kern_sig.c revision 1.353 1 /* $NetBSD: kern_sig.c,v 1.353 2019/05/01 17:21:55 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.353 2019/05/01 17:21:55 kamil Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107
108 #include <uvm/uvm_extern.h>
109
110 #define SIGQUEUE_MAX 32
111 static pool_cache_t sigacts_cache __read_mostly;
112 static pool_cache_t ksiginfo_cache __read_mostly;
113 static callout_t proc_stop_ch __cacheline_aligned;
114
115 sigset_t contsigmask __cacheline_aligned;
116 sigset_t stopsigmask __cacheline_aligned;
117 static sigset_t vforksigmask __cacheline_aligned;
118 sigset_t sigcantmask __cacheline_aligned;
119
120 static void ksiginfo_exechook(struct proc *, void *);
121 static void proc_stop(struct proc *, int);
122 static void proc_stop_done(struct proc *, int);
123 static void proc_stop_callout(void *);
124 static int sigchecktrace(void);
125 static int sigpost(struct lwp *, sig_t, int, int);
126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int sigunwait(struct proc *, const ksiginfo_t *);
128
129 static void sigacts_poolpage_free(struct pool *, void *);
130 static void *sigacts_poolpage_alloc(struct pool *, int);
131
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134 (int (*)(struct lwp *, const char *))enosys;
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 */
715 int
716 sigispending(struct lwp *l, int signo)
717 {
718 struct proc *p = l->l_proc;
719 sigset_t tset;
720
721 membar_consumer();
722
723 tset = l->l_sigpend.sp_set;
724 sigplusset(&p->p_sigpend.sp_set, &tset);
725 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
726 sigminusset(&l->l_sigmask, &tset);
727
728 if (signo == 0) {
729 return firstsig(&tset);
730 }
731 return sigismember(&tset, signo) ? signo : 0;
732 }
733
734 void
735 getucontext(struct lwp *l, ucontext_t *ucp)
736 {
737 struct proc *p = l->l_proc;
738
739 KASSERT(mutex_owned(p->p_lock));
740
741 ucp->uc_flags = 0;
742 ucp->uc_link = l->l_ctxlink;
743 ucp->uc_sigmask = l->l_sigmask;
744 ucp->uc_flags |= _UC_SIGMASK;
745
746 /*
747 * The (unsupplied) definition of the `current execution stack'
748 * in the System V Interface Definition appears to allow returning
749 * the main context stack.
750 */
751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
755 } else {
756 /* Simply copy alternate signal execution stack. */
757 ucp->uc_stack = l->l_sigstk;
758 }
759 ucp->uc_flags |= _UC_STACK;
760 mutex_exit(p->p_lock);
761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
762 mutex_enter(p->p_lock);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * killpg1: common code for kill process group/broadcast kill.
803 */
804 int
805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
806 {
807 struct proc *p, *cp;
808 kauth_cred_t pc;
809 struct pgrp *pgrp;
810 int nfound;
811 int signo = ksi->ksi_signo;
812
813 cp = l->l_proc;
814 pc = l->l_cred;
815 nfound = 0;
816
817 mutex_enter(proc_lock);
818 if (all) {
819 /*
820 * Broadcast.
821 */
822 PROCLIST_FOREACH(p, &allproc) {
823 if (p->p_pid <= 1 || p == cp ||
824 (p->p_flag & PK_SYSTEM) != 0)
825 continue;
826 mutex_enter(p->p_lock);
827 if (kauth_authorize_process(pc,
828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
829 NULL) == 0) {
830 nfound++;
831 if (signo)
832 kpsignal2(p, ksi);
833 }
834 mutex_exit(p->p_lock);
835 }
836 } else {
837 if (pgid == 0)
838 /* Zero pgid means send to my process group. */
839 pgrp = cp->p_pgrp;
840 else {
841 pgrp = pgrp_find(pgid);
842 if (pgrp == NULL)
843 goto out;
844 }
845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
847 continue;
848 mutex_enter(p->p_lock);
849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
850 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
851 nfound++;
852 if (signo && P_ZOMBIE(p) == 0)
853 kpsignal2(p, ksi);
854 }
855 mutex_exit(p->p_lock);
856 }
857 }
858 out:
859 mutex_exit(proc_lock);
860 return nfound ? 0 : ESRCH;
861 }
862
863 /*
864 * Send a signal to a process group. If checktty is set, limit to members
865 * which have a controlling terminal.
866 */
867 void
868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
869 {
870 ksiginfo_t ksi;
871
872 KASSERT(!cpu_intr_p());
873 KASSERT(mutex_owned(proc_lock));
874
875 KSI_INIT_EMPTY(&ksi);
876 ksi.ksi_signo = sig;
877 kpgsignal(pgrp, &ksi, NULL, checkctty);
878 }
879
880 void
881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
882 {
883 struct proc *p;
884
885 KASSERT(!cpu_intr_p());
886 KASSERT(mutex_owned(proc_lock));
887 KASSERT(pgrp != NULL);
888
889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
891 kpsignal(p, ksi, data);
892 }
893
894 /*
895 * Send a signal caused by a trap to the current LWP. If it will be caught
896 * immediately, deliver it with correct code. Otherwise, post it normally.
897 */
898 void
899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
900 {
901 struct proc *p;
902 struct sigacts *ps;
903 int signo = ksi->ksi_signo;
904 sigset_t *mask;
905
906 KASSERT(KSI_TRAP_P(ksi));
907
908 ksi->ksi_lid = l->l_lid;
909 p = l->l_proc;
910
911 KASSERT(!cpu_intr_p());
912 mutex_enter(proc_lock);
913 mutex_enter(p->p_lock);
914
915 if (ISSET(p->p_slflag, PSL_TRACED) &&
916 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT))) {
917 eventswitch(signo, ksi->ksi_code);
918 // XXX ktrpoint(KTR_PSIG)
919 mutex_exit(p->p_lock);
920 return;
921 }
922
923 mask = &l->l_sigmask;
924 ps = p->p_sigacts;
925
926 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
927 const bool masked = sigismember(mask, signo);
928 if (caught && !masked) {
929 mutex_exit(proc_lock);
930 l->l_ru.ru_nsignals++;
931 kpsendsig(l, ksi, mask);
932 mutex_exit(p->p_lock);
933 if (ktrpoint(KTR_PSIG)) {
934 if (p->p_emul->e_ktrpsig)
935 p->p_emul->e_ktrpsig(signo,
936 SIGACTION_PS(ps, signo).sa_handler,
937 mask, ksi);
938 else
939 ktrpsig(signo,
940 SIGACTION_PS(ps, signo).sa_handler,
941 mask, ksi);
942 }
943 return;
944 }
945
946 /*
947 * If the signal is masked or ignored, then unmask it and
948 * reset it to the default action so that the process or
949 * its tracer will be notified.
