc_link = l->l_ctxlink;
743 ucp->uc_sigmask = l->l_sigmask;
744 ucp->uc_flags |= _UC_SIGMASK;
745
746 /*
747 * The (unsupplied) definition of the `current execution stack'
748 * in the System V Interface Definition appears to allow returning
749 * the main context stack.
750 */
751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
755 } else {
756 /* Simply copy alternate signal execution stack. */
757 ucp->uc_stack = l->l_sigstk;
758 }
759 ucp->uc_flags |= _UC_STACK;
760 mutex_exit(p->p_lock);
761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
762 mutex_enter(p->p_lock);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * killpg1: common code for kill process group/broadcast kill.
803 */
804 int
805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
806 {
807 struct proc *p, *cp;
808 kauth_cred_t pc;
809 struct pgrp *pgrp;
810 int nfound;
811 int signo = ksi->ksi_signo;
812
813 cp = l->l_proc;
814 pc = l->l_cred;
815 nfound = 0;
816
817 mutex_enter(proc_lock);
818 if (all) {
819 /*
820 * Broadcast.
821 */
822 PROCLIST_FOREACH(p, &allproc) {
823 if (p->p_pid <= 1 || p == cp ||
824 (p->p_flag & PK_SYSTEM) != 0)
825 continue;
826 mutex_enter(p->p_lock);
827 if (kauth_authorize_process(pc,
828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
829 NULL) == 0) {
830 nfound++;
831 if (signo)
832 kpsignal2(p, ksi);
833 }
834 mutex_exit(p->p_lock);
835 }
836 } else {
837 if (pgid == 0)
838 /* Zero pgid means send to my process group. */
839 pgrp = cp->p_pgrp;
840 else {
841 pgrp = pgrp_find(pgid);
842 if (pgrp == NULL)
843 goto out;
844 }
845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
847 continue;
848 mutex_enter(p->p_lock);
849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
850 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
851 nfound++;
852 if (signo && P_ZOMBIE(p) == 0)
853 kpsignal2(p, ksi);
854 }
855 mutex_exit(p->p_lock);
856 }
857 }
858 out:
859 mutex_exit(proc_lock);
860 return nfound ? 0 : ESRCH;
861 }
862
863 /*
864 * Send a signal to a process group. If checktty is set, limit to members
865 * which have a controlling terminal.
866 */
867 void
868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
869 {
870 ksiginfo_t ksi;
871
872 KASSERT(!cpu_intr_p());
873 KASSERT(mutex_owned(proc_lock));
874
875 KSI_INIT_EMPTY(&ksi);
876 ksi.ksi_signo = sig;
877 kpgsignal(pgrp, &ksi, NULL, checkctty);
878 }
879
880 void
881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
882 {
883 struct proc *p;
884
885 KASSERT(!cpu_intr_p());
886 KASSERT(mutex_owned(proc_lock));
887 KASSERT(pgrp != NULL);
888
889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
891 kpsignal(p, ksi, data);
892 }
893
894 /*
895 * Send a signal caused by a trap to the current LWP. If it will be caught
896 * immediately, deliver it with correct code. Otherwise, post it normally.
897 */
898 void
899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
900 {
901 struct proc *p;
902 struct sigacts *ps;
903 int signo = ksi->ksi_signo;
904 sigset_t *mask;
905
906 KASSERT(KSI_TRAP_P(ksi));
907
908 ksi->ksi_lid = l->l_lid;
909 p = l->l_proc;
910
911 KASSERT(!cpu_intr_p());
912 mutex_enter(proc_lock);
913 mutex_enter(p->p_lock);
914
915 if (ISSET(p->p_slflag, PSL_TRACED) &&
916 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT))) {
917 p->p_xsig = signo;
918 p->p_sigctx.ps_faked = true; // XXX
919 p->p_sigctx.ps_info._signo = signo;
920 p->p_sigctx.ps_info._code = ksi->ksi_code;
921 sigswitch(0, signo, false);
922 // XXX ktrpoint(KTR_PSIG)
923 mutex_exit(p->p_lock);
924 return;
925 }
926
927 mask = &l->l_sigmask;
928 ps = p->p_sigacts;
929
930 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
931 const bool masked = sigismember(mask, signo);
932 if (caught && !masked) {
933 mutex_exit(proc_lock);
934 l->l_ru.ru_nsignals++;
935 kpsendsig(l, ksi, mask);
936 mutex_exit(p->p_lock);
937 if (ktrpoint(KTR_PSIG)) {
938 if (p->p_emul->e_ktrpsig)
939 p->p_emul->e_ktrpsig(signo,
940 SIGACTION_PS(ps, signo).sa_handler,
941 mask, ksi);
942 else
943 ktrpsig(signo,
944 SIGACTION_PS(ps, signo).sa_handler,
945 mask, ksi);
946 }
947 return;
948 }
949
950 /*
951 * If the signal is masked or ignored, then unmask it and
952 * reset it to the default action so that the process or
953 * its tracer will be notified.
954 */
955 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
956 if (masked || ignored) {
957 mutex_enter(&ps->sa_mutex);
958 sigdelset(mask, signo);
959 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
960 sigdelset(&p->p_sigctx.ps_sigignore, signo);
961 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
962 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
963 mutex_exit(&ps->sa_mutex);
964 }
965
966 kpsignal2(p, ksi);
967 mutex_exit(p->p_lock);
968 mutex_exit(proc_lock);
969 }
970
971 /*
972 * Fill in signal information and signal the parent for a child status change.
