kern_sig.c revision 1.352 1 /* $NetBSD: kern_sig.c,v 1.352 2019/04/03 08:34:33 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.352 2019/04/03 08:34:33 kamil Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107
108 #include <uvm/uvm_extern.h>
109
110 #define SIGQUEUE_MAX 32
111 static pool_cache_t sigacts_cache __read_mostly;
112 static pool_cache_t ksiginfo_cache __read_mostly;
113 static callout_t proc_stop_ch __cacheline_aligned;
114
115 sigset_t contsigmask __cacheline_aligned;
116 sigset_t stopsigmask __cacheline_aligned;
117 static sigset_t vforksigmask __cacheline_aligned;
118 sigset_t sigcantmask __cacheline_aligned;
119
120 static void ksiginfo_exechook(struct proc *, void *);
121 static void proc_stop(struct proc *, int);
122 static void proc_stop_done(struct proc *, int);
123 static void proc_stop_callout(void *);
124 static int sigchecktrace(void);
125 static int sigpost(struct lwp *, sig_t, int, int);
126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int sigunwait(struct proc *, const ksiginfo_t *);
128
129 static void sigacts_poolpage_free(struct pool *, void *);
130 static void *sigacts_poolpage_alloc(struct pool *, int);
131
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134 (int (*)(struct lwp *, const char *))enosys;
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 */
715 int
716 sigispending(struct lwp *l, int signo)
717 {
718 struct proc *p = l->l_proc;
719 sigset_t tset;
720
721 membar_consumer();
722
723 tset = l->l_sigpend.sp_set;
724 sigplusset(&p->p_sigpend.sp_set, &tset);
725 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
726 sigminusset(&l->l_sigmask, &tset);
727
728 if (signo == 0) {
729 return firstsig(&tset);
730 }
731 return sigismember(&tset, signo) ? signo : 0;
732 }
733
734 void
735 getucontext(struct lwp *l, ucontext_t *ucp)
736 {
737 struct proc *p = l->l_proc;
738
739 KASSERT(mutex_owned(p->p_lock));
740
741 ucp->uc_flags = 0;
742 ucp->uc_link = l->l_ctxlink;
743 ucp->uc_sigmask = l->l_sigmask;
744 ucp->uc_flags |= _UC_SIGMASK;
745
746 /*
747 * The (unsupplied) definition of the `current execution stack'
748 * in the System V Interface Definition appears to allow returning
749 * the main context stack.
750 */
751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
755 } else {
756 /* Simply copy alternate signal execution stack. */
757 ucp->uc_stack = l->l_sigstk;
758 }
759 ucp->uc_flags |= _UC_STACK;
760 mutex_exit(p->p_lock);
761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
762 mutex_enter(p->p_lock);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * killpg1: common code for kill process group/broadcast kill.
803 */
804 int
805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
806 {
807 struct proc *p, *cp;
808 kauth_cred_t pc;
809 struct pgrp *pgrp;
810 int nfound;
811 int signo = ksi->ksi_signo;
812
813 cp = l->l_proc;
814 pc = l->l_cred;
815 nfound = 0;
816
817 mutex_enter(proc_lock);
818 if (all) {
819 /*
820 * Broadcast.
821 */
822 PROCLIST_FOREACH(p, &allproc) {
823 if (p->p_pid <= 1 || p == cp ||
824 (p->p_flag & PK_SYSTEM) != 0)
825 continue;
826 mutex_enter(p->p_lock);
827 if (kauth_authorize_process(pc,
828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
829 NULL) == 0) {
830 nfound++;
831 if (signo)
832 kpsignal2(p, ksi);
833 }
834 mutex_exit(p->p_lock);
835 }
836 } else {
837 if (pgid == 0)
838 /* Zero pgid means send to my process group. */
839 pgrp = cp->p_pgrp;
840 else {
841 pgrp = pgrp_find(pgid);
842 if (pgrp == NULL)
843 goto out;
844 }
845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
847 continue;
848 mutex_enter(p->p_lock);
849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
850 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
851 nfound++;
852 if (signo && P_ZOMBIE(p) == 0)
853 kpsignal2(p, ksi);
854 }
855 mutex_exit(p->p_lock);
856 }
857 }
858 out:
859 mutex_exit(proc_lock);
860 return nfound ? 0 : ESRCH;
861 }
862
863 /*
864 * Send a signal to a process group. If checktty is set, limit to members
865 * which have a controlling terminal.
866 */
867 void
868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
869 {
870 ksiginfo_t ksi;
871
872 KASSERT(!cpu_intr_p());
873 KASSERT(mutex_owned(proc_lock));
874
875 KSI_INIT_EMPTY(&ksi);
876 ksi.ksi_signo = sig;
877 kpgsignal(pgrp, &ksi, NULL, checkctty);
878 }
879
880 void
881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
882 {
883 struct proc *p;
884
885 KASSERT(!cpu_intr_p());
886 KASSERT(mutex_owned(proc_lock));
887 KASSERT(pgrp != NULL);
888
889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
891 kpsignal(p, ksi, data);
892 }
893
894 /*
895 * Send a signal caused by a trap to the current LWP. If it will be caught
896 * immediately, deliver it with correct code. Otherwise, post it normally.