950 */
951 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
952 if (masked || ignored) {
953 mutex_enter(&ps->sa_mutex);
954 sigdelset(mask, signo);
955 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
956 sigdelset(&p->p_sigctx.ps_sigignore, signo);
957 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
958 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
959 mutex_exit(&ps->sa_mutex);
960 }
961
962 kpsignal2(p, ksi);
963 mutex_exit(p->p_lock);
964 mutex_exit(proc_lock);
965 }
966
967 /*
968 * Fill in signal information and signal the parent for a child status change.
969 */
970 void
971 child_psignal(struct proc *p, int mask)
972 {
973 ksiginfo_t ksi;
974 struct proc *q;
975 int xsig;
976
977 KASSERT(mutex_owned(proc_lock));
978 KASSERT(mutex_owned(p->p_lock));
979
980 xsig = p->p_xsig;
981
982 KSI_INIT(&ksi);
983 ksi.ksi_signo = SIGCHLD;
984 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
985 ksi.ksi_pid = p->p_pid;
986 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
987 ksi.ksi_status = xsig;
988 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
989 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
990
991 q = p->p_pptr;
992
993 mutex_exit(p->p_lock);
994 mutex_enter(q->p_lock);
995
996 if ((q->p_sflag & mask) == 0)
997 kpsignal2(q, &ksi);
998
999 mutex_exit(q->p_lock);
1000 mutex_enter(p->p_lock);
1001 }
1002
1003 void
1004 psignal(struct proc *p, int signo)
1005 {
1006 ksiginfo_t ksi;
1007
1008 KASSERT(!cpu_intr_p());
1009 KASSERT(mutex_owned(proc_lock));
1010
1011 KSI_INIT_EMPTY(&ksi);
1012 ksi.ksi_signo = signo;
1013 mutex_enter(p->p_lock);
1014 kpsignal2(p, &ksi);
1015 mutex_exit(p->p_lock);
1016 }
1017
1018 void
1019 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1020 {
1021 fdfile_t *ff;
1022 file_t *fp;
1023 fdtab_t *dt;
1024
1025 KASSERT(!cpu_intr_p());
1026 KASSERT(mutex_owned(proc_lock));
1027
1028 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1029 size_t fd;
1030 filedesc_t *fdp = p->p_fd;
1031
1032 /* XXXSMP locking */
1033 ksi->ksi_fd = -1;
1034 dt = fdp->fd_dt;
1035 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1036 if ((ff = dt->dt_ff[fd]) == NULL)
1037 continue;
1038 if ((fp = ff->ff_file) == NULL)
1039 continue;
1040 if (fp->f_data == data) {
1041 ksi->ksi_fd = fd;
1042 break;
1043 }
1044 }
1045 }
1046 mutex_enter(p->p_lock);
1047 kpsignal2(p, ksi);
1048 mutex_exit(p->p_lock);
1049 }
1050
1051 /*
1052 * sigismasked:
1053 *
1054 * Returns true if signal is ignored or masked for the specified LWP.
1055 */
1056 int
1057 sigismasked(struct lwp *l, int sig)
1058 {
1059 struct proc *p = l->l_proc;
1060
1061 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1062 sigismember(&l->l_sigmask, sig);
1063 }
1064
1065 /*
1066 * sigpost:
1067 *
1068 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1069 * be able to take the signal.
1070 */
1071 static int
1072 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1073 {
1074 int rv, masked;
1075 struct proc *p = l->l_proc;
1076
1077 KASSERT(mutex_owned(p->p_lock));
1078
1079 /*
1080 * If the LWP is on the way out, sigclear() will be busy draining all
1081 * pending signals. Don't give it more.
1082 */
1083 if (l->l_refcnt == 0)
1084 return 0;
1085
1086 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1087
1088 /*
1089 * Have the LWP check for signals. This ensures that even if no LWP
1090 * is found to take the signal immediately, it should be taken soon.
1091 */
1092 lwp_lock(l);
1093 l->l_flag |= LW_PENDSIG;
1094
1095 /*
1096 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1097 * Note: SIGKILL and SIGSTOP cannot be masked.
1098 */
1099 masked = sigismember(&l->l_sigmask, sig);
1100 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1101 lwp_unlock(l);
1102 return 0;
1103 }
1104
1105 /*
1106 * If killing the process, make it run fast.
1107 */
1108 if (__predict_false((prop & SA_KILL) != 0) &&
1109 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1110 KASSERT(l->l_class == SCHED_OTHER);
1111 lwp_changepri(l, MAXPRI_USER);
1112 }
1113
1114 /*
1115 * If the LWP is running or on a run queue, then we win. If it's
1116 * sleeping interruptably, wake it and make it take the signal. If
1117 * the sleep isn't interruptable, then the chances are it will get
1118 * to see the signal soon anyhow. If suspended, it can't take the
1119 * signal right now. If it's LWP private or for all LWPs, save it
1120 * for later; otherwise punt.
1121 */
1122 rv = 0;
1123
1124 switch (l->l_stat) {
1125 case LSRUN:
1126 case LSONPROC:
1127 lwp_need_userret(l);
1128 rv = 1;
1129 break;
1130
1131 case LSSLEEP:
1132 if ((l->l_flag & LW_SINTR) != 0) {
1133 /* setrunnable() will release the lock. */
1134 setrunnable(l);
1135 return 1;
1136 }
1137 break;
1138
1139 case LSSUSPENDED:
1140 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1141 /* lwp_continue() will release the lock. */
1142 lwp_continue(l);
1143 return 1;
1144 }
1145 break;
1146
1147 case LSSTOP:
1148 if ((prop & SA_STOP) != 0)
1149 break;
1150
1151 /*
1152 * If the LWP is stopped and we are sending a continue
1153 * signal, then start it again.