973 */
974 void
975 child_psignal(struct proc *p, int mask)
976 {
977 ksiginfo_t ksi;
978 struct proc *q;
979 int xsig;
980
981 KASSERT(mutex_owned(proc_lock));
982 KASSERT(mutex_owned(p->p_lock));
983
984 xsig = p->p_xsig;
985
986 KSI_INIT(&ksi);
987 ksi.ksi_signo = SIGCHLD;
988 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
989 ksi.ksi_pid = p->p_pid;
990 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
991 ksi.ksi_status = xsig;
992 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
993 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
994
995 q = p->p_pptr;
996
997 mutex_exit(p->p_lock);
998 mutex_enter(q->p_lock);
999
1000 if ((q->p_sflag & mask) == 0)
1001 kpsignal2(q, &ksi);
1002
1003 mutex_exit(q->p_lock);
1004 mutex_enter(p->p_lock);
1005 }
1006
1007 void
1008 psignal(struct proc *p, int signo)
1009 {
1010 ksiginfo_t ksi;
1011
1012 KASSERT(!cpu_intr_p());
1013 KASSERT(mutex_owned(proc_lock));
1014
1015 KSI_INIT_EMPTY(&ksi);
1016 ksi.ksi_signo = signo;
1017 mutex_enter(p->p_lock);
1018 kpsignal2(p, &ksi);
1019 mutex_exit(p->p_lock);
1020 }
1021
1022 void
1023 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1024 {
1025 fdfile_t *ff;
1026 file_t *fp;
1027 fdtab_t *dt;
1028
1029 KASSERT(!cpu_intr_p());
1030 KASSERT(mutex_owned(proc_lock));
1031
1032 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1033 size_t fd;
1034 filedesc_t *fdp = p->p_fd;
1035
1036 /* XXXSMP locking */
1037 ksi->ksi_fd = -1;
1038 dt = fdp->fd_dt;
1039 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1040 if ((ff = dt->dt_ff[fd]) == NULL)
1041 continue;
1042 if ((fp = ff->ff_file) == NULL)
1043 continue;
1044 if (fp->f_data == data) {
1045 ksi->ksi_fd = fd;
1046 break;
1047 }
1048 }
1049 }
1050 mutex_enter(p->p_lock);
1051 kpsignal2(p, ksi);
1052 mutex_exit(p->p_lock);
1053 }
1054
1055 /*
1056 * sigismasked:
1057 *
1058 * Returns true if signal is ignored or masked for the specified LWP.
1059 */
1060 int
1061 sigismasked(struct lwp *l, int sig)
1062 {
1063 struct proc *p = l->l_proc;
1064
1065 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1066 sigismember(&l->l_sigmask, sig);
1067 }
1068
1069 /*
1070 * sigpost:
1071 *
1072 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1073 * be able to take the signal.
1074 */
1075 static int
1076 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1077 {
1078 int rv, masked;
1079 struct proc *p = l->l_proc;
1080
1081 KASSERT(mutex_owned(p->p_lock));
1082
1083 /*
1084 * If the LWP is on the way out, sigclear() will be busy draining all
1085 * pending signals. Don't give it more.
1086 */
1087 if (l->l_refcnt == 0)
1088 return 0;
1089
1090 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1091
1092 /*
1093 * Have the LWP check for signals. This ensures that even if no LWP
1094 * is found to take the signal immediately, it should be taken soon.
1095 */
1096 lwp_lock(l);
1097 l->l_flag |= LW_PENDSIG;
1098
1099 /*
1100 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1101 * Note: SIGKILL and SIGSTOP cannot be masked.
1102 */
1103 masked = sigismember(&l->l_sigmask, sig);
1104 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1105 lwp_unlock(l);
1106 return 0;
1107 }
1108
1109 /*
1110 * If killing the process, make it run fast.
1111 */
1112 if (__predict_false((prop & SA_KILL) != 0) &&
1113 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1114 KASSERT(l->l_class == SCHED_OTHER);
1115 lwp_changepri(l, MAXPRI_USER);
1116 }
1117
1118 /*
1119 * If the LWP is running or on a run queue, then we win. If it's
1120 * sleeping interruptably, wake it and make it take the signal. If
1121 * the sleep isn't interruptable, then the chances are it will get
1122 * to see the signal soon anyhow. If suspended, it can't take the
1123 * signal right now. If it's LWP private or for all LWPs, save it
1124 * for later; otherwise punt.
1125 */
1126 rv = 0;
1127
1128 switch (l->l_stat) {
1129 case LSRUN:
1130 case LSONPROC:
1131 lwp_need_userret(l);
1132 rv = 1;
1133 break;
1134
1135 case LSSLEEP:
1136 if ((l->l_flag & LW_SINTR) != 0) {
1137 /* setrunnable() will release the lock. */
1138 setrunnable(l);
1139 return 1;
1140 }
1141 break;
1142
1143 case LSSUSPENDED:
1144 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1145 /* lwp_continue() will release the lock. */
1146 lwp_continue(l);
1147 return 1;
1148 }
1149 break;
1150
1151 case LSSTOP:
1152 if ((prop & SA_STOP) != 0)
1153 break;
1154
1155 /*
1156 * If the LWP is stopped and we are sending a continue
1157 * signal, then start it again.
1158 */
1159 if ((prop & SA_CONT) != 0) {
1160 if (l->l_wchan != NULL) {
1161 l->l_stat = LSSLEEP;
1162 p->p_nrlwps++;
1163 rv = 1;
1164 break;
1165 }
1166 /* setrunnable() will release the lock. */
1167 setrunnable(l);
1168 return 1;
1169 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1170 /* setrunnable() will release the lock. */
1171 setrunnable(l);
1172 return 1;
1173 }
1174 break;
1175
1176 default:
1177 break;
1178 }
1179
1180 lwp_unlock(l);
1181 return rv;
1182 }
1183
1184 /*
1185 * Notify an LWP that it has a pending signal.
1186 */
1187 void
1188 signotify(struct lwp *l)
1189 {
1190 KASSERT(lwp_locked(l, NULL));
1191
1192 l->l_flag |= LW_PENDSIG;
1193 lwp_need_userret(l);
1194 }
1195
1196 /*
1197 * Find an LWP within process p that is waiting on signal ksi, and hand
1198 * it on.