897 */
898 void
899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
900 {
901 struct proc *p;
902 struct sigacts *ps;
903 int signo = ksi->ksi_signo;
904 sigset_t *mask;
905
906 KASSERT(KSI_TRAP_P(ksi));
907
908 ksi->ksi_lid = l->l_lid;
909 p = l->l_proc;
910
911 KASSERT(!cpu_intr_p());
912 mutex_enter(proc_lock);
913 mutex_enter(p->p_lock);
914
915 if (ISSET(p->p_slflag, PSL_TRACED) &&
916 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT))) {
917 p->p_xsig = signo;
918 p->p_sigctx.ps_faked = true; // XXX
919 p->p_sigctx.ps_info._signo = signo;
920 p->p_sigctx.ps_info._code = ksi->ksi_code;
921 sigswitch(0, signo, false);
922 // XXX ktrpoint(KTR_PSIG)
923 mutex_exit(p->p_lock);
924 return;
925 }
926
927 mask = &l->l_sigmask;
928 ps = p->p_sigacts;
929
930 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
931 const bool masked = sigismember(mask, signo);
932 if (caught && !masked) {
933 mutex_exit(proc_lock);
934 l->l_ru.ru_nsignals++;
935 kpsendsig(l, ksi, mask);
936 mutex_exit(p->p_lock);
937 if (ktrpoint(KTR_PSIG)) {
938 if (p->p_emul->e_ktrpsig)
939 p->p_emul->e_ktrpsig(signo,
940 SIGACTION_PS(ps, signo).sa_handler,
941 mask, ksi);
942 else
943 ktrpsig(signo,
944 SIGACTION_PS(ps, signo).sa_handler,
945 mask, ksi);
946 }
947 return;
948 }
949
950 /*
951 * If the signal is masked or ignored, then unmask it and
952 * reset it to the default action so that the process or
953 * its tracer will be notified.
954 */
955 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
956 if (masked || ignored) {
957 mutex_enter(&ps->sa_mutex);
958 sigdelset(mask, signo);
959 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
960 sigdelset(&p->p_sigctx.ps_sigignore, signo);
961 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
962 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
963 mutex_exit(&ps->sa_mutex);
964 }
965
966 kpsignal2(p, ksi);
967 mutex_exit(p->p_lock);
968 mutex_exit(proc_lock);
969 }
970
971 /*
972 * Fill in signal information and signal the parent for a child status change.
973 */
974 void
975 child_psignal(struct proc *p, int mask)
976 {
977 ksiginfo_t ksi;
978 struct proc *q;
979 int xsig;
980
981 KASSERT(mutex_owned(proc_lock));
982 KASSERT(mutex_owned(p->p_lock));
983
984 xsig = p->p_xsig;
985
986 KSI_INIT(&ksi);
987 ksi.ksi_signo = SIGCHLD;
988 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
989 ksi.ksi_pid = p->p_pid;
990 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
991 ksi.ksi_status = xsig;
992 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
993 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
994
995 q = p->p_pptr;
996
997 mutex_exit(p->p_lock);
998 mutex_enter(q->p_lock);
999
1000 if ((q->p_sflag & mask) == 0)
1001 kpsignal2(q, &ksi);
1002
1003 mutex_exit(q->p_lock);
1004 mutex_enter(p->p_lock);
1005 }
1006
1007 void
1008 psignal(struct proc *p, int signo)
1009 {
1010 ksiginfo_t ksi;
1011
1012 KASSERT(!cpu_intr_p());
1013 KASSERT(mutex_owned(proc_lock));
1014
1015 KSI_INIT_EMPTY(&ksi);
1016 ksi.ksi_signo = signo;
1017 mutex_enter(p->p_lock);
1018 kpsignal2(p, &ksi);
1019 mutex_exit(p->p_lock);
1020 }
1021
1022 void
1023 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1024 {
1025 fdfile_t *ff;
1026 file_t *fp;
1027 fdtab_t *dt;
1028
1029 KASSERT(!cpu_intr_p());
1030 KASSERT(mutex_owned(proc_lock));
1031
1032 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1033 size_t fd;
1034 filedesc_t *fdp = p->p_fd;
1035
1036 /* XXXSMP locking */
1037 ksi->ksi_fd = -1;
1038 dt = fdp->fd_dt;
1039 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1040 if ((ff = dt->dt_ff[fd]) == NULL)
1041 continue;
1042 if ((fp = ff->ff_file) == NULL)
1043 continue;
1044 if (fp->f_data == data) {
1045 ksi->ksi_fd = fd;
1046 break;
1047 }
1048 }
1049 }
1050 mutex_enter(p->p_lock);
1051 kpsignal2(p, ksi);
1052 mutex_exit(p->p_lock);
1053 }
1054
1055 /*
1056 * sigismasked:
1057 *
1058 * Returns true if signal is ignored or masked for the specified LWP.
1059 */
1060 int
1061 sigismasked(struct lwp *l, int sig)
1062 {
1063 struct proc *p = l->l_proc;
1064
1065 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1066 sigismember(&l->l_sigmask, sig);
1067 }
1068
1069 /*
1070 * sigpost:
1071 *
1072 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1073 * be able to take the signal.
1074 */
1075 static int
1076 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1077 {
1078 int rv, masked;
1079 struct proc *p = l->l_proc;
1080
1081 KASSERT(mutex_owned(p->p_lock));
1082
1083 /*
1084 * If the LWP is on the way out, sigclear() will be busy draining all
1085 * pending signals. Don't give it more.
1086 */
1087 if (l->l_refcnt == 0)
1088 return 0;
1089
1090 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1091
1092 /*
1093 * Have the LWP check for signals. This ensures that even if no LWP
1094 * is found to take the signal immediately, it should be taken soon.
1095 */
1096 lwp_lock(l);
1097 l->l_flag |= LW_PENDSIG;
1098
1099 /*
1100 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1101 * Note: SIGKILL and SIGSTOP cannot be masked.
1102 */
1103 masked = sigismember(&l->l_sigmask, sig);
1104 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1105 lwp_unlock(l);
1106 return 0;
1107 }
1108
1109 /*
1110 * If killing the process, make it run fast.
1111 */
1112 if (__predict_false((prop & SA_KILL) != 0) &&
1113 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1114 KASSERT(l->l_class == SCHED_OTHER);
1115 lwp_changepri(l, MAXPRI_USER);
1116 }
1117
1118 /*
1119 * If the LWP is running or on a run queue, then we win. If it's
1120 * sleeping interruptably, wake it and make it take the signal. If
1121 * the sleep isn't interruptable, then the chances are it will get
1122 * to see the signal soon anyhow. If suspended, it can't take the
1123 * signal right now. If it's LWP private or for all LWPs, save it
1124 * for later; otherwise punt.