1154 */
1155 if ((prop & SA_CONT) != 0) {
1156 if (l->l_wchan != NULL) {
1157 l->l_stat = LSSLEEP;
1158 p->p_nrlwps++;
1159 rv = 1;
1160 break;
1161 }
1162 /* setrunnable() will release the lock. */
1163 setrunnable(l);
1164 return 1;
1165 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1166 /* setrunnable() will release the lock. */
1167 setrunnable(l);
1168 return 1;
1169 }
1170 break;
1171
1172 default:
1173 break;
1174 }
1175
1176 lwp_unlock(l);
1177 return rv;
1178 }
1179
1180 /*
1181 * Notify an LWP that it has a pending signal.
1182 */
1183 void
1184 signotify(struct lwp *l)
1185 {
1186 KASSERT(lwp_locked(l, NULL));
1187
1188 l->l_flag |= LW_PENDSIG;
1189 lwp_need_userret(l);
1190 }
1191
1192 /*
1193 * Find an LWP within process p that is waiting on signal ksi, and hand
1194 * it on.
1195 */
1196 static int
1197 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1198 {
1199 struct lwp *l;
1200 int signo;
1201
1202 KASSERT(mutex_owned(p->p_lock));
1203
1204 signo = ksi->ksi_signo;
1205
1206 if (ksi->ksi_lid != 0) {
1207 /*
1208 * Signal came via _lwp_kill(). Find the LWP and see if
1209 * it's interested.
1210 */
1211 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1212 return 0;
1213 if (l->l_sigwaited == NULL ||
1214 !sigismember(&l->l_sigwaitset, signo))
1215 return 0;
1216 } else {
1217 /*
1218 * Look for any LWP that may be interested.
1219 */
1220 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1221 KASSERT(l->l_sigwaited != NULL);
1222 if (sigismember(&l->l_sigwaitset, signo))
1223 break;
1224 }
1225 }
1226
1227 if (l != NULL) {
1228 l->l_sigwaited->ksi_info = ksi->ksi_info;
1229 l->l_sigwaited = NULL;
1230 LIST_REMOVE(l, l_sigwaiter);
1231 cv_signal(&l->l_sigcv);
1232 return 1;
1233 }
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * Send the signal to the process. If the signal has an action, the action
1240 * is usually performed by the target process rather than the caller; we add
1241 * the signal to the set of pending signals for the process.
1242 *
1243 * Exceptions:
1244 * o When a stop signal is sent to a sleeping process that takes the
1245 * default action, the process is stopped without awakening it.
1246 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1247 * regardless of the signal action (eg, blocked or ignored).
1248 *
1249 * Other ignored signals are discarded immediately.
1250 */
1251 int
1252 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1253 {
1254 int prop, signo = ksi->ksi_signo;
1255 struct lwp *l = NULL;
1256 ksiginfo_t *kp;
1257 lwpid_t lid;
1258 sig_t action;
1259 bool toall;
1260 int error = 0;
1261
1262 KASSERT(!cpu_intr_p());
1263 KASSERT(mutex_owned(proc_lock));
1264 KASSERT(mutex_owned(p->p_lock));
1265 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1266 KASSERT(signo > 0 && signo < NSIG);
1267
1268 /*
1269 * If the process is being created by fork, is a zombie or is
1270 * exiting, then just drop the signal here and bail out.
1271 */
1272 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1273 return 0;
1274
1275 /* XXX for core dump/debugger */
1276 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1277 p->p_sigctx.ps_info = ksi->ksi_info;
1278
1279 /*
1280 * Notify any interested parties of the signal.
1281 */
1282 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1283
1284 /*
1285 * Some signals including SIGKILL must act on the entire process.
1286 */
1287 kp = NULL;
1288 prop = sigprop[signo];
1289 toall = ((prop & SA_TOALL) != 0);
1290 lid = toall ? 0 : ksi->ksi_lid;
1291
1292 /*
1293 * If proc is traced, always give parent a chance.
1294 */
1295 if (p->p_slflag & PSL_TRACED) {
1296 action = SIG_DFL;
1297
1298 if (lid == 0) {
1299 /*
1300 * If the process is being traced and the signal
1301 * is being caught, make sure to save any ksiginfo.
1302 */
1303 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1304 goto discard;
1305 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1306 goto out;
1307 }
1308 } else {
1309
1310 /*
1311 * If the signal is being ignored, then drop it. Note: we
1312 * don't set SIGCONT in ps_sigignore, and if it is set to
1313 * SIG_IGN, action will be SIG_DFL here.
1314 */
1315 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1316 goto discard;
1317
1318 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1319 action = SIG_CATCH;
1320 else {
1321 action = SIG_DFL;
1322
1323 /*
1324 * If sending a tty stop signal to a member of an
1325 * orphaned process group, discard the signal here if
1326 * the action is default; don't stop the process below
1327 * if sleeping, and don't clear any pending SIGCONT.
1328 */
1329 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1330 goto discard;
1331
1332 if (prop & SA_KILL && p->p_nice > NZERO)
1333 p->p_nice = NZERO;
1334 }
1335 }
1336
1337 /*
1338 * If stopping or continuing a process, discard any pending
1339 * signals that would do the inverse.
1340 */
1341 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1342 ksiginfoq_t kq;
1343
1344 ksiginfo_queue_init(&kq);
1345 if ((prop & SA_CONT) != 0)
1346 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1347 if ((prop & SA_STOP) != 0)
1348 sigclear(&p->p_sigpend, &contsigmask, &kq);
1349 ksiginfo_queue_drain(&kq); /* XXXSMP */
1350 }
1351
1352 /*
1353 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1354 * please!), check if any LWPs are waiting on it. If yes, pass on
1355 * the signal info. The signal won't be processed further here.
1356 */
1357 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1358 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1359 sigunwait(p, ksi))
1360 goto discard;
1361
1362 /*
1363 * XXXSMP Should be allocated by the caller, we're holding locks
1364 * here.