1199 */
1200 static int
1201 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1202 {
1203 struct lwp *l;
1204 int signo;
1205
1206 KASSERT(mutex_owned(p->p_lock));
1207
1208 signo = ksi->ksi_signo;
1209
1210 if (ksi->ksi_lid != 0) {
1211 /*
1212 * Signal came via _lwp_kill(). Find the LWP and see if
1213 * it's interested.
1214 */
1215 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1216 return 0;
1217 if (l->l_sigwaited == NULL ||
1218 !sigismember(&l->l_sigwaitset, signo))
1219 return 0;
1220 } else {
1221 /*
1222 * Look for any LWP that may be interested.
1223 */
1224 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1225 KASSERT(l->l_sigwaited != NULL);
1226 if (sigismember(&l->l_sigwaitset, signo))
1227 break;
1228 }
1229 }
1230
1231 if (l != NULL) {
1232 l->l_sigwaited->ksi_info = ksi->ksi_info;
1233 l->l_sigwaited = NULL;
1234 LIST_REMOVE(l, l_sigwaiter);
1235 cv_signal(&l->l_sigcv);
1236 return 1;
1237 }
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * Send the signal to the process. If the signal has an action, the action
1244 * is usually performed by the target process rather than the caller; we add
1245 * the signal to the set of pending signals for the process.
1246 *
1247 * Exceptions:
1248 * o When a stop signal is sent to a sleeping process that takes the
1249 * default action, the process is stopped without awakening it.
1250 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1251 * regardless of the signal action (eg, blocked or ignored).
1252 *
1253 * Other ignored signals are discarded immediately.
1254 */
1255 int
1256 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1257 {
1258 int prop, signo = ksi->ksi_signo;
1259 struct lwp *l = NULL;
1260 ksiginfo_t *kp;
1261 lwpid_t lid;
1262 sig_t action;
1263 bool toall, debtrap = false;
1264 int error = 0;
1265
1266 KASSERT(!cpu_intr_p());
1267 KASSERT(mutex_owned(proc_lock));
1268 KASSERT(mutex_owned(p->p_lock));
1269 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1270 KASSERT(signo > 0 && signo < NSIG);
1271
1272 /*
1273 * If the process is being created by fork, is a zombie or is
1274 * exiting, then just drop the signal here and bail out.
1275 */
1276 if (p->p_stat == SIDL && signo == SIGTRAP
1277 && (p->p_slflag & PSL_TRACED)) {
1278 /* allow an initial SIGTRAP for traced processes */
1279 debtrap = true;
1280 } else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1281 return 0;
1282 }
1283
1284 /* XXX for core dump/debugger */
1285 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1286 p->p_sigctx.ps_info = ksi->ksi_info;
1287
1288 /*
1289 * Notify any interested parties of the signal.
1290 */
1291 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1292
1293 /*
1294 * Some signals including SIGKILL must act on the entire process.
1295 */
1296 kp = NULL;
1297 prop = sigprop[signo];
1298 toall = ((prop & SA_TOALL) != 0);
1299 lid = toall ? 0 : ksi->ksi_lid;
1300
1301 /*
1302 * If proc is traced, always give parent a chance.
1303 */
1304 if (p->p_slflag & PSL_TRACED) {
1305 action = SIG_DFL;
1306
1307 if (lid == 0) {
1308 /*
1309 * If the process is being traced and the signal
1310 * is being caught, make sure to save any ksiginfo.
1311 */
1312 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1313 goto discard;
1314 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1315 goto out;
1316 }
1317 } else {
1318
1319 /*
1320 * If the signal is being ignored, then drop it. Note: we
1321 * don't set SIGCONT in ps_sigignore, and if it is set to
1322 * SIG_IGN, action will be SIG_DFL here.
1323 */
1324 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1325 goto discard;
1326
1327 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1328 action = SIG_CATCH;
1329 else {
1330 action = SIG_DFL;
1331
1332 /*
1333 * If sending a tty stop signal to a member of an
1334 * orphaned process group, discard the signal here if
1335 * the action is default; don't stop the process below
1336 * if sleeping, and don't clear any pending SIGCONT.
1337 */
1338 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1339 goto discard;
1340
1341 if (prop & SA_KILL && p->p_nice > NZERO)
1342 p->p_nice = NZERO;
1343 }
1344 }
1345
1346 /*
1347 * If stopping or continuing a process, discard any pending
1348 * signals that would do the inverse.
1349 */
1350 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1351 ksiginfoq_t kq;
1352
1353 ksiginfo_queue_init(&kq);
1354 if ((prop & SA_CONT) != 0)
1355 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1356 if ((prop & SA_STOP) != 0)
1357 sigclear(&p->p_sigpend, &contsigmask, &kq);
1358 ksiginfo_queue_drain(&kq); /* XXXSMP */
1359 }
1360
1361 /*
1362 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1363 * please!), check if any LWPs are waiting on it. If yes, pass on
1364 * the signal info. The signal won't be processed further here.
1365 */
1366 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1367 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1368 sigunwait(p, ksi))
1369 goto discard;
1370
1371 /*
1372 * XXXSMP Should be allocated by the caller, we're holding locks
1373 * here.
1374 */
1375 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1376 goto discard;
1377
1378 /*
1379 * LWP private signals are easy - just find the LWP and post
1380 * the signal to it.
1381 */
1382 if (lid != 0) {
1383 if (__predict_false(debtrap)) {
1384 l = LIST_FIRST(&p->p_lwps);
1385 if (l->l_lid != lid)
1386 l = NULL;
1387 } else {
1388 l = lwp_find(p, lid);
1389 }
1390 if (l != NULL) {
1391 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1392 goto out;
1393 membar_producer();
1394 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1395 signo = -1;
1396 }
1397 goto out;
1398 }
1399
1400 /*
1401 * Some signals go to all LWPs, even if posted with _lwp_kill()
1402 * or for an SA process.