1125 */
1126 rv = 0;
1127
1128 switch (l->l_stat) {
1129 case LSRUN:
1130 case LSONPROC:
1131 lwp_need_userret(l);
1132 rv = 1;
1133 break;
1134
1135 case LSSLEEP:
1136 if ((l->l_flag & LW_SINTR) != 0) {
1137 /* setrunnable() will release the lock. */
1138 setrunnable(l);
1139 return 1;
1140 }
1141 break;
1142
1143 case LSSUSPENDED:
1144 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1145 /* lwp_continue() will release the lock. */
1146 lwp_continue(l);
1147 return 1;
1148 }
1149 break;
1150
1151 case LSSTOP:
1152 if ((prop & SA_STOP) != 0)
1153 break;
1154
1155 /*
1156 * If the LWP is stopped and we are sending a continue
1157 * signal, then start it again.
1158 */
1159 if ((prop & SA_CONT) != 0) {
1160 if (l->l_wchan != NULL) {
1161 l->l_stat = LSSLEEP;
1162 p->p_nrlwps++;
1163 rv = 1;
1164 break;
1165 }
1166 /* setrunnable() will release the lock. */
1167 setrunnable(l);
1168 return 1;
1169 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1170 /* setrunnable() will release the lock. */
1171 setrunnable(l);
1172 return 1;
1173 }
1174 break;
1175
1176 default:
1177 break;
1178 }
1179
1180 lwp_unlock(l);
1181 return rv;
1182 }
1183
1184 /*
1185 * Notify an LWP that it has a pending signal.
1186 */
1187 void
1188 signotify(struct lwp *l)
1189 {
1190 KASSERT(lwp_locked(l, NULL));
1191
1192 l->l_flag |= LW_PENDSIG;
1193 lwp_need_userret(l);
1194 }
1195
1196 /*
1197 * Find an LWP within process p that is waiting on signal ksi, and hand
1198 * it on.
1199 */
1200 static int
1201 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1202 {
1203 struct lwp *l;
1204 int signo;
1205
1206 KASSERT(mutex_owned(p->p_lock));
1207
1208 signo = ksi->ksi_signo;
1209
1210 if (ksi->ksi_lid != 0) {
1211 /*
1212 * Signal came via _lwp_kill(). Find the LWP and see if
1213 * it's interested.
1214 */
1215 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1216 return 0;
1217 if (l->l_sigwaited == NULL ||
1218 !sigismember(&l->l_sigwaitset, signo))
1219 return 0;
1220 } else {
1221 /*
1222 * Look for any LWP that may be interested.
1223 */
1224 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1225 KASSERT(l->l_sigwaited != NULL);
1226 if (sigismember(&l->l_sigwaitset, signo))
1227 break;
1228 }
1229 }
1230
1231 if (l != NULL) {
1232 l->l_sigwaited->ksi_info = ksi->ksi_info;
1233 l->l_sigwaited = NULL;
1234 LIST_REMOVE(l, l_sigwaiter);
1235 cv_signal(&l->l_sigcv);
1236 return 1;
1237 }
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * Send the signal to the process. If the signal has an action, the action
1244 * is usually performed by the target process rather than the caller; we add
1245 * the signal to the set of pending signals for the process.
1246 *
1247 * Exceptions:
1248 * o When a stop signal is sent to a sleeping process that takes the
1249 * default action, the process is stopped without awakening it.
1250 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1251 * regardless of the signal action (eg, blocked or ignored).
1252 *
1253 * Other ignored signals are discarded immediately.
1254 */
1255 int
1256 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1257 {
1258 int prop, signo = ksi->ksi_signo;
1259 struct lwp *l = NULL;
1260 ksiginfo_t *kp;
1261 lwpid_t lid;
1262 sig_t action;
1263 bool toall;
1264 int error = 0;
1265
1266 KASSERT(!cpu_intr_p());
1267 KASSERT(mutex_owned(proc_lock));
1268 KASSERT(mutex_owned(p->p_lock));
1269 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1270 KASSERT(signo > 0 && signo < NSIG);
1271
1272 /*
1273 * If the process is being created by fork, is a zombie or is
1274 * exiting, then just drop the signal here and bail out.
1275 */
1276 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1277 return 0;
1278
1279 /* XXX for core dump/debugger */
1280 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1281 p->p_sigctx.ps_info = ksi->ksi_info;
1282
1283 /*
1284 * Notify any interested parties of the signal.
1285 */
1286 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1287
1288 /*
1289 * Some signals including SIGKILL must act on the entire process.
1290 */
1291 kp = NULL;
1292 prop = sigprop[signo];
1293 toall = ((prop & SA_TOALL) != 0);
1294 lid = toall ? 0 : ksi->ksi_lid;
1295
1296 /*
1297 * If proc is traced, always give parent a chance.
1298 */
1299 if (p->p_slflag & PSL_TRACED) {
1300 action = SIG_DFL;
1301
1302 if (lid == 0) {
1303 /*
1304 * If the process is being traced and the signal
1305 * is being caught, make sure to save any ksiginfo.
1306 */
1307 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1308 goto discard;
1309 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1310 goto out;
1311 }
1312 } else {
1313
1314 /*
1315 * If the signal is being ignored, then drop it. Note: we
1316 * don't set SIGCONT in ps_sigignore, and if it is set to
1317 * SIG_IGN, action will be SIG_DFL here.
1318 */
1319 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1320 goto discard;
1321
1322 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1323 action = SIG_CATCH;
1324 else {
1325 action = SIG_DFL;
1326
1327 /*
1328 * If sending a tty stop signal to a member of an
1329 * orphaned process group, discard the signal here if
1330 * the action is default; don't stop the process below
1331 * if sleeping, and don't clear any pending SIGCONT.
1332 */
1333 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1334 goto discard;
1335
1336 if (prop & SA_KILL && p->p_nice > NZERO)
1337 p->p_nice = NZERO;
1338 }
1339 }
1340
1341 /*
1342 * If stopping or continuing a process, discard any pending
1343 * signals that would do the inverse.
1344 */
1345 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1346 ksiginfoq_t kq;
1347
1348 ksiginfo_queue_init(&kq);
1349 if ((prop & SA_CONT) != 0)
1350 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1351 if ((prop & SA_STOP) != 0)
1352 sigclear(&p->p_sigpend, &contsigmask, &kq);
1353 ksiginfo_queue_drain(&kq); /* XXXSMP */
1354 }
1355
1356 /*
1357 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1358 * please!), check if any LWPs are waiting on it. If yes, pass on
1359 * the signal info. The signal won't be processed further here.
