Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.353
      1 /*	$NetBSD: kern_sig.c,v 1.353 2019/05/01 17:21:55 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.353 2019/05/01 17:21:55 kamil Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 
    104 #ifdef PAX_SEGVGUARD
    105 #include <sys/pax.h>
    106 #endif /* PAX_SEGVGUARD */
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #define	SIGQUEUE_MAX	32
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 sigset_t		contsigmask	__cacheline_aligned;
    116 sigset_t		stopsigmask	__cacheline_aligned;
    117 static sigset_t		vforksigmask	__cacheline_aligned;
    118 sigset_t		sigcantmask	__cacheline_aligned;
    119 
    120 static void	ksiginfo_exechook(struct proc *, void *);
    121 static void	proc_stop(struct proc *, int);
    122 static void	proc_stop_done(struct proc *, int);
    123 static void	proc_stop_callout(void *);
    124 static int	sigchecktrace(void);
    125 static int	sigpost(struct lwp *, sig_t, int, int);
    126 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    127 static int	sigunwait(struct proc *, const ksiginfo_t *);
    128 
    129 static void	sigacts_poolpage_free(struct pool *, void *);
    130 static void	*sigacts_poolpage_alloc(struct pool *, int);
    131 
    132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    133 int (*coredump_vec)(struct lwp *, const char *) =
    134     (int (*)(struct lwp *, const char *))enosys;
    135 
    136 /*
    137  * DTrace SDT provider definitions
    138  */
    139 SDT_PROVIDER_DECLARE(proc);
    140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    141     "struct lwp *", 	/* target thread */
    142     "struct proc *", 	/* target process */
    143     "int");		/* signal */
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    145     "struct lwp *",	/* target thread */
    146     "struct proc *",	/* target process */
    147     "int");  		/* signal */
    148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    149     "int", 		/* signal */
    150     "ksiginfo_t *", 	/* signal info */
    151     "void (*)(void)");	/* handler address */
    152 
    153 
    154 static struct pool_allocator sigactspool_allocator = {
    155 	.pa_alloc = sigacts_poolpage_alloc,
    156 	.pa_free = sigacts_poolpage_free
    157 };
    158 
    159 #ifdef DEBUG
    160 int	kern_logsigexit = 1;
    161 #else
    162 int	kern_logsigexit = 0;
    163 #endif
    164 
    165 static const char logcoredump[] =
    166     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    167 static const char lognocoredump[] =
    168     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    169 
    170 static kauth_listener_t signal_listener;
    171 
    172 static int
    173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    174     void *arg0, void *arg1, void *arg2, void *arg3)
    175 {
    176 	struct proc *p;
    177 	int result, signum;
    178 
    179 	result = KAUTH_RESULT_DEFER;
    180 	p = arg0;
    181 	signum = (int)(unsigned long)arg1;
    182 
    183 	if (action != KAUTH_PROCESS_SIGNAL)
    184 		return result;
    185 
    186 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    187 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    188 		result = KAUTH_RESULT_ALLOW;
    189 
    190 	return result;
    191 }
    192 
    193 static int
    194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    195 {
    196 	memset(obj, 0, sizeof(struct sigacts));
    197 	return 0;
    198 }
    199 
    200 /*
    201  * signal_init:
    202  *
    203  *	Initialize global signal-related data structures.
    204  */
    205 void
    206 signal_init(void)
    207 {
    208 
    209 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    210 
    211 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    212 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    213 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    214 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    215 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    216 
    217 	exechook_establish(ksiginfo_exechook, NULL);
    218 
    219 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    220 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    221 
    222 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    223 	    signal_listener_cb, NULL);
    224 }
    225 
    226 /*
    227  * sigacts_poolpage_alloc:
    228  *
    229  *	Allocate a page for the sigacts memory pool.
    230  */
    231 static void *
    232 sigacts_poolpage_alloc(struct pool *pp, int flags)
    233 {
    234 
    235 	return (void *)uvm_km_alloc(kernel_map,
    236 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    238 	    | UVM_KMF_WIRED);
    239 }
    240 
    241 /*
    242  * sigacts_poolpage_free:
    243  *
    244  *	Free a page on behalf of the sigacts memory pool.
    245  */
    246 static void
    247 sigacts_poolpage_free(struct pool *pp, void *v)
    248 {
    249 
    250 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    251 }
    252 
    253 /*
    254  * sigactsinit:
    255  *
    256  *	Create an initial sigacts structure, using the same signal state
    257  *	as of specified process.  If 'share' is set, share the sigacts by
    258  *	holding a reference, otherwise just copy it from parent.