1365 */
1366 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1367 goto discard;
1368
1369 /*
1370 * LWP private signals are easy - just find the LWP and post
1371 * the signal to it.
1372 */
1373 if (lid != 0) {
1374 l = lwp_find(p, lid);
1375 if (l != NULL) {
1376 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1377 goto out;
1378 membar_producer();
1379 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1380 signo = -1;
1381 }
1382 goto out;
1383 }
1384
1385 /*
1386 * Some signals go to all LWPs, even if posted with _lwp_kill()
1387 * or for an SA process.
1388 */
1389 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1390 if ((p->p_slflag & PSL_TRACED) != 0)
1391 goto deliver;
1392
1393 /*
1394 * If SIGCONT is default (or ignored) and process is
1395 * asleep, we are finished; the process should not
1396 * be awakened.
1397 */
1398 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1399 goto out;
1400 } else {
1401 /*
1402 * Process is stopped or stopping.
1403 * - If traced, then no action is needed, unless killing.
1404 * - Run the process only if sending SIGCONT or SIGKILL.
1405 */
1406 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1407 goto out;
1408 }
1409 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1410 /*
1411 * Re-adjust p_nstopchild if the process was
1412 * stopped but not yet collected by its parent.
1413 */
1414 if (p->p_stat == SSTOP && !p->p_waited)
1415 p->p_pptr->p_nstopchild--;
1416 p->p_stat = SACTIVE;
1417 p->p_sflag &= ~PS_STOPPING;
1418 if (p->p_slflag & PSL_TRACED) {
1419 KASSERT(signo == SIGKILL);
1420 goto deliver;
1421 }
1422 /*
1423 * Do not make signal pending if SIGCONT is default.
1424 *
1425 * If the process catches SIGCONT, let it handle the
1426 * signal itself (if waiting on event - process runs,
1427 * otherwise continues sleeping).
1428 */
1429 if ((prop & SA_CONT) != 0) {
1430 p->p_xsig = SIGCONT;
1431 p->p_sflag |= PS_CONTINUED;
1432 child_psignal(p, 0);
1433 if (action == SIG_DFL) {
1434 KASSERT(signo != SIGKILL);
1435 goto deliver;
1436 }
1437 }
1438 } else if ((prop & SA_STOP) != 0) {
1439 /*
1440 * Already stopped, don't need to stop again.
1441 * (If we did the shell could get confused.)
1442 */
1443 goto out;
1444 }
1445 }
1446 /*
1447 * Make signal pending.
1448 */
1449 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1450 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1451 goto out;
1452 deliver:
1453 /*
1454 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1455 * visible on the per process list (for sigispending()). This
1456 * is unlikely to be needed in practice, but...
1457 */
1458 membar_producer();
1459
1460 /*
1461 * Try to find an LWP that can take the signal.
1462 */
1463 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1464 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1465 break;
1466 }
1467 signo = -1;
1468 out:
1469 /*
1470 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1471 * with locks held. The caller should take care of this.
1472 */
1473 ksiginfo_free(kp);
1474 if (signo == -1)
1475 return error;
1476 discard:
1477 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1478 return error;
1479 }
1480
1481 void
1482 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1483 {
1484 struct proc *p = l->l_proc;
1485
1486 KASSERT(mutex_owned(p->p_lock));
1487 (*p->p_emul->e_sendsig)(ksi, mask);
1488 }
1489
1490 /*
1491 * Stop any LWPs sleeping interruptably.
1492 */
1493 static void
1494 proc_stop_lwps(struct proc *p)
1495 {
1496 struct lwp *l;
1497
1498 KASSERT(mutex_owned(p->p_lock));
1499 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1500
1501 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1502 lwp_lock(l);
1503 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1504 l->l_stat = LSSTOP;
1505 p->p_nrlwps--;
1506 }
1507 lwp_unlock(l);
1508 }
1509 }
1510
1511 /*
1512 * Finish stopping of a process. Mark it stopped and notify the parent.
1513 *
1514 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1515 */
1516 static void
1517 proc_stop_done(struct proc *p, int ppmask)
1518 {
1519
1520 KASSERT(mutex_owned(proc_lock));
1521 KASSERT(mutex_owned(p->p_lock));
1522 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1523 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1524
1525 p->p_sflag &= ~PS_STOPPING;
1526 p->p_stat = SSTOP;
1527 p->p_waited = 0;
1528 p->p_pptr->p_nstopchild++;
1529 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1530 /* child_psignal drops p_lock briefly. */
1531 child_psignal(p, ppmask);
1532 cv_broadcast(&p->p_pptr->p_waitcv);
1533 }
1534 }
1535
1536 void
1537 eventswitch(int signo, int code)
1538 {
1539 struct lwp *l = curlwp;
1540 struct proc *p = l->l_proc;
1541
1542 KASSERT(mutex_owned(proc_lock));
1543 KASSERT(mutex_owned(p->p_lock));
1544 KASSERT(l->l_stat == LSONPROC);
1545 KASSERT(p->p_nrlwps > 0);
1546
1547 p->p_xsig = signo;
1548 p->p_sigctx.ps_faked = true;
1549 p->p_sigctx.ps_info._signo = signo;
1550 p->p_sigctx.ps_info._code = code;
1551
1552 sigswitch(0, signo, false);
1553 }
1554
1555 /*
1556 * Stop the current process and switch away when being stopped or traced.
1557 */
1558 void
1559 sigswitch(int ppmask, int signo, bool relock)
1560 {
1561 struct lwp *l = curlwp;
1562 struct proc *p = l->l_proc;
1563 int biglocks;
1564
1565 KASSERT(mutex_owned(p->p_lock));
1566 KASSERT(l->l_stat == LSONPROC);
1567 KASSERT(p->p_nrlwps > 0);
1568
1569 /*
1570 * On entry we know that the process needs to stop. If it's
1571 * the result of a 'sideways' stop signal that has been sourced
1572 * through issignal(), then stop other LWPs in the process too.
1573 */
1574 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1575 KASSERT(signo != 0);
1576 proc_stop(p, signo);
1577 KASSERT(p->p_nrlwps > 0);
1578 }
1579
1580 /*
1581 * If we are the last live LWP, and the stop was a result of
1582 * a new signal, then signal the parent.