1360 */
1361 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1362 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1363 sigunwait(p, ksi))
1364 goto discard;
1365
1366 /*
1367 * XXXSMP Should be allocated by the caller, we're holding locks
1368 * here.
1369 */
1370 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1371 goto discard;
1372
1373 /*
1374 * LWP private signals are easy - just find the LWP and post
1375 * the signal to it.
1376 */
1377 if (lid != 0) {
1378 l = lwp_find(p, lid);
1379 if (l != NULL) {
1380 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1381 goto out;
1382 membar_producer();
1383 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1384 signo = -1;
1385 }
1386 goto out;
1387 }
1388
1389 /*
1390 * Some signals go to all LWPs, even if posted with _lwp_kill()
1391 * or for an SA process.
1392 */
1393 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1394 if ((p->p_slflag & PSL_TRACED) != 0)
1395 goto deliver;
1396
1397 /*
1398 * If SIGCONT is default (or ignored) and process is
1399 * asleep, we are finished; the process should not
1400 * be awakened.
1401 */
1402 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1403 goto out;
1404 } else {
1405 /*
1406 * Process is stopped or stopping.
1407 * - If traced, then no action is needed, unless killing.
1408 * - Run the process only if sending SIGCONT or SIGKILL.
1409 */
1410 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1411 goto out;
1412 }
1413 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1414 /*
1415 * Re-adjust p_nstopchild if the process was
1416 * stopped but not yet collected by its parent.
1417 */
1418 if (p->p_stat == SSTOP && !p->p_waited)
1419 p->p_pptr->p_nstopchild--;
1420 p->p_stat = SACTIVE;
1421 p->p_sflag &= ~PS_STOPPING;
1422 if (p->p_slflag & PSL_TRACED) {
1423 KASSERT(signo == SIGKILL);
1424 goto deliver;
1425 }
1426 /*
1427 * Do not make signal pending if SIGCONT is default.
1428 *
1429 * If the process catches SIGCONT, let it handle the
1430 * signal itself (if waiting on event - process runs,
1431 * otherwise continues sleeping).
1432 */
1433 if ((prop & SA_CONT) != 0) {
1434 p->p_xsig = SIGCONT;
1435 p->p_sflag |= PS_CONTINUED;
1436 child_psignal(p, 0);
1437 if (action == SIG_DFL) {
1438 KASSERT(signo != SIGKILL);
1439 goto deliver;
1440 }
1441 }
1442 } else if ((prop & SA_STOP) != 0) {
1443 /*
1444 * Already stopped, don't need to stop again.
1445 * (If we did the shell could get confused.)
1446 */
1447 goto out;
1448 }
1449 }
1450 /*
1451 * Make signal pending.
1452 */
1453 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1454 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1455 goto out;
1456 deliver:
1457 /*
1458 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1459 * visible on the per process list (for sigispending()). This
1460 * is unlikely to be needed in practice, but...
1461 */
1462 membar_producer();
1463
1464 /*
1465 * Try to find an LWP that can take the signal.
1466 */
1467 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1468 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1469 break;
1470 }
1471 signo = -1;
1472 out:
1473 /*
1474 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1475 * with locks held. The caller should take care of this.
1476 */
1477 ksiginfo_free(kp);
1478 if (signo == -1)
1479 return error;
1480 discard:
1481 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1482 return error;
1483 }
1484
1485 void
1486 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1487 {
1488 struct proc *p = l->l_proc;
1489
1490 KASSERT(mutex_owned(p->p_lock));
1491 (*p->p_emul->e_sendsig)(ksi, mask);
1492 }
1493
1494 /*
1495 * Stop any LWPs sleeping interruptably.
1496 */
1497 static void
1498 proc_stop_lwps(struct proc *p)
1499 {
1500 struct lwp *l;
1501
1502 KASSERT(mutex_owned(p->p_lock));
1503 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1504
1505 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1506 lwp_lock(l);
1507 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1508 l->l_stat = LSSTOP;
1509 p->p_nrlwps--;
1510 }
1511 lwp_unlock(l);
1512 }
1513 }
1514
1515 /*
1516 * Finish stopping of a process. Mark it stopped and notify the parent.
1517 *
1518 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1519 */
1520 static void
1521 proc_stop_done(struct proc *p, int ppmask)
1522 {
1523
1524 KASSERT(mutex_owned(proc_lock));
1525 KASSERT(mutex_owned(p->p_lock));
1526 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1527 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1528
1529 p->p_sflag &= ~PS_STOPPING;
1530 p->p_stat = SSTOP;
1531 p->p_waited = 0;
1532 p->p_pptr->p_nstopchild++;
1533 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1534 /* child_psignal drops p_lock briefly. */
1535 child_psignal(p, ppmask);
1536 cv_broadcast(&p->p_pptr->p_waitcv);
1537 }
1538 }
1539
1540 /*
1541 * Stop the current process and switch away when being stopped or traced.
1542 */
1543 void
1544 sigswitch(int ppmask, int signo, bool relock)
1545 {
1546 struct lwp *l = curlwp;
1547 struct proc *p = l->l_proc;
1548 int biglocks;
1549
1550 KASSERT(mutex_owned(p->p_lock));
1551 KASSERT(l->l_stat == LSONPROC);
1552 KASSERT(p->p_nrlwps > 0);
1553
1554 /*
1555 * On entry we know that the process needs to stop. If it's
1556 * the result of a 'sideways' stop signal that has been sourced
1557 * through issignal(), then stop other LWPs in the process too.
1558 */
1559 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1560 KASSERT(signo != 0);
1561 proc_stop(p, signo);
1562 KASSERT(p->p_nrlwps > 0);
1563 }
1564
1565 /*
1566 * If we are the last live LWP, and the stop was a result of
1567 * a new signal, then signal the parent.