1403 */
1404 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1405 if ((p->p_slflag & PSL_TRACED) != 0)
1406 goto deliver;
1407
1408 /*
1409 * If SIGCONT is default (or ignored) and process is
1410 * asleep, we are finished; the process should not
1411 * be awakened.
1412 */
1413 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1414 goto out;
1415 } else {
1416 /*
1417 * Process is stopped or stopping.
1418 * - If traced, then no action is needed, unless killing.
1419 * - Run the process only if sending SIGCONT or SIGKILL.
1420 */
1421 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1422 goto out;
1423 }
1424 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1425 /*
1426 * Re-adjust p_nstopchild if the process was
1427 * stopped but not yet collected by its parent.
1428 */
1429 if (p->p_stat == SSTOP && !p->p_waited)
1430 p->p_pptr->p_nstopchild--;
1431 p->p_stat = SACTIVE;
1432 p->p_sflag &= ~PS_STOPPING;
1433 if (p->p_slflag & PSL_TRACED) {
1434 KASSERT(signo == SIGKILL);
1435 goto deliver;
1436 }
1437 /*
1438 * Do not make signal pending if SIGCONT is default.
1439 *
1440 * If the process catches SIGCONT, let it handle the
1441 * signal itself (if waiting on event - process runs,
1442 * otherwise continues sleeping).
1443 */
1444 if ((prop & SA_CONT) != 0) {
1445 p->p_xsig = SIGCONT;
1446 p->p_sflag |= PS_CONTINUED;
1447 child_psignal(p, 0);
1448 if (action == SIG_DFL) {
1449 KASSERT(signo != SIGKILL);
1450 goto deliver;
1451 }
1452 }
1453 } else if ((prop & SA_STOP) != 0) {
1454 /*
1455 * Already stopped, don't need to stop again.
1456 * (If we did the shell could get confused.)
1457 */
1458 goto out;
1459 }
1460 }
1461 /*
1462 * Make signal pending.
1463 */
1464 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1465 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1466 goto out;
1467 deliver:
1468 /*
1469 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1470 * visible on the per process list (for sigispending()). This
1471 * is unlikely to be needed in practice, but...
1472 */
1473 membar_producer();
1474
1475 /*
1476 * Try to find an LWP that can take the signal.
1477 */
1478 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1479 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1480 break;
1481 }
1482 signo = -1;
1483 out:
1484 /*
1485 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1486 * with locks held. The caller should take care of this.
1487 */
1488 ksiginfo_free(kp);
1489 if (signo == -1)
1490 return error;
1491 discard:
1492 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1493 return error;
1494 }
1495
1496 void
1497 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1498 {
1499 struct proc *p = l->l_proc;
1500
1501 KASSERT(mutex_owned(p->p_lock));
1502 (*p->p_emul->e_sendsig)(ksi, mask);
1503 }
1504
1505 /*
1506 * Stop any LWPs sleeping interruptably.
1507 */
1508 static void
1509 proc_stop_lwps(struct proc *p)
1510 {
1511 struct lwp *l;
1512
1513 KASSERT(mutex_owned(p->p_lock));
1514 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1515
1516 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1517 lwp_lock(l);
1518 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1519 l->l_stat = LSSTOP;
1520 p->p_nrlwps--;
1521 }
1522 lwp_unlock(l);
1523 }
1524 }
1525
1526 /*
1527 * Finish stopping of a process. Mark it stopped and notify the parent.
1528 *
1529 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1530 */
1531 static void
1532 proc_stop_done(struct proc *p, int ppmask)
1533 {
1534
1535 KASSERT(mutex_owned(proc_lock));
1536 KASSERT(mutex_owned(p->p_lock));
1537 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1538 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1539
1540 p->p_sflag &= ~PS_STOPPING;
1541 p->p_stat = SSTOP;
1542 p->p_waited = 0;
1543 p->p_pptr->p_nstopchild++;
1544 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1545 /* child_psignal drops p_lock briefly. */
1546 child_psignal(p, ppmask);
1547 cv_broadcast(&p->p_pptr->p_waitcv);
1548 }
1549 }
1550
1551 /*
1552 * Stop the current process and switch away when being stopped or traced.
1553 */
1554 void
1555 sigswitch(int ppmask, int signo, bool relock)
1556 {
1557 struct lwp *l = curlwp;
1558 struct proc *p = l->l_proc;
1559 int biglocks;
1560
1561 KASSERT(mutex_owned(p->p_lock));
1562 KASSERT(l->l_stat == LSONPROC);
1563 KASSERT(p->p_nrlwps > 0);
1564
1565 /*
1566 * On entry we know that the process needs to stop. If it's
1567 * the result of a 'sideways' stop signal that has been sourced
1568 * through issignal(), then stop other LWPs in the process too.
1569 */
1570 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1571 KASSERT(signo != 0);
1572 proc_stop(p, signo);
1573 KASSERT(p->p_nrlwps > 0);
1574 }
1575
1576 /*
1577 * If we are the last live LWP, and the stop was a result of
1578 * a new signal, then signal the parent.
1579 */
1580 if ((p->p_sflag & PS_STOPPING) != 0) {
1581 if (relock && !mutex_tryenter(proc_lock)) {
1582 mutex_exit(p->p_lock);
1583 mutex_enter(proc_lock);
1584 mutex_enter(p->p_lock);
1585 }
1586
1587 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1588 /*
1589 * Note that proc_stop_done() can drop
1590 * p->p_lock briefly.
1591 */
1592 proc_stop_done(p, ppmask);
1593 }
1594
1595 mutex_exit(proc_lock);
1596 }
1597
1598 /*
1599 * Unlock and switch away.
1600 */
1601 KERNEL_UNLOCK_ALL(l, &biglocks);
1602 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1603 p->p_nrlwps--;
1604 lwp_lock(l);
1605 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1606 l->l_stat = LSSTOP;
1607 lwp_unlock(l);
1608 }
1609
1610 mutex_exit(p->p_lock);
1611 lwp_lock(l);
1612 mi_switch(l);
1613 KERNEL_LOCK(biglocks, l);
1614 mutex_enter(p->p_lock);
1615 }
1616
1617 /*
1618 * Check for a signal from the debugger.