    259  */
    260 struct sigacts *
    261 sigactsinit(struct proc *pp, int share)
    262 {
    263 	struct sigacts *ps = pp->p_sigacts, *ps2;
    264 
    265 	if (__predict_false(share)) {
    266 		atomic_inc_uint(&ps->sa_refcnt);
    267 		return ps;
    268 	}
    269 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    270 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    271 	ps2->sa_refcnt = 1;
    272 
    273 	mutex_enter(&ps->sa_mutex);
    274 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    275 	mutex_exit(&ps->sa_mutex);
    276 	return ps2;
    277 }
    278 
    279 /*
    280  * sigactsunshare:
    281  *
    282  *	Make this process not share its sigacts, maintaining all signal state.
    283  */
    284 void
    285 sigactsunshare(struct proc *p)
    286 {
    287 	struct sigacts *ps, *oldps = p->p_sigacts;
    288 
    289 	if (__predict_true(oldps->sa_refcnt == 1))
    290 		return;
    291 
    292 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    293 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    294 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    295 	ps->sa_refcnt = 1;
    296 
    297 	p->p_sigacts = ps;
    298 	sigactsfree(oldps);
    299 }
    300 
    301 /*
    302  * sigactsfree;
    303  *
    304  *	Release a sigacts structure.
    305  */
    306 void
    307 sigactsfree(struct sigacts *ps)
    308 {
    309 
    310 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    311 		mutex_destroy(&ps->sa_mutex);
    312 		pool_cache_put(sigacts_cache, ps);
    313 	}
    314 }
    315 
    316 /*
    317  * siginit:
    318  *
    319  *	Initialize signal state for process 0; set to ignore signals that
    320  *	are ignored by default and disable the signal stack.  Locking not
    321  *	required as the system is still cold.
    322  */
    323 void
    324 siginit(struct proc *p)
    325 {
    326 	struct lwp *l;
    327 	struct sigacts *ps;
    328 	int signo, prop;
    329 
    330 	ps = p->p_sigacts;
    331 	sigemptyset(&contsigmask);
    332 	sigemptyset(&stopsigmask);
    333 	sigemptyset(&vforksigmask);
    334 	sigemptyset(&sigcantmask);
    335 	for (signo = 1; signo < NSIG; signo++) {
    336 		prop = sigprop[signo];
    337 		if (prop & SA_CONT)
    338 			sigaddset(&contsigmask, signo);
    339 		if (prop & SA_STOP)
    340 			sigaddset(&stopsigmask, signo);
    341 		if (prop & SA_STOP && signo != SIGSTOP)
    342 			sigaddset(&vforksigmask, signo);
    343 		if (prop & SA_CANTMASK)
    344 			sigaddset(&sigcantmask, signo);
    345 		if (prop & SA_IGNORE && signo != SIGCONT)
    346 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    347 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    348 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    349 	}
    350 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    351 	p->p_sflag &= ~PS_NOCLDSTOP;
    352 
    353 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    354 	sigemptyset(&p->p_sigpend.sp_set);
    355 
    356 	/*
    357 	 * Reset per LWP state.
    358 	 */
    359 	l = LIST_FIRST(&p->p_lwps);
    360 	l->l_sigwaited = NULL;
    361 	l->l_sigstk = SS_INIT;
    362 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    363 	sigemptyset(&l->l_sigpend.sp_set);
    364 
    365 	/* One reference. */
    366 	ps->sa_refcnt = 1;
    367 }
    368 
    369 /*
    370  * execsigs:
    371  *
    372  *	Reset signals for an exec of the specified process.
    373  */
    374 void
    375 execsigs(struct proc *p)
    376 {
    377 	struct sigacts *ps;
    378 	struct lwp *l;
    379 	int signo, prop;
    380 	sigset_t tset;
    381 	ksiginfoq_t kq;
    382 
    383 	KASSERT(p->p_nlwps == 1);
    384 
    385 	sigactsunshare(p);
    386 	ps = p->p_sigacts;
    387 
    388 	/*
    389 	 * Reset caught signals.  Held signals remain held through
    390 	 * l->l_sigmask (unless they were caught, and are now ignored
    391 	 * by default).
    392 	 *
    393 	 * No need to lock yet, the process has only one LWP and
    394 	 * at this point the sigacts are private to the process.