1568 */
1569 if ((p->p_sflag & PS_STOPPING) != 0) {
1570 if (relock && !mutex_tryenter(proc_lock)) {
1571 mutex_exit(p->p_lock);
1572 mutex_enter(proc_lock);
1573 mutex_enter(p->p_lock);
1574 }
1575
1576 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1577 /*
1578 * Note that proc_stop_done() can drop
1579 * p->p_lock briefly.
1580 */
1581 proc_stop_done(p, ppmask);
1582 }
1583
1584 mutex_exit(proc_lock);
1585 }
1586
1587 /*
1588 * Unlock and switch away.
1589 */
1590 KERNEL_UNLOCK_ALL(l, &biglocks);
1591 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1592 p->p_nrlwps--;
1593 lwp_lock(l);
1594 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1595 l->l_stat = LSSTOP;
1596 lwp_unlock(l);
1597 }
1598
1599 mutex_exit(p->p_lock);
1600 lwp_lock(l);
1601 mi_switch(l);
1602 KERNEL_LOCK(biglocks, l);
1603 mutex_enter(p->p_lock);
1604 }
1605
1606 /*
1607 * Check for a signal from the debugger.
1608 */
1609 static int
1610 sigchecktrace(void)
1611 {
1612 struct lwp *l = curlwp;
1613 struct proc *p = l->l_proc;
1614 int signo;
1615
1616 KASSERT(mutex_owned(p->p_lock));
1617
1618 /* If there's a pending SIGKILL, process it immediately. */
1619 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1620 return 0;
1621
1622 /*
1623 * If we are no longer being traced, or the parent didn't
1624 * give us a signal, or we're stopping, look for more signals.
1625 */
1626 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1627 (p->p_sflag & PS_STOPPING) != 0)
1628 return 0;
1629
1630 /*
1631 * If the new signal is being masked, look for other signals.
1632 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1633 */
1634 signo = p->p_xsig;
1635 p->p_xsig = 0;
1636 if (sigismember(&l->l_sigmask, signo)) {
1637 signo = 0;
1638 }
1639 return signo;
1640 }
1641
1642 /*
1643 * If the current process has received a signal (should be caught or cause
1644 * termination, should interrupt current syscall), return the signal number.
1645 *
1646 * Stop signals with default action are processed immediately, then cleared;
1647 * they aren't returned. This is checked after each entry to the system for
1648 * a syscall or trap.
1649 *
1650 * We will also return -1 if the process is exiting and the current LWP must
1651 * follow suit.
1652 */
1653 int
1654 issignal(struct lwp *l)
1655 {
1656 struct proc *p;
1657 int signo, prop;
1658 sigpend_t *sp;
1659 sigset_t ss;
1660
1661 p = l->l_proc;
1662 sp = NULL;
1663 signo = 0;
1664
1665 KASSERT(p == curproc);
1666 KASSERT(mutex_owned(p->p_lock));
1667
1668 for (;;) {
1669 /* Discard any signals that we have decided not to take. */
1670 if (signo != 0) {
1671 (void)sigget(sp, NULL, signo, NULL);
1672 }
1673
1674 /*
1675 * If the process is stopped/stopping, then stop ourselves
1676 * now that we're on the kernel/userspace boundary. When
1677 * we awaken, check for a signal from the debugger.
1678 */
1679 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1680 sigswitch(PS_NOCLDSTOP, 0, true);
1681 signo = sigchecktrace();
1682 } else if (p->p_stat == SACTIVE)
1683 signo = sigchecktrace();
1684 else
1685 signo = 0;
1686
1687 /* Signals from the debugger are "out of band". */
1688 sp = NULL;
1689
1690 /*
1691 * If the debugger didn't provide a signal, find a pending
1692 * signal from our set. Check per-LWP signals first, and
1693 * then per-process.
1694 */
1695 if (signo == 0) {
1696 sp = &l->l_sigpend;
1697 ss = sp->sp_set;
1698 if ((p->p_lflag & PL_PPWAIT) != 0)
1699 sigminusset(&vforksigmask, &ss);
1700 sigminusset(&l->l_sigmask, &ss);
1701
1702 if ((signo = firstsig(&ss)) == 0) {
1703 sp = &p->p_sigpend;
1704 ss = sp->sp_set;
1705 if ((p->p_lflag & PL_PPWAIT) != 0)
1706 sigminusset(&vforksigmask, &ss);
1707 sigminusset(&l->l_sigmask, &ss);
1708
1709 if ((signo = firstsig(&ss)) == 0) {
1710 /*
1711 * No signal pending - clear the
1712 * indicator and bail out.
1713 */
1714 lwp_lock(l);
1715 l->l_flag &= ~LW_PENDSIG;
1716 lwp_unlock(l);
1717 sp = NULL;
1718 break;
1719 }
1720 }
1721 }
1722
1723 /*
1724 * We should see pending but ignored signals only if
1725 * we are being traced.
1726 */
1727 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1728 (p->p_slflag & PSL_TRACED) == 0) {
1729 /* Discard the signal. */
1730 continue;
1731 }
1732
1733 /*
1734 * If traced, always stop, and stay stopped until released
1735 * by the debugger. If the our parent is our debugger waiting
1736 * for us and we vforked, don't hang as we could deadlock.
1737 */
1738 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1739 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1740 (p->p_pptr == p->p_opptr))) {
1741 /*
1742 * Take the signal, but don't remove it from the
1743 * siginfo queue, because the debugger can send
1744 * it later.
1745 */
1746 if (sp)
1747 sigdelset(&sp->sp_set, signo);
1748 p->p_xsig = signo;
1749
1750 /* Handling of signal trace */
1751 sigswitch(0, signo, true);
1752
1753 /* Check for a signal from the debugger. */
1754 if ((signo = sigchecktrace()) == 0)
1755 continue;
1756
1757 /* Signals from the debugger are "out of band". */
1758 sp = NULL;
1759 }
1760
1761 prop = sigprop[signo];
1762
1763 /*
1764 * Decide whether the signal should be returned.
1765 */
1766 switch ((long)SIGACTION(p, signo).sa_handler) {
1767 case (long)SIG_DFL:
1768 /*
1769 * Don't take default actions on system processes.