1583 */
1584 if ((p->p_sflag & PS_STOPPING) != 0) {
1585 if (relock && !mutex_tryenter(proc_lock)) {
1586 mutex_exit(p->p_lock);
1587 mutex_enter(proc_lock);
1588 mutex_enter(p->p_lock);
1589 }
1590
1591 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1592 /*
1593 * Note that proc_stop_done() can drop
1594 * p->p_lock briefly.
1595 */
1596 proc_stop_done(p, ppmask);
1597 }
1598
1599 mutex_exit(proc_lock);
1600 }
1601
1602 /*
1603 * Unlock and switch away.
1604 */
1605 KERNEL_UNLOCK_ALL(l, &biglocks);
1606 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1607 p->p_nrlwps--;
1608 lwp_lock(l);
1609 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1610 l->l_stat = LSSTOP;
1611 lwp_unlock(l);
1612 }
1613
1614 mutex_exit(p->p_lock);
1615 lwp_lock(l);
1616 mi_switch(l);
1617 KERNEL_LOCK(biglocks, l);
1618 mutex_enter(p->p_lock);
1619 }
1620
1621 /*
1622 * Check for a signal from the debugger.
1623 */
1624 static int
1625 sigchecktrace(void)
1626 {
1627 struct lwp *l = curlwp;
1628 struct proc *p = l->l_proc;
1629 int signo;
1630
1631 KASSERT(mutex_owned(p->p_lock));
1632
1633 /* If there's a pending SIGKILL, process it immediately. */
1634 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1635 return 0;
1636
1637 /*
1638 * If we are no longer being traced, or the parent didn't
1639 * give us a signal, or we're stopping, look for more signals.
1640 */
1641 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1642 (p->p_sflag & PS_STOPPING) != 0)
1643 return 0;
1644
1645 /*
1646 * If the new signal is being masked, look for other signals.
1647 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1648 */
1649 signo = p->p_xsig;
1650 p->p_xsig = 0;
1651 if (sigismember(&l->l_sigmask, signo)) {
1652 signo = 0;
1653 }
1654 return signo;
1655 }
1656
1657 /*
1658 * If the current process has received a signal (should be caught or cause
1659 * termination, should interrupt current syscall), return the signal number.
1660 *
1661 * Stop signals with default action are processed immediately, then cleared;
1662 * they aren't returned. This is checked after each entry to the system for
1663 * a syscall or trap.
1664 *
1665 * We will also return -1 if the process is exiting and the current LWP must
1666 * follow suit.
1667 */
1668 int
1669 issignal(struct lwp *l)
1670 {
1671 struct proc *p;
1672 int signo, prop;
1673 sigpend_t *sp;
1674 sigset_t ss;
1675
1676 p = l->l_proc;
1677 sp = NULL;
1678 signo = 0;
1679
1680 KASSERT(p == curproc);
1681 KASSERT(mutex_owned(p->p_lock));
1682
1683 for (;;) {
1684 /* Discard any signals that we have decided not to take. */
1685 if (signo != 0) {
1686 (void)sigget(sp, NULL, signo, NULL);
1687 }
1688
1689 /*
1690 * If the process is stopped/stopping, then stop ourselves
1691 * now that we're on the kernel/userspace boundary. When
1692 * we awaken, check for a signal from the debugger.
1693 */
1694 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1695 sigswitch(PS_NOCLDSTOP, 0, true);
1696 signo = sigchecktrace();
1697 } else if (p->p_stat == SACTIVE)
1698 signo = sigchecktrace();
1699 else
1700 signo = 0;
1701
1702 /* Signals from the debugger are "out of band". */
1703 sp = NULL;
1704
1705 /*
1706 * If the debugger didn't provide a signal, find a pending
1707 * signal from our set. Check per-LWP signals first, and
1708 * then per-process.
1709 */
1710 if (signo == 0) {
1711 sp = &l->l_sigpend;
1712 ss = sp->sp_set;
1713 if ((p->p_lflag & PL_PPWAIT) != 0)
1714 sigminusset(&vforksigmask, &ss);
1715 sigminusset(&l->l_sigmask, &ss);
1716
1717 if ((signo = firstsig(&ss)) == 0) {
1718 sp = &p->p_sigpend;
1719 ss = sp->sp_set;
1720 if ((p->p_lflag & PL_PPWAIT) != 0)
1721 sigminusset(&vforksigmask, &ss);
1722 sigminusset(&l->l_sigmask, &ss);
1723
1724 if ((signo = firstsig(&ss)) == 0) {
1725 /*
1726 * No signal pending - clear the
1727 * indicator and bail out.
1728 */
1729 lwp_lock(l);
1730 l->l_flag &= ~LW_PENDSIG;
1731 lwp_unlock(l);
1732 sp = NULL;
1733 break;
1734 }
1735 }
1736 }
1737
1738 /*
1739 * We should see pending but ignored signals only if
1740 * we are being traced.
1741 */
1742 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1743 (p->p_slflag & PSL_TRACED) == 0) {
1744 /* Discard the signal. */
1745 continue;
1746 }
1747
1748 /*
1749 * If traced, always stop, and stay stopped until released
1750 * by the debugger. If the our parent is our debugger waiting
1751 * for us and we vforked, don't hang as we could deadlock.
1752 */
1753 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1754 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1755 (p->p_pptr == p->p_opptr))) {
1756 /*
1757 * Take the signal, but don't remove it from the
1758 * siginfo queue, because the debugger can send
1759 * it later.
1760 */
1761 if (sp)
1762 sigdelset(&sp->sp_set, signo);
1763 p->p_xsig = signo;
1764
1765 /* Handling of signal trace */
1766 sigswitch(0, signo, true);
1767
1768 /* Check for a signal from the debugger. */
1769 if ((signo = sigchecktrace()) == 0)
1770 continue;
1771
1772 /* Signals from the debugger are "out of band". */
1773 sp = NULL;
1774 }
1775
1776 prop = sigprop[signo];
1777
1778 /*
1779 * Decide whether the signal should be returned.
1780 */
1781 switch ((long)SIGACTION(p, signo).sa_handler) {
1782 case (long)SIG_DFL:
1783 /*
1784 * Don't take default actions on system processes.