1619 */
1620 static int
1621 sigchecktrace(void)
1622 {
1623 struct lwp *l = curlwp;
1624 struct proc *p = l->l_proc;
1625 int signo;
1626
1627 KASSERT(mutex_owned(p->p_lock));
1628
1629 /* If there's a pending SIGKILL, process it immediately. */
1630 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1631 return 0;
1632
1633 /*
1634 * If we are no longer being traced, or the parent didn't
1635 * give us a signal, or we're stopping, look for more signals.
1636 */
1637 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1638 (p->p_sflag & PS_STOPPING) != 0)
1639 return 0;
1640
1641 /*
1642 * If the new signal is being masked, look for other signals.
1643 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1644 */
1645 signo = p->p_xsig;
1646 p->p_xsig = 0;
1647 if (sigismember(&l->l_sigmask, signo)) {
1648 signo = 0;
1649 }
1650 return signo;
1651 }
1652
1653 /*
1654 * If the current process has received a signal (should be caught or cause
1655 * termination, should interrupt current syscall), return the signal number.
1656 *
1657 * Stop signals with default action are processed immediately, then cleared;
1658 * they aren't returned. This is checked after each entry to the system for
1659 * a syscall or trap.
1660 *
1661 * We will also return -1 if the process is exiting and the current LWP must
1662 * follow suit.
1663 */
1664 int
1665 issignal(struct lwp *l)
1666 {
1667 struct proc *p;
1668 int signo, prop;
1669 sigpend_t *sp;
1670 sigset_t ss;
1671
1672 p = l->l_proc;
1673 sp = NULL;
1674 signo = 0;
1675
1676 KASSERT(p == curproc);
1677 KASSERT(mutex_owned(p->p_lock));
1678
1679 for (;;) {
1680 /* Discard any signals that we have decided not to take. */
1681 if (signo != 0) {
1682 (void)sigget(sp, NULL, signo, NULL);
1683 }
1684
1685 /*
1686 * If the process is stopped/stopping, then stop ourselves
1687 * now that we're on the kernel/userspace boundary. When
1688 * we awaken, check for a signal from the debugger.
1689 */
1690 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1691 sigswitch(PS_NOCLDSTOP, 0, true);
1692 signo = sigchecktrace();
1693 } else if (p->p_stat == SACTIVE)
1694 signo = sigchecktrace();
1695 else
1696 signo = 0;
1697
1698 /* Signals from the debugger are "out of band". */
1699 sp = NULL;
1700
1701 /*
1702 * If the debugger didn't provide a signal, find a pending
1703 * signal from our set. Check per-LWP signals first, and
1704 * then per-process.
1705 */
1706 if (signo == 0) {
1707 sp = &l->l_sigpend;
1708 ss = sp->sp_set;
1709 if ((p->p_lflag & PL_PPWAIT) != 0)
1710 sigminusset(&vforksigmask, &ss);
1711 sigminusset(&l->l_sigmask, &ss);
1712
1713 if ((signo = firstsig(&ss)) == 0) {
1714 sp = &p->p_sigpend;
1715 ss = sp->sp_set;
1716 if ((p->p_lflag & PL_PPWAIT) != 0)
1717 sigminusset(&vforksigmask, &ss);
1718 sigminusset(&l->l_sigmask, &ss);
1719
1720 if ((signo = firstsig(&ss)) == 0) {
1721 /*
1722 * No signal pending - clear the
1723 * indicator and bail out.
1724 */
1725 lwp_lock(l);
1726 l->l_flag &= ~LW_PENDSIG;
1727 lwp_unlock(l);
1728 sp = NULL;
1729 break;
1730 }
1731 }
1732 }
1733
1734 /*
1735 * We should see pending but ignored signals only if
1736 * we are being traced.
1737 */
1738 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1739 (p->p_slflag & PSL_TRACED) == 0) {
1740 /* Discard the signal. */
1741 continue;
1742 }
1743
1744 /*
1745 * If traced, always stop, and stay stopped until released
1746 * by the debugger. If the our parent is our debugger waiting
1747 * for us and we vforked, don't hang as we could deadlock.
1748 */
1749 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1750 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1751 (p->p_pptr == p->p_opptr))) {
1752 /*
1753 * Take the signal, but don't remove it from the
1754 * siginfo queue, because the debugger can send
1755 * it later.
1756 */
1757 if (sp)
1758 sigdelset(&sp->sp_set, signo);
1759 p->p_xsig = signo;
1760
1761 /* Handling of signal trace */
1762 sigswitch(0, signo, true);
1763
1764 /* Check for a signal from the debugger. */
1765 if ((signo = sigchecktrace()) == 0)
1766 continue;
1767
1768 /* Signals from the debugger are "out of band". */
1769 sp = NULL;
1770 }
1771
1772 prop = sigprop[signo];
1773
1774 /*
1775 * Decide whether the signal should be returned.
1776 */
1777 switch ((long)SIGACTION(p, signo).sa_handler) {
1778 case (long)SIG_DFL:
1779 /*
1780 * Don't take default actions on system processes.
1781 */
1782 if (p->p_pid <= 1) {
1783 #ifdef DIAGNOSTIC
1784 /*
1785 * Are you sure you want to ignore SIGSEGV
1786 * in init? XXX
1787 */
1788 printf_nolog("Process (pid %d) got sig %d\n",
1789 p->p_pid, signo);
1790 #endif
1791 continue;
1792 }
1793
1794 /*
1795 * If there is a pending stop signal to process with
1796 * default action, stop here, then clear the signal.
1797 * However, if process is member of an orphaned
1798 * process group, ignore tty stop signals.
1799 */
1800 if (prop & SA_STOP) {
1801 /*
1802 * XXX Don't hold proc_lock for p_lflag,
1803 * but it's not a big deal.