1770 */
1771 if (p->p_pid <= 1) {
1772 #ifdef DIAGNOSTIC
1773 /*
1774 * Are you sure you want to ignore SIGSEGV
1775 * in init? XXX
1776 */
1777 printf_nolog("Process (pid %d) got sig %d\n",
1778 p->p_pid, signo);
1779 #endif
1780 continue;
1781 }
1782
1783 /*
1784 * If there is a pending stop signal to process with
1785 * default action, stop here, then clear the signal.
1786 * However, if process is member of an orphaned
1787 * process group, ignore tty stop signals.
1788 */
1789 if (prop & SA_STOP) {
1790 /*
1791 * XXX Don't hold proc_lock for p_lflag,
1792 * but it's not a big deal.
1793 */
1794 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1795 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1796 (p->p_pptr == p->p_opptr))) ||
1797 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1798 prop & SA_TTYSTOP)) {
1799 /* Ignore the signal. */
1800 continue;
1801 }
1802 /* Take the signal. */
1803 (void)sigget(sp, NULL, signo, NULL);
1804 p->p_xsig = signo;
1805 p->p_sflag &= ~PS_CONTINUED;
1806 signo = 0;
1807 sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1808 } else if (prop & SA_IGNORE) {
1809 /*
1810 * Except for SIGCONT, shouldn't get here.
1811 * Default action is to ignore; drop it.
1812 */
1813 continue;
1814 }
1815 break;
1816
1817 case (long)SIG_IGN:
1818 #ifdef DEBUG_ISSIGNAL
1819 /*
1820 * Masking above should prevent us ever trying
1821 * to take action on an ignored signal other
1822 * than SIGCONT, unless process is traced.
1823 */
1824 if ((prop & SA_CONT) == 0 &&
1825 (p->p_slflag & PSL_TRACED) == 0)
1826 printf_nolog("issignal\n");
1827 #endif
1828 continue;
1829
1830 default:
1831 /*
1832 * This signal has an action, let postsig() process
1833 * it.
1834 */
1835 break;
1836 }
1837
1838 break;
1839 }
1840
1841 l->l_sigpendset = sp;
1842 return signo;
1843 }
1844
1845 /*
1846 * Take the action for the specified signal
1847 * from the current set of pending signals.
1848 */
1849 void
1850 postsig(int signo)
1851 {
1852 struct lwp *l;
1853 struct proc *p;
1854 struct sigacts *ps;
1855 sig_t action;
1856 sigset_t *returnmask;
1857 ksiginfo_t ksi;
1858
1859 l = curlwp;
1860 p = l->l_proc;
1861 ps = p->p_sigacts;
1862
1863 KASSERT(mutex_owned(p->p_lock));
1864 KASSERT(signo > 0);
1865
1866 /*
1867 * Set the new mask value and also defer further occurrences of this
1868 * signal.
1869 *
1870 * Special case: user has done a sigsuspend. Here the current mask is
1871 * not of interest, but rather the mask from before the sigsuspend is
1872 * what we want restored after the signal processing is completed.
1873 */
1874 if (l->l_sigrestore) {
1875 returnmask = &l->l_sigoldmask;
1876 l->l_sigrestore = 0;
1877 } else
1878 returnmask = &l->l_sigmask;
1879
1880 /*
1881 * Commit to taking the signal before releasing the mutex.
1882 */
1883 action = SIGACTION_PS(ps, signo).sa_handler;
1884 l->l_ru.ru_nsignals++;
1885 if (l->l_sigpendset == NULL) {
1886 /* From the debugger */
1887 if (p->p_sigctx.ps_faked &&
1888 signo == p->p_sigctx.ps_info._signo) {
1889 KSI_INIT(&ksi);
1890 ksi.ksi_info = p->p_sigctx.ps_info;
1891 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1892 p->p_sigctx.ps_faked = false;
1893 } else {
1894 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1895 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1896 }
1897 } else
1898 sigget(l->l_sigpendset, &ksi, signo, NULL);
1899
1900 if (ktrpoint(KTR_PSIG)) {
1901 mutex_exit(p->p_lock);
1902 if (p->p_emul->e_ktrpsig)
1903 p->p_emul->e_ktrpsig(signo, action,
1904 returnmask, &ksi);
1905 else
1906 ktrpsig(signo, action, returnmask, &ksi);
1907 mutex_enter(p->p_lock);
1908 }
1909
1910 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1911
1912 if (action == SIG_DFL) {
1913 /*
1914 * Default action, where the default is to kill
1915 * the process. (Other cases were ignored above.)
1916 */
1917 sigexit(l, signo);
1918 return;
1919 }
1920
1921 /*
1922 * If we get here, the signal must be caught.
1923 */
1924 #ifdef DIAGNOSTIC
1925 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1926 panic("postsig action");
1927 #endif
1928
1929 kpsendsig(l, &ksi, returnmask);
1930 }
1931
1932 /*
1933 * sendsig:
1934 *
1935 * Default signal delivery method for NetBSD.
1936 */
1937 void
1938 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1939 {
1940 struct sigacts *sa;
1941 int sig;
1942
1943 sig = ksi->ksi_signo;
1944 sa = curproc->p_sigacts;
1945
1946 switch (sa->sa_sigdesc[sig].sd_vers) {
1947 case 0:
1948 case 1:
1949 /* Compat for 1.6 and earlier. */
1950 if (sendsig_sigcontext_vec == NULL) {
1951 break;
1952 }
1953 (*sendsig_sigcontext_vec)(ksi, mask);
1954 return;
1955 case 2:
1956 case 3:
1957 sendsig_siginfo(ksi, mask);
1958 return;
1959 default:
1960 break;
1961 }
1962
1963 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1964 sigexit(curlwp, SIGILL);
1965 }
1966
1967 /*
1968 * sendsig_reset:
1969 *
1970 * Reset the signal action. Called from emulation specific sendsig()
1971 * before unlocking to deliver the signal.