1785 */
1786 if (p->p_pid <= 1) {
1787 #ifdef DIAGNOSTIC
1788 /*
1789 * Are you sure you want to ignore SIGSEGV
1790 * in init? XXX
1791 */
1792 printf_nolog("Process (pid %d) got sig %d\n",
1793 p->p_pid, signo);
1794 #endif
1795 continue;
1796 }
1797
1798 /*
1799 * If there is a pending stop signal to process with
1800 * default action, stop here, then clear the signal.
1801 * However, if process is member of an orphaned
1802 * process group, ignore tty stop signals.
1803 */
1804 if (prop & SA_STOP) {
1805 /*
1806 * XXX Don't hold proc_lock for p_lflag,
1807 * but it's not a big deal.
1808 */
1809 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1810 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1811 (p->p_pptr == p->p_opptr))) ||
1812 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1813 prop & SA_TTYSTOP)) {
1814 /* Ignore the signal. */
1815 continue;
1816 }
1817 /* Take the signal. */
1818 (void)sigget(sp, NULL, signo, NULL);
1819 p->p_xsig = signo;
1820 p->p_sflag &= ~PS_CONTINUED;
1821 signo = 0;
1822 sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1823 } else if (prop & SA_IGNORE) {
1824 /*
1825 * Except for SIGCONT, shouldn't get here.
1826 * Default action is to ignore; drop it.
1827 */
1828 continue;
1829 }
1830 break;
1831
1832 case (long)SIG_IGN:
1833 #ifdef DEBUG_ISSIGNAL
1834 /*
1835 * Masking above should prevent us ever trying
1836 * to take action on an ignored signal other
1837 * than SIGCONT, unless process is traced.
1838 */
1839 if ((prop & SA_CONT) == 0 &&
1840 (p->p_slflag & PSL_TRACED) == 0)
1841 printf_nolog("issignal\n");
1842 #endif
1843 continue;
1844
1845 default:
1846 /*
1847 * This signal has an action, let postsig() process
1848 * it.
1849 */
1850 break;
1851 }
1852
1853 break;
1854 }
1855
1856 l->l_sigpendset = sp;
1857 return signo;
1858 }
1859
1860 /*
1861 * Take the action for the specified signal
1862 * from the current set of pending signals.
1863 */
1864 void
1865 postsig(int signo)
1866 {
1867 struct lwp *l;
1868 struct proc *p;
1869 struct sigacts *ps;
1870 sig_t action;
1871 sigset_t *returnmask;
1872 ksiginfo_t ksi;
1873
1874 l = curlwp;
1875 p = l->l_proc;
1876 ps = p->p_sigacts;
1877
1878 KASSERT(mutex_owned(p->p_lock));
1879 KASSERT(signo > 0);
1880
1881 /*
1882 * Set the new mask value and also defer further occurrences of this
1883 * signal.
1884 *
1885 * Special case: user has done a sigsuspend. Here the current mask is
1886 * not of interest, but rather the mask from before the sigsuspend is
1887 * what we want restored after the signal processing is completed.
1888 */
1889 if (l->l_sigrestore) {
1890 returnmask = &l->l_sigoldmask;
1891 l->l_sigrestore = 0;
1892 } else
1893 returnmask = &l->l_sigmask;
1894
1895 /*
1896 * Commit to taking the signal before releasing the mutex.
1897 */
1898 action = SIGACTION_PS(ps, signo).sa_handler;
1899 l->l_ru.ru_nsignals++;
1900 if (l->l_sigpendset == NULL) {
1901 /* From the debugger */
1902 if (p->p_sigctx.ps_faked &&
1903 signo == p->p_sigctx.ps_info._signo) {
1904 KSI_INIT(&ksi);
1905 ksi.ksi_info = p->p_sigctx.ps_info;
1906 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1907 p->p_sigctx.ps_faked = false;
1908 } else {
1909 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1910 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1911 }
1912 } else
1913 sigget(l->l_sigpendset, &ksi, signo, NULL);
1914
1915 if (ktrpoint(KTR_PSIG)) {
1916 mutex_exit(p->p_lock);
1917 if (p->p_emul->e_ktrpsig)
1918 p->p_emul->e_ktrpsig(signo, action,
1919 returnmask, &ksi);
1920 else
1921 ktrpsig(signo, action, returnmask, &ksi);
1922 mutex_enter(p->p_lock);
1923 }
1924
1925 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1926
1927 if (action == SIG_DFL) {
1928 /*
1929 * Default action, where the default is to kill
1930 * the process. (Other cases were ignored above.)
1931 */
1932 sigexit(l, signo);
1933 return;
1934 }
1935
1936 /*
1937 * If we get here, the signal must be caught.
1938 */
1939 #ifdef DIAGNOSTIC
1940 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1941 panic("postsig action");
1942 #endif
1943
1944 kpsendsig(l, &ksi, returnmask);
1945 }
1946
1947 /*
1948 * sendsig:
1949 *
1950 * Default signal delivery method for NetBSD.
1951 */
1952 void
1953 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1954 {
1955 struct sigacts *sa;
1956 int sig;
1957
1958 sig = ksi->ksi_signo;
1959 sa = curproc->p_sigacts;
1960
1961 switch (sa->sa_sigdesc[sig].sd_vers) {
1962 case 0:
1963 case 1:
1964 /* Compat for 1.6 and earlier. */
1965 if (sendsig_sigcontext_vec == NULL) {
1966 break;
1967 }
1968 (*sendsig_sigcontext_vec)(ksi, mask);
1969 return;
1970 case 2:
1971 case 3:
1972 sendsig_siginfo(ksi, mask);
1973 return;
1974 default:
1975 break;
1976 }
1977
1978 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1979 sigexit(curlwp, SIGILL);
1980 }
1981
1982 /*
1983 * sendsig_reset:
1984 *
1985 * Reset the signal action. Called from emulation specific sendsig()
1986 * before unlocking to deliver the signal.