1804 */
1805 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1806 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1807 (p->p_pptr == p->p_opptr))) ||
1808 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1809 prop & SA_TTYSTOP)) {
1810 /* Ignore the signal. */
1811 continue;
1812 }
1813 /* Take the signal. */
1814 (void)sigget(sp, NULL, signo, NULL);
1815 p->p_xsig = signo;
1816 p->p_sflag &= ~PS_CONTINUED;
1817 signo = 0;
1818 sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1819 } else if (prop & SA_IGNORE) {
1820 /*
1821 * Except for SIGCONT, shouldn't get here.
1822 * Default action is to ignore; drop it.
1823 */
1824 continue;
1825 }
1826 break;
1827
1828 case (long)SIG_IGN:
1829 #ifdef DEBUG_ISSIGNAL
1830 /*
1831 * Masking above should prevent us ever trying
1832 * to take action on an ignored signal other
1833 * than SIGCONT, unless process is traced.
1834 */
1835 if ((prop & SA_CONT) == 0 &&
1836 (p->p_slflag & PSL_TRACED) == 0)
1837 printf_nolog("issignal\n");
1838 #endif
1839 continue;
1840
1841 default:
1842 /*
1843 * This signal has an action, let postsig() process
1844 * it.
1845 */
1846 break;
1847 }
1848
1849 break;
1850 }
1851
1852 l->l_sigpendset = sp;
1853 return signo;
1854 }
1855
1856 /*
1857 * Take the action for the specified signal
1858 * from the current set of pending signals.
1859 */
1860 void
1861 postsig(int signo)
1862 {
1863 struct lwp *l;
1864 struct proc *p;
1865 struct sigacts *ps;
1866 sig_t action;
1867 sigset_t *returnmask;
1868 ksiginfo_t ksi;
1869
1870 l = curlwp;
1871 p = l->l_proc;
1872 ps = p->p_sigacts;
1873
1874 KASSERT(mutex_owned(p->p_lock));
1875 KASSERT(signo > 0);
1876
1877 /*
1878 * Set the new mask value and also defer further occurrences of this
1879 * signal.
1880 *
1881 * Special case: user has done a sigsuspend. Here the current mask is
1882 * not of interest, but rather the mask from before the sigsuspend is
1883 * what we want restored after the signal processing is completed.
1884 */
1885 if (l->l_sigrestore) {
1886 returnmask = &l->l_sigoldmask;
1887 l->l_sigrestore = 0;
1888 } else
1889 returnmask = &l->l_sigmask;
1890
1891 /*
1892 * Commit to taking the signal before releasing the mutex.
1893 */
1894 action = SIGACTION_PS(ps, signo).sa_handler;
1895 l->l_ru.ru_nsignals++;
1896 if (l->l_sigpendset == NULL) {
1897 /* From the debugger */
1898 if (p->p_sigctx.ps_faked &&
1899 signo == p->p_sigctx.ps_info._signo) {
1900 KSI_INIT(&ksi);
1901 ksi.ksi_info = p->p_sigctx.ps_info;
1902 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1903 p->p_sigctx.ps_faked = false;
1904 } else {
1905 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1906 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1907 }
1908 } else
1909 sigget(l->l_sigpendset, &ksi, signo, NULL);
1910
1911 if (ktrpoint(KTR_PSIG)) {
1912 mutex_exit(p->p_lock);
1913 if (p->p_emul->e_ktrpsig)
1914 p->p_emul->e_ktrpsig(signo, action,
1915 returnmask, &ksi);
1916 else
1917 ktrpsig(signo, action, returnmask, &ksi);
1918 mutex_enter(p->p_lock);
1919 }
1920
1921 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1922
1923 if (action == SIG_DFL) {
1924 /*
1925 * Default action, where the default is to kill
1926 * the process. (Other cases were ignored above.)
1927 */
1928 sigexit(l, signo);
1929 return;
1930 }
1931
1932 /*
1933 * If we get here, the signal must be caught.
1934 */
1935 #ifdef DIAGNOSTIC
1936 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1937 panic("postsig action");
1938 #endif
1939
1940 kpsendsig(l, &ksi, returnmask);
1941 }
1942
1943 /*
1944 * sendsig:
1945 *
1946 * Default signal delivery method for NetBSD.
1947 */
1948 void
1949 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1950 {
1951 struct sigacts *sa;
1952 int sig;
1953
1954 sig = ksi->ksi_signo;
1955 sa = curproc->p_sigacts;
1956
1957 switch (sa->sa_sigdesc[sig].sd_vers) {
1958 case 0:
1959 case 1:
1960 /* Compat for 1.6 and earlier. */
1961 if (sendsig_sigcontext_vec == NULL) {
1962 break;
1963 }
1964 (*sendsig_sigcontext_vec)(ksi, mask);
1965 return;
1966 case 2:
1967 case 3:
1968 sendsig_siginfo(ksi, mask);
1969 return;
1970 default:
1971 break;
1972 }
1973
1974 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1975 sigexit(curlwp, SIGILL);
1976 }
1977
1978 /*
1979 * sendsig_reset:
1980 *
1981 * Reset the signal action. Called from emulation specific sendsig()
1982 * before unlocking to deliver the signal.
1983 */
1984 void
1985 sendsig_reset(struct lwp *l, int signo)
1986 {
1987 struct proc *p = l->l_proc;
1988 struct sigacts *ps = p->p_sigacts;
1989
1990 KASSERT(mutex_owned(p->p_lock));
1991
1992 p->p_sigctx.ps_lwp = 0;
1993 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1994
1995 mutex_enter(&ps->sa_mutex);
1996 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1997 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1998 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1999 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2000 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2001 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2002 }
2003 mutex_exit(&ps->sa_mutex);
2004 }
2005
2006 /*
2007 * Kill the current process for stated reason.