1972 */
1973 void
1974 sendsig_reset(struct lwp *l, int signo)
1975 {
1976 struct proc *p = l->l_proc;
1977 struct sigacts *ps = p->p_sigacts;
1978
1979 KASSERT(mutex_owned(p->p_lock));
1980
1981 p->p_sigctx.ps_lwp = 0;
1982 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1983
1984 mutex_enter(&ps->sa_mutex);
1985 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1986 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1987 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1988 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1989 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1990 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1991 }
1992 mutex_exit(&ps->sa_mutex);
1993 }
1994
1995 /*
1996 * Kill the current process for stated reason.
1997 */
1998 void
1999 killproc(struct proc *p, const char *why)
2000 {
2001
2002 KASSERT(mutex_owned(proc_lock));
2003
2004 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2005 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2006 psignal(p, SIGKILL);
2007 }
2008
2009 /*
2010 * Force the current process to exit with the specified signal, dumping core
2011 * if appropriate. We bypass the normal tests for masked and caught
2012 * signals, allowing unrecoverable failures to terminate the process without
2013 * changing signal state. Mark the accounting record with the signal
2014 * termination. If dumping core, save the signal number for the debugger.
2015 * Calls exit and does not return.
2016 */
2017 void
2018 sigexit(struct lwp *l, int signo)
2019 {
2020 int exitsig, error, docore;
2021 struct proc *p;
2022 struct lwp *t;
2023
2024 p = l->l_proc;
2025
2026 KASSERT(mutex_owned(p->p_lock));
2027 KERNEL_UNLOCK_ALL(l, NULL);
2028
2029 /*
2030 * Don't permit coredump() multiple times in the same process.
2031 * Call back into sigexit, where we will be suspended until
2032 * the deed is done. Note that this is a recursive call, but
2033 * LW_WCORE will prevent us from coming back this way.
2034 */
2035 if ((p->p_sflag & PS_WCORE) != 0) {
2036 lwp_lock(l);
2037 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2038 lwp_unlock(l);
2039 mutex_exit(p->p_lock);
2040 lwp_userret(l);
2041 panic("sigexit 1");
2042 /* NOTREACHED */
2043 }
2044
2045 /* If process is already on the way out, then bail now. */
2046 if ((p->p_sflag & PS_WEXIT) != 0) {
2047 mutex_exit(p->p_lock);
2048 lwp_exit(l);
2049 panic("sigexit 2");
2050 /* NOTREACHED */
2051 }
2052
2053 /*
2054 * Prepare all other LWPs for exit. If dumping core, suspend them
2055 * so that their registers are available long enough to be dumped.
2056 */
2057 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2058 p->p_sflag |= PS_WCORE;
2059 for (;;) {
2060 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2061 lwp_lock(t);
2062 if (t == l) {
2063 t->l_flag &= ~LW_WSUSPEND;
2064 lwp_unlock(t);
2065 continue;
2066 }
2067 t->l_flag |= (LW_WCORE | LW_WEXIT);
2068 lwp_suspend(l, t);
2069 }
2070
2071 if (p->p_nrlwps == 1)
2072 break;
2073
2074 /*
2075 * Kick any LWPs sitting in lwp_wait1(), and wait
2076 * for everyone else to stop before proceeding.
2077 */
2078 p->p_nlwpwait++;
2079 cv_broadcast(&p->p_lwpcv);
2080 cv_wait(&p->p_lwpcv, p->p_lock);
2081 p->p_nlwpwait--;
2082 }
2083 }
2084
2085 exitsig = signo;
2086 p->p_acflag |= AXSIG;
2087 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2088 p->p_sigctx.ps_info._signo = signo;
2089 p->p_sigctx.ps_info._code = SI_NOINFO;
2090
2091 if (docore) {
2092 mutex_exit(p->p_lock);
2093 error = (*coredump_vec)(l, NULL);
2094
2095 if (kern_logsigexit) {
2096 int uid = l->l_cred ?
2097 (int)kauth_cred_geteuid(l->l_cred) : -1;
2098
2099 if (error)
2100 log(LOG_INFO, lognocoredump, p->p_pid,
2101 p->p_comm, uid, signo, error);
2102 else
2103 log(LOG_INFO, logcoredump, p->p_pid,
2104 p->p_comm, uid, signo);
2105 }
2106
2107 #ifdef PAX_SEGVGUARD
2108 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2109 #endif /* PAX_SEGVGUARD */
2110 /* Acquire the sched state mutex. exit1() will release it. */
2111 mutex_enter(p->p_lock);
2112 if (error == 0)
2113 p->p_sflag |= PS_COREDUMP;
2114 }
2115
2116 /* No longer dumping core. */
2117 p->p_sflag &= ~PS_WCORE;
2118
2119 exit1(l, 0, exitsig);
2120 /* NOTREACHED */
2121 }
2122
2123 /*
2124 * Put process 'p' into the stopped state and optionally, notify the parent.
2125 */
2126 void
2127 proc_stop(struct proc *p, int signo)
2128 {
2129 struct lwp *l;
2130
2131 KASSERT(mutex_owned(p->p_lock));
2132
2133 /*
2134 * First off, set the stopping indicator and bring all sleeping
2135 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2136 * unlock between here and the p->p_nrlwps check below.
2137 */
2138 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2139 membar_producer();
2140
2141 proc_stop_lwps(p);
2142
2143 /*
2144 * If there are no LWPs available to take the signal, then we
2145 * signal the parent process immediately. Otherwise, the last
2146 * LWP to stop will take care of it.
2147 */
2148
2149 if (p->p_nrlwps == 0) {
2150 proc_stop_done(p, PS_NOCLDSTOP);
2151 } else {
2152 /*
2153 * Have the remaining LWPs come to a halt, and trigger
2154 * proc_stop_callout() to ensure that they do.
2155 */
2156 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2157 sigpost(l, SIG_DFL, SA_STOP, signo);
2158 }
2159 callout_schedule(&proc_stop_ch, 1);
2160 }
2161 }
2162
2163 /*
2164 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2165 * but wait for them to come to a halt at the kernel-user boundary. This is
2166 * to allow LWPs to release any locks that they may hold before stopping.
2167 *
2168 * Non-interruptable sleeps can be long, and there is the potential for an
2169 * LWP to begin sleeping interruptably soon after the process has been set
2170 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2171 * stopping, and so complete halt of the process and the return of status
2172 * information to the parent could be delayed indefinitely.