1987 */
1988 void
1989 sendsig_reset(struct lwp *l, int signo)
1990 {
1991 struct proc *p = l->l_proc;
1992 struct sigacts *ps = p->p_sigacts;
1993
1994 KASSERT(mutex_owned(p->p_lock));
1995
1996 p->p_sigctx.ps_lwp = 0;
1997 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1998
1999 mutex_enter(&ps->sa_mutex);
2000 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2001 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2002 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2003 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2004 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2005 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2006 }
2007 mutex_exit(&ps->sa_mutex);
2008 }
2009
2010 /*
2011 * Kill the current process for stated reason.
2012 */
2013 void
2014 killproc(struct proc *p, const char *why)
2015 {
2016
2017 KASSERT(mutex_owned(proc_lock));
2018
2019 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2020 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2021 psignal(p, SIGKILL);
2022 }
2023
2024 /*
2025 * Force the current process to exit with the specified signal, dumping core
2026 * if appropriate. We bypass the normal tests for masked and caught
2027 * signals, allowing unrecoverable failures to terminate the process without
2028 * changing signal state. Mark the accounting record with the signal
2029 * termination. If dumping core, save the signal number for the debugger.
2030 * Calls exit and does not return.
2031 */
2032 void
2033 sigexit(struct lwp *l, int signo)
2034 {
2035 int exitsig, error, docore;
2036 struct proc *p;
2037 struct lwp *t;
2038
2039 p = l->l_proc;
2040
2041 KASSERT(mutex_owned(p->p_lock));
2042 KERNEL_UNLOCK_ALL(l, NULL);
2043
2044 /*
2045 * Don't permit coredump() multiple times in the same process.
2046 * Call back into sigexit, where we will be suspended until
2047 * the deed is done. Note that this is a recursive call, but
2048 * LW_WCORE will prevent us from coming back this way.
2049 */
2050 if ((p->p_sflag & PS_WCORE) != 0) {
2051 lwp_lock(l);
2052 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2053 lwp_unlock(l);
2054 mutex_exit(p->p_lock);
2055 lwp_userret(l);
2056 panic("sigexit 1");
2057 /* NOTREACHED */
2058 }
2059
2060 /* If process is already on the way out, then bail now. */
2061 if ((p->p_sflag & PS_WEXIT) != 0) {
2062 mutex_exit(p->p_lock);
2063 lwp_exit(l);
2064 panic("sigexit 2");
2065 /* NOTREACHED */
2066 }
2067
2068 /*
2069 * Prepare all other LWPs for exit. If dumping core, suspend them
2070 * so that their registers are available long enough to be dumped.
2071 */
2072 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2073 p->p_sflag |= PS_WCORE;
2074 for (;;) {
2075 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2076 lwp_lock(t);
2077 if (t == l) {
2078 t->l_flag &= ~LW_WSUSPEND;
2079 lwp_unlock(t);
2080 continue;
2081 }
2082 t->l_flag |= (LW_WCORE | LW_WEXIT);
2083 lwp_suspend(l, t);
2084 }
2085
2086 if (p->p_nrlwps == 1)
2087 break;
2088
2089 /*
2090 * Kick any LWPs sitting in lwp_wait1(), and wait
2091 * for everyone else to stop before proceeding.
2092 */
2093 p->p_nlwpwait++;
2094 cv_broadcast(&p->p_lwpcv);
2095 cv_wait(&p->p_lwpcv, p->p_lock);
2096 p->p_nlwpwait--;
2097 }
2098 }
2099
2100 exitsig = signo;
2101 p->p_acflag |= AXSIG;
2102 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2103 p->p_sigctx.ps_info._signo = signo;
2104 p->p_sigctx.ps_info._code = SI_NOINFO;
2105
2106 if (docore) {
2107 mutex_exit(p->p_lock);
2108 error = (*coredump_vec)(l, NULL);
2109
2110 if (kern_logsigexit) {
2111 int uid = l->l_cred ?
2112 (int)kauth_cred_geteuid(l->l_cred) : -1;
2113
2114 if (error)
2115 log(LOG_INFO, lognocoredump, p->p_pid,
2116 p->p_comm, uid, signo, error);
2117 else
2118 log(LOG_INFO, logcoredump, p->p_pid,
2119 p->p_comm, uid, signo);
2120 }
2121
2122 #ifdef PAX_SEGVGUARD
2123 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2124 #endif /* PAX_SEGVGUARD */
2125 /* Acquire the sched state mutex. exit1() will release it. */
2126 mutex_enter(p->p_lock);
2127 if (error == 0)
2128 p->p_sflag |= PS_COREDUMP;
2129 }
2130
2131 /* No longer dumping core. */
2132 p->p_sflag &= ~PS_WCORE;
2133
2134 exit1(l, 0, exitsig);
2135 /* NOTREACHED */
2136 }
2137
2138 /*
2139 * Put process 'p' into the stopped state and optionally, notify the parent.
2140 */
2141 void
2142 proc_stop(struct proc *p, int signo)
2143 {
2144 struct lwp *l;
2145
2146 KASSERT(mutex_owned(p->p_lock));
2147
2148 /*
2149 * First off, set the stopping indicator and bring all sleeping
2150 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2151 * unlock between here and the p->p_nrlwps check below.
2152 */
2153 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2154 membar_producer();
2155
2156 proc_stop_lwps(p);
2157
2158 /*
2159 * If there are no LWPs available to take the signal, then we
2160 * signal the parent process immediately. Otherwise, the last
2161 * LWP to stop will take care of it.
2162 */
2163
2164 if (p->p_nrlwps == 0) {
2165 proc_stop_done(p, PS_NOCLDSTOP);
2166 } else {
2167 /*
2168 * Have the remaining LWPs come to a halt, and trigger
2169 * proc_stop_callout() to ensure that they do.
2170 */
2171 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2172 sigpost(l, SIG_DFL, SA_STOP, signo);
2173 }
2174 callout_schedule(&proc_stop_ch, 1);
2175 }
2176 }
2177
2178 /*
2179 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2180 * but wait for them to come to a halt at the kernel-user boundary. This is
2181 * to allow LWPs to release any locks that they may hold before stopping.
2182 *
2183 * Non-interruptable sleeps can be long, and there is the potential for an
2184 * LWP to begin sleeping interruptably soon after the process has been set
2185 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2186 * stopping, and so complete halt of the process and the return of status
2187 * information to the parent could be delayed indefinitely.