2008 */
2009 void
2010 killproc(struct proc *p, const char *why)
2011 {
2012
2013 KASSERT(mutex_owned(proc_lock));
2014
2015 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2016 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2017 psignal(p, SIGKILL);
2018 }
2019
2020 /*
2021 * Force the current process to exit with the specified signal, dumping core
2022 * if appropriate. We bypass the normal tests for masked and caught
2023 * signals, allowing unrecoverable failures to terminate the process without
2024 * changing signal state. Mark the accounting record with the signal
2025 * termination. If dumping core, save the signal number for the debugger.
2026 * Calls exit and does not return.
2027 */
2028 void
2029 sigexit(struct lwp *l, int signo)
2030 {
2031 int exitsig, error, docore;
2032 struct proc *p;
2033 struct lwp *t;
2034
2035 p = l->l_proc;
2036
2037 KASSERT(mutex_owned(p->p_lock));
2038 KERNEL_UNLOCK_ALL(l, NULL);
2039
2040 /*
2041 * Don't permit coredump() multiple times in the same process.
2042 * Call back into sigexit, where we will be suspended until
2043 * the deed is done. Note that this is a recursive call, but
2044 * LW_WCORE will prevent us from coming back this way.
2045 */
2046 if ((p->p_sflag & PS_WCORE) != 0) {
2047 lwp_lock(l);
2048 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2049 lwp_unlock(l);
2050 mutex_exit(p->p_lock);
2051 lwp_userret(l);
2052 panic("sigexit 1");
2053 /* NOTREACHED */
2054 }
2055
2056 /* If process is already on the way out, then bail now. */
2057 if ((p->p_sflag & PS_WEXIT) != 0) {
2058 mutex_exit(p->p_lock);
2059 lwp_exit(l);
2060 panic("sigexit 2");
2061 /* NOTREACHED */
2062 }
2063
2064 /*
2065 * Prepare all other LWPs for exit. If dumping core, suspend them
2066 * so that their registers are available long enough to be dumped.
2067 */
2068 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2069 p->p_sflag |= PS_WCORE;
2070 for (;;) {
2071 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2072 lwp_lock(t);
2073 if (t == l) {
2074 t->l_flag &= ~LW_WSUSPEND;
2075 lwp_unlock(t);
2076 continue;
2077 }
2078 t->l_flag |= (LW_WCORE | LW_WEXIT);
2079 lwp_suspend(l, t);
2080 }
2081
2082 if (p->p_nrlwps == 1)
2083 break;
2084
2085 /*
2086 * Kick any LWPs sitting in lwp_wait1(), and wait
2087 * for everyone else to stop before proceeding.
2088 */
2089 p->p_nlwpwait++;
2090 cv_broadcast(&p->p_lwpcv);
2091 cv_wait(&p->p_lwpcv, p->p_lock);
2092 p->p_nlwpwait--;
2093 }
2094 }
2095
2096 exitsig = signo;
2097 p->p_acflag |= AXSIG;
2098 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2099 p->p_sigctx.ps_info._signo = signo;
2100 p->p_sigctx.ps_info._code = SI_NOINFO;
2101
2102 if (docore) {
2103 mutex_exit(p->p_lock);
2104 error = (*coredump_vec)(l, NULL);
2105
2106 if (kern_logsigexit) {
2107 int uid = l->l_cred ?
2108 (int)kauth_cred_geteuid(l->l_cred) : -1;
2109
2110 if (error)
2111 log(LOG_INFO, lognocoredump, p->p_pid,
2112 p->p_comm, uid, signo, error);
2113 else
2114 log(LOG_INFO, logcoredump, p->p_pid,
2115 p->p_comm, uid, signo);
2116 }
2117
2118 #ifdef PAX_SEGVGUARD
2119 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2120 #endif /* PAX_SEGVGUARD */
2121 /* Acquire the sched state mutex. exit1() will release it. */
2122 mutex_enter(p->p_lock);
2123 if (error == 0)
2124 p->p_sflag |= PS_COREDUMP;
2125 }
2126
2127 /* No longer dumping core. */
2128 p->p_sflag &= ~PS_WCORE;
2129
2130 exit1(l, 0, exitsig);
2131 /* NOTREACHED */
2132 }
2133
2134 /*
2135 * Put process 'p' into the stopped state and optionally, notify the parent.
2136 */
2137 void
2138 proc_stop(struct proc *p, int signo)
2139 {
2140 struct lwp *l;
2141
2142 KASSERT(mutex_owned(p->p_lock));
2143
2144 /*
2145 * First off, set the stopping indicator and bring all sleeping
2146 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2147 * unlock between here and the p->p_nrlwps check below.
2148 */
2149 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2150 membar_producer();
2151
2152 proc_stop_lwps(p);
2153
2154 /*
2155 * If there are no LWPs available to take the signal, then we
2156 * signal the parent process immediately. Otherwise, the last
2157 * LWP to stop will take care of it.
2158 */
2159
2160 if (p->p_nrlwps == 0) {
2161 proc_stop_done(p, PS_NOCLDSTOP);
2162 } else {
2163 /*
2164 * Have the remaining LWPs come to a halt, and trigger
2165 * proc_stop_callout() to ensure that they do.
2166 */
2167 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2168 sigpost(l, SIG_DFL, SA_STOP, signo);
2169 }
2170 callout_schedule(&proc_stop_ch, 1);
2171 }
2172 }
2173
2174 /*
2175 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2176 * but wait for them to come to a halt at the kernel-user boundary. This is
2177 * to allow LWPs to release any locks that they may hold before stopping.
2178 *
2179 * Non-interruptable sleeps can be long, and there is the potential for an
2180 * LWP to begin sleeping interruptably soon after the process has been set
2181 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2182 * stopping, and so complete halt of the process and the return of status
2183 * information to the parent could be delayed indefinitely.
2184 *
2185 * To handle this race, proc_stop_callout() runs once per tick while there
2186 * are stopping processes in the system. It sets LWPs that are sleeping
2187 * interruptably into the LSSTOP state.