    395 	 */
    396 	sigemptyset(&tset);
    397 	for (signo = 1; signo < NSIG; signo++) {
    398 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    399 			prop = sigprop[signo];
    400 			if (prop & SA_IGNORE) {
    401 				if ((prop & SA_CONT) == 0)
    402 					sigaddset(&p->p_sigctx.ps_sigignore,
    403 					    signo);
    404 				sigaddset(&tset, signo);
    405 			}
    406 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    407 		}
    408 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    409 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    410 	}
    411 	ksiginfo_queue_init(&kq);
    412 
    413 	mutex_enter(p->p_lock);
    414 	sigclearall(p, &tset, &kq);
    415 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    416 
    417 	/*
    418 	 * Reset no zombies if child dies flag as Solaris does.
    419 	 */
    420 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    421 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    422 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    423 
    424 	/*
    425 	 * Reset per-LWP state.
    426 	 */
    427 	l = LIST_FIRST(&p->p_lwps);
    428 	l->l_sigwaited = NULL;
    429 	l->l_sigstk = SS_INIT;
    430 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    431 	sigemptyset(&l->l_sigpend.sp_set);
    432 	mutex_exit(p->p_lock);
    433 
    434 	ksiginfo_queue_drain(&kq);
    435 }
    436 
    437 /*
    438  * ksiginfo_exechook:
    439  *
    440  *	Free all pending ksiginfo entries from a process on exec.
    441  *	Additionally, drain any unused ksiginfo structures in the
    442  *	system back to the pool.
    443  *
    444  *	XXX This should not be a hook, every process has signals.
    445  */
    446 static void
    447 ksiginfo_exechook(struct proc *p, void *v)
    448 {
    449 	ksiginfoq_t kq;
    450 
    451 	ksiginfo_queue_init(&kq);
    452 
    453 	mutex_enter(p->p_lock);
    454 	sigclearall(p, NULL, &kq);
    455 	mutex_exit(p->p_lock);
    456 
    457 	ksiginfo_queue_drain(&kq);
    458 }
    459 
    460 /*
    461  * ksiginfo_alloc:
    462  *
    463  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    464  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    465  *	has not been queued somewhere, then just return it.  Additionally,
    466  *	if the existing ksiginfo_t does not contain any information beyond
    467  *	the signal number, then just return it.
    468  */
    469 ksiginfo_t *
    470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    471 {
    472 	ksiginfo_t *kp;
    473 
    474 	if (ok != NULL) {
    475 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    476 		    KSI_FROMPOOL)
    477 			return ok;
    478 		if (KSI_EMPTY_P(ok))
    479 			return ok;
    480 	}
    481 
    482 	kp = pool_cache_get(ksiginfo_cache, flags);
    483 	if (kp == NULL) {
    484 #ifdef DIAGNOSTIC
    485 		printf("Out of memory allocating ksiginfo for pid %d\n",
    486 		    p->p_pid);
    487 #endif
    488 		return NULL;
    489 	}
    490 
    491 	if (ok != NULL) {
    492 		memcpy(kp, ok, sizeof(*kp));
    493 		kp->ksi_flags &= ~KSI_QUEUED;
    494 	} else
    495 		KSI_INIT_EMPTY(kp);
    496 
    497 	kp->ksi_flags |= KSI_FROMPOOL;
    498 
    499 	return kp;
    500 }
    501 
    502 /*
    503  * ksiginfo_free:
    504  *
    505  *	If the given ksiginfo_t is from the pool and has not been queued,
    506  *	then free it.
    507  */
    508 void
    509 ksiginfo_free(ksiginfo_t *kp)
    510 {
    511 
    512 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    513 		return;
    514 	pool_cache_put(ksiginfo_cache, kp);
    515 }
    516 
    517 /*
    518  * ksiginfo_queue_drain:
    519  *
    520  *	Drain a non-empty ksiginfo_t queue.