2188 *
2189 * To handle this race, proc_stop_callout() runs once per tick while there
2190 * are stopping processes in the system. It sets LWPs that are sleeping
2191 * interruptably into the LSSTOP state.
2192 *
2193 * Note that we are not concerned about keeping all LWPs stopped while the
2194 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2195 * What we do need to ensure is that all LWPs in a stopping process have
2196 * stopped at least once, so that notification can be sent to the parent
2197 * process.
2198 */
2199 static void
2200 proc_stop_callout(void *cookie)
2201 {
2202 bool more, restart;
2203 struct proc *p;
2204
2205 (void)cookie;
2206
2207 do {
2208 restart = false;
2209 more = false;
2210
2211 mutex_enter(proc_lock);
2212 PROCLIST_FOREACH(p, &allproc) {
2213 mutex_enter(p->p_lock);
2214
2215 if ((p->p_sflag & PS_STOPPING) == 0) {
2216 mutex_exit(p->p_lock);
2217 continue;
2218 }
2219
2220 /* Stop any LWPs sleeping interruptably. */
2221 proc_stop_lwps(p);
2222 if (p->p_nrlwps == 0) {
2223 /*
2224 * We brought the process to a halt.
2225 * Mark it as stopped and notify the
2226 * parent.
2227 */
2228 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2229 /*
2230 * Note that proc_stop_done() will
2231 * drop p->p_lock briefly.
2232 * Arrange to restart and check
2233 * all processes again.
2234 */
2235 restart = true;
2236 }
2237 proc_stop_done(p, PS_NOCLDSTOP);
2238 } else
2239 more = true;
2240
2241 mutex_exit(p->p_lock);
2242 if (restart)
2243 break;
2244 }
2245 mutex_exit(proc_lock);
2246 } while (restart);
2247
2248 /*
2249 * If we noted processes that are stopping but still have
2250 * running LWPs, then arrange to check again in 1 tick.
2251 */
2252 if (more)
2253 callout_schedule(&proc_stop_ch, 1);
2254 }
2255
2256 /*
2257 * Given a process in state SSTOP, set the state back to SACTIVE and
2258 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2259 */
2260 void
2261 proc_unstop(struct proc *p)
2262 {
2263 struct lwp *l;
2264 int sig;
2265
2266 KASSERT(mutex_owned(proc_lock));
2267 KASSERT(mutex_owned(p->p_lock));
2268
2269 p->p_stat = SACTIVE;
2270 p->p_sflag &= ~PS_STOPPING;
2271 sig = p->p_xsig;
2272
2273 if (!p->p_waited)
2274 p->p_pptr->p_nstopchild--;
2275
2276 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2277 lwp_lock(l);
2278 if (l->l_stat != LSSTOP) {
2279 lwp_unlock(l);
2280 continue;
2281 }
2282 if (l->l_wchan == NULL) {
2283 setrunnable(l);
2284 continue;
2285 }
2286 if (sig && (l->l_flag & LW_SINTR) != 0) {
2287 setrunnable(l);
2288 sig = 0;
2289 } else {
2290 l->l_stat = LSSLEEP;
2291 p->p_nrlwps++;
2292 lwp_unlock(l);
2293 }
2294 }
2295 }
2296
2297 void
2298 proc_stoptrace(int trapno)
2299 {
2300 struct lwp *l = curlwp;
2301 struct proc *p = l->l_proc;
2302 struct sigacts *ps;
2303 sigset_t *mask;
2304 sig_t action;
2305 ksiginfo_t ksi;
2306 const int signo = SIGTRAP;
2307
2308 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2309
2310 KSI_INIT_TRAP(&ksi);
2311 ksi.ksi_lid = l->l_lid;
2312 ksi.ksi_info._signo = signo;
2313 ksi.ksi_info._code = trapno;
2314
2315 mutex_enter(p->p_lock);
2316
2317 /* Needed for ktrace */
2318 ps = p->p_sigacts;
2319 action = SIGACTION_PS(ps, signo).sa_handler;
2320 mask = &l->l_sigmask;
2321
2322 /* initproc (PID1) cannot became a debugger */
2323 KASSERT(p->p_pptr != initproc);
2324
2325 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2326 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2327
2328 p->p_xsig = signo;
2329 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2330 p->p_sigctx.ps_info = ksi.ksi_info;
2331 sigswitch(0, signo, true);
2332 mutex_exit(p->p_lock);
2333
2334 if (ktrpoint(KTR_PSIG)) {
2335 if (p->p_emul->e_ktrpsig)
2336 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2337 else
2338 ktrpsig(signo, action, mask, &ksi);
2339 }
2340 }
2341
2342 static int
2343 filt_sigattach(struct knote *kn)
2344 {
2345 struct proc *p = curproc;
2346
2347 kn->kn_obj = p;
2348 kn->kn_flags |= EV_CLEAR; /* automatically set */
2349
2350 mutex_enter(p->p_lock);
2351 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2352 mutex_exit(p->p_lock);
2353
2354 return 0;
2355 }
2356
2357 static void
2358 filt_sigdetach(struct knote *kn)
2359 {
2360 struct proc *p = kn->kn_obj;
2361
2362 mutex_enter(p->p_lock);
2363 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2364 mutex_exit(p->p_lock);
2365 }
2366
2367 /*
2368 * Signal knotes are shared with proc knotes, so we apply a mask to
2369 * the hint in order to differentiate them from process hints. This
2370 * could be avoided by using a signal-specific knote list, but probably
2371 * isn't worth the trouble.
2372 */
2373 static int
2374 filt_signal(struct knote *kn, long hint)
2375 {
2376
2377 if (hint & NOTE_SIGNAL) {
2378 hint &= ~NOTE_SIGNAL;
2379
2380 if (kn->kn_id == hint)
2381 kn->kn_data++;
2382 }
2383 return (kn->kn_data != 0);
2384 }
2385
2386 const struct filterops sig_filtops = {
2387 .f_isfd = 0,
2388 .f_attach = filt_sigattach,
2389 .f_detach = filt_sigdetach,
2390 .f_event = filt_signal,
2391 };
2392