2173 *
2174 * To handle this race, proc_stop_callout() runs once per tick while there
2175 * are stopping processes in the system. It sets LWPs that are sleeping
2176 * interruptably into the LSSTOP state.
2177 *
2178 * Note that we are not concerned about keeping all LWPs stopped while the
2179 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2180 * What we do need to ensure is that all LWPs in a stopping process have
2181 * stopped at least once, so that notification can be sent to the parent
2182 * process.
2183 */
2184 static void
2185 proc_stop_callout(void *cookie)
2186 {
2187 bool more, restart;
2188 struct proc *p;
2189
2190 (void)cookie;
2191
2192 do {
2193 restart = false;
2194 more = false;
2195
2196 mutex_enter(proc_lock);
2197 PROCLIST_FOREACH(p, &allproc) {
2198 mutex_enter(p->p_lock);
2199
2200 if ((p->p_sflag & PS_STOPPING) == 0) {
2201 mutex_exit(p->p_lock);
2202 continue;
2203 }
2204
2205 /* Stop any LWPs sleeping interruptably. */
2206 proc_stop_lwps(p);
2207 if (p->p_nrlwps == 0) {
2208 /*
2209 * We brought the process to a halt.
2210 * Mark it as stopped and notify the
2211 * parent.
2212 */
2213 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2214 /*
2215 * Note that proc_stop_done() will
2216 * drop p->p_lock briefly.
2217 * Arrange to restart and check
2218 * all processes again.
2219 */
2220 restart = true;
2221 }
2222 proc_stop_done(p, PS_NOCLDSTOP);
2223 } else
2224 more = true;
2225
2226 mutex_exit(p->p_lock);
2227 if (restart)
2228 break;
2229 }
2230 mutex_exit(proc_lock);
2231 } while (restart);
2232
2233 /*
2234 * If we noted processes that are stopping but still have
2235 * running LWPs, then arrange to check again in 1 tick.
2236 */
2237 if (more)
2238 callout_schedule(&proc_stop_ch, 1);
2239 }
2240
2241 /*
2242 * Given a process in state SSTOP, set the state back to SACTIVE and
2243 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2244 */
2245 void
2246 proc_unstop(struct proc *p)
2247 {
2248 struct lwp *l;
2249 int sig;
2250
2251 KASSERT(mutex_owned(proc_lock));
2252 KASSERT(mutex_owned(p->p_lock));
2253
2254 p->p_stat = SACTIVE;
2255 p->p_sflag &= ~PS_STOPPING;
2256 sig = p->p_xsig;
2257
2258 if (!p->p_waited)
2259 p->p_pptr->p_nstopchild--;
2260
2261 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2262 lwp_lock(l);
2263 if (l->l_stat != LSSTOP) {
2264 lwp_unlock(l);
2265 continue;
2266 }
2267 if (l->l_wchan == NULL) {
2268 setrunnable(l);
2269 continue;
2270 }
2271 if (sig && (l->l_flag & LW_SINTR) != 0) {
2272 setrunnable(l);
2273 sig = 0;
2274 } else {
2275 l->l_stat = LSSLEEP;
2276 p->p_nrlwps++;
2277 lwp_unlock(l);
2278 }
2279 }
2280 }
2281
2282 void
2283 proc_stoptrace(int trapno)
2284 {
2285 struct lwp *l = curlwp;
2286 struct proc *p = l->l_proc;
2287 struct sigacts *ps;
2288 sigset_t *mask;
2289 sig_t action;
2290 ksiginfo_t ksi;
2291 const int signo = SIGTRAP;
2292
2293 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2294
2295 KSI_INIT_TRAP(&ksi);
2296 ksi.ksi_lid = l->l_lid;
2297 ksi.ksi_info._signo = signo;
2298 ksi.ksi_info._code = trapno;
2299
2300 mutex_enter(p->p_lock);
2301
2302 /* Needed for ktrace */
2303 ps = p->p_sigacts;
2304 action = SIGACTION_PS(ps, signo).sa_handler;
2305 mask = &l->l_sigmask;
2306
2307 /* initproc (PID1) cannot became a debugger */
2308 KASSERT(p->p_pptr != initproc);
2309
2310 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2311 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2312
2313 p->p_xsig = signo;
2314 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2315 p->p_sigctx.ps_info = ksi.ksi_info;
2316 sigswitch(0, signo, true);
2317 mutex_exit(p->p_lock);
2318
2319 if (ktrpoint(KTR_PSIG)) {
2320 if (p->p_emul->e_ktrpsig)
2321 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2322 else
2323 ktrpsig(signo, action, mask, &ksi);
2324 }
2325 }
2326
2327 static int
2328 filt_sigattach(struct knote *kn)
2329 {
2330 struct proc *p = curproc;
2331
2332 kn->kn_obj = p;
2333 kn->kn_flags |= EV_CLEAR; /* automatically set */
2334
2335 mutex_enter(p->p_lock);
2336 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2337 mutex_exit(p->p_lock);
2338
2339 return 0;
2340 }
2341
2342 static void
2343 filt_sigdetach(struct knote *kn)
2344 {
2345 struct proc *p = kn->kn_obj;
2346
2347 mutex_enter(p->p_lock);
2348 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2349 mutex_exit(p->p_lock);
2350 }
2351
2352 /*
2353 * Signal knotes are shared with proc knotes, so we apply a mask to
2354 * the hint in order to differentiate them from process hints. This
2355 * could be avoided by using a signal-specific knote list, but probably
2356 * isn't worth the trouble.
2357 */
2358 static int
2359 filt_signal(struct knote *kn, long hint)
2360 {
2361
2362 if (hint & NOTE_SIGNAL) {
2363 hint &= ~NOTE_SIGNAL;
2364
2365 if (kn->kn_id == hint)
2366 kn->kn_data++;
2367 }
2368 return (kn->kn_data != 0);
2369 }
2370
2371 const struct filterops sig_filtops = {
2372 .f_isfd = 0,
2373 .f_attach = filt_sigattach,
2374 .f_detach = filt_sigdetach,
2375 .f_event = filt_signal,
2376 };
2377