2188 *
2189 * Note that we are not concerned about keeping all LWPs stopped while the
2190 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2191 * What we do need to ensure is that all LWPs in a stopping process have
2192 * stopped at least once, so that notification can be sent to the parent
2193 * process.
2194 */
2195 static void
2196 proc_stop_callout(void *cookie)
2197 {
2198 bool more, restart;
2199 struct proc *p;
2200
2201 (void)cookie;
2202
2203 do {
2204 restart = false;
2205 more = false;
2206
2207 mutex_enter(proc_lock);
2208 PROCLIST_FOREACH(p, &allproc) {
2209 mutex_enter(p->p_lock);
2210
2211 if ((p->p_sflag & PS_STOPPING) == 0) {
2212 mutex_exit(p->p_lock);
2213 continue;
2214 }
2215
2216 /* Stop any LWPs sleeping interruptably. */
2217 proc_stop_lwps(p);
2218 if (p->p_nrlwps == 0) {
2219 /*
2220 * We brought the process to a halt.
2221 * Mark it as stopped and notify the
2222 * parent.
2223 */
2224 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2225 /*
2226 * Note that proc_stop_done() will
2227 * drop p->p_lock briefly.
2228 * Arrange to restart and check
2229 * all processes again.
2230 */
2231 restart = true;
2232 }
2233 proc_stop_done(p, PS_NOCLDSTOP);
2234 } else
2235 more = true;
2236
2237 mutex_exit(p->p_lock);
2238 if (restart)
2239 break;
2240 }
2241 mutex_exit(proc_lock);
2242 } while (restart);
2243
2244 /*
2245 * If we noted processes that are stopping but still have
2246 * running LWPs, then arrange to check again in 1 tick.
2247 */
2248 if (more)
2249 callout_schedule(&proc_stop_ch, 1);
2250 }
2251
2252 /*
2253 * Given a process in state SSTOP, set the state back to SACTIVE and
2254 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2255 */
2256 void
2257 proc_unstop(struct proc *p)
2258 {
2259 struct lwp *l;
2260 int sig;
2261
2262 KASSERT(mutex_owned(proc_lock));
2263 KASSERT(mutex_owned(p->p_lock));
2264
2265 p->p_stat = SACTIVE;
2266 p->p_sflag &= ~PS_STOPPING;
2267 sig = p->p_xsig;
2268
2269 if (!p->p_waited)
2270 p->p_pptr->p_nstopchild--;
2271
2272 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2273 lwp_lock(l);
2274 if (l->l_stat != LSSTOP) {
2275 lwp_unlock(l);
2276 continue;
2277 }
2278 if (l->l_wchan == NULL) {
2279 setrunnable(l);
2280 continue;
2281 }
2282 if (sig && (l->l_flag & LW_SINTR) != 0) {
2283 setrunnable(l);
2284 sig = 0;
2285 } else {
2286 l->l_stat = LSSLEEP;
2287 p->p_nrlwps++;
2288 lwp_unlock(l);
2289 }
2290 }
2291 }
2292
2293 void
2294 proc_stoptrace(int trapno)
2295 {
2296 struct lwp *l = curlwp;
2297 struct proc *p = l->l_proc;
2298 struct sigacts *ps;
2299 sigset_t *mask;
2300 sig_t action;
2301 ksiginfo_t ksi;
2302 const int signo = SIGTRAP;
2303
2304 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2305
2306 KSI_INIT_TRAP(&ksi);
2307 ksi.ksi_lid = l->l_lid;
2308 ksi.ksi_info._signo = signo;
2309 ksi.ksi_info._code = trapno;
2310
2311 mutex_enter(p->p_lock);
2312
2313 /* Needed for ktrace */
2314 ps = p->p_sigacts;
2315 action = SIGACTION_PS(ps, signo).sa_handler;
2316 mask = &l->l_sigmask;
2317
2318 /* initproc (PID1) cannot became a debugger */
2319 KASSERT(p->p_pptr != initproc);
2320
2321 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2322 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2323
2324 p->p_xsig = signo;
2325 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2326 p->p_sigctx.ps_info = ksi.ksi_info;
2327 sigswitch(0, signo, true);
2328 mutex_exit(p->p_lock);
2329
2330 if (ktrpoint(KTR_PSIG)) {
2331 if (p->p_emul->e_ktrpsig)
2332 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2333 else
2334 ktrpsig(signo, action, mask, &ksi);
2335 }
2336 }
2337
2338 static int
2339 filt_sigattach(struct knote *kn)
2340 {
2341 struct proc *p = curproc;
2342
2343 kn->kn_obj = p;
2344 kn->kn_flags |= EV_CLEAR; /* automatically set */
2345
2346 mutex_enter(p->p_lock);
2347 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2348 mutex_exit(p->p_lock);
2349
2350 return 0;
2351 }
2352
2353 static void
2354 filt_sigdetach(struct knote *kn)
2355 {
2356 struct proc *p = kn->kn_obj;
2357
2358 mutex_enter(p->p_lock);
2359 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2360 mutex_exit(p->p_lock);
2361 }
2362
2363 /*
2364 * Signal knotes are shared with proc knotes, so we apply a mask to
2365 * the hint in order to differentiate them from process hints. This
2366 * could be avoided by using a signal-specific knote list, but probably
2367 * isn't worth the trouble.
2368 */
2369 static int
2370 filt_signal(struct knote *kn, long hint)
2371 {
2372
2373 if (hint & NOTE_SIGNAL) {
2374 hint &= ~NOTE_SIGNAL;
2375
2376 if (kn->kn_id == hint)
2377 kn->kn_data++;
2378 }
2379 return (kn->kn_data != 0);
2380 }
2381
2382 const struct filterops sig_filtops = {
2383 .f_isfd = 0,
2384 .f_attach = filt_sigattach,
2385 .f_detach = filt_sigdetach,
2386 .f_event = filt_signal,
2387 };
2388