    521  */
    522 void
    523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    524 {
    525 	ksiginfo_t *ksi;
    526 
    527 	KASSERT(!TAILQ_EMPTY(kq));
    528 
    529 	while (!TAILQ_EMPTY(kq)) {
    530 		ksi = TAILQ_FIRST(kq);
    531 		TAILQ_REMOVE(kq, ksi, ksi_list);
    532 		pool_cache_put(ksiginfo_cache, ksi);
    533 	}
    534 }
    535 
    536 static int
    537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    538 {
    539 	ksiginfo_t *ksi, *nksi;
    540 
    541 	if (sp == NULL)
    542 		goto out;
    543 
    544 	/* Find siginfo and copy it out. */
    545 	int count = 0;
    546 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    547 		if (ksi->ksi_signo != signo)
    548 			continue;
    549 		if (count++ > 0) /* Only remove the first, count all of them */
    550 			continue;
    551 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    552 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    553 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    554 		ksi->ksi_flags &= ~KSI_QUEUED;
    555 		if (out != NULL) {
    556 			memcpy(out, ksi, sizeof(*out));
    557 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    558 		}
    559 		ksiginfo_free(ksi);
    560 	}
    561 	if (count)
    562 		return count;
    563 
    564 out:
    565 	/* If there is no siginfo, then manufacture it. */
    566 	if (out != NULL) {
    567 		KSI_INIT(out);
    568 		out->ksi_info._signo = signo;
    569 		out->ksi_info._code = SI_NOINFO;
    570 	}
    571 	return 0;
    572 }
    573 
    574 /*
    575  * sigget:
    576  *
    577  *	Fetch the first pending signal from a set.  Optionally, also fetch
    578  *	or manufacture a ksiginfo element.  Returns the number of the first
    579  *	pending signal, or zero.
    580  */
    581 int
    582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    583 {
    584 	sigset_t tset;
    585 	int count;
    586 
    587 	/* If there's no pending set, the signal is from the debugger. */
    588 	if (sp == NULL)
    589 		goto out;
    590 
    591 	/* Construct mask from signo, and 'mask'. */
    592 	if (signo == 0) {
    593 		if (mask != NULL) {
    594 			tset = *mask;
    595 			__sigandset(&sp->sp_set, &tset);
    596 		} else
    597 			tset = sp->sp_set;
    598 
    599 		/* If there are no signals pending - return. */
    600 		if ((signo = firstsig(&tset)) == 0)
    601 			goto out;
    602 	} else {
    603 		KASSERT(sigismember(&sp->sp_set, signo));
    604 	}
    605 
    606 	sigdelset(&sp->sp_set, signo);
    607 out:
    608 	count = siggetinfo(sp, out, signo);
    609 	if (count > 1)
    610 		sigaddset(&sp->sp_set, signo);
    611 	return signo;
    612 }
    613 
    614 /*
    615  * sigput:
    616  *
    617  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    618  */
    619 static int
    620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    621 {
    622 	ksiginfo_t *kp;
    623 
    624 	KASSERT(mutex_owned(p->p_lock));
    625 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    626 
    627 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    628 
    629 	/*
    630 	 * If there is no siginfo, we are done.
    631 	 */
    632 	if (KSI_EMPTY_P(ksi))
    633 		return 0;
    634 
    635 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    636 
    637 	size_t count = 0;
    638 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    639 		count++;
    640 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    641 			continue;
    642 		if (kp->ksi_signo == ksi->ksi_signo) {
    643 			KSI_COPY(ksi, kp);
    644 			kp->ksi_flags |= KSI_QUEUED;
    645 			return 0;
    646 		}
    647 	}
    648 
    649 	if (count >= SIGQUEUE_MAX) {
    650 #ifdef DIAGNOSTIC
    651 		printf("%s(%d): Signal queue is full signal=%d\n",
    652 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    653 #endif
    654 		return EAGAIN;
    655 	}
    656 	ksi->ksi_flags |= KSI_QUEUED;
    657 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    658 
    659 	return 0;
    660 }
    661 
    662 /*
    663  * sigclear:
    664  *
    665  *	Clear all pending signals in the specified set.
    666  */
    667 void
    668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    669 {
    670 	ksiginfo_t *ksi, *next;
    671 
    672 	if (mask == NULL)
    673 		sigemptyset(&sp->sp_set);
    674 	else
    675 		sigminusset(mask, &sp->sp_set);
    676 
    677 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    678 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    679 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    680 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    681 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    682 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    683 		}
    684 	}
    685 }
    686 
    687 /*
    688  * sigclearall:
    689  *
    690  *	Clear all pending signals in the specified set from a process and
    691  *	its LWPs.
    692  */
    693 void
    694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    695 {
    696 	struct lwp *l;
    697 
    698 	KASSERT(mutex_owned(p->p_lock));
    699 
    700 	sigclear(&p->p_sigpend, mask, kq);
    701 
    702 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    703 		sigclear(&l->l_sigpend, mask, kq);
    704 	}
    705 }
    706 
    707 /*
    708  * sigispending:
    709  *
    710  *	Return the first signal number if there are pending signals for the
    711  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    712  *	and that the signal has been posted to the appopriate queue before
    713  *	LW_PENDSIG is set.
    714  */
    715 int
    716 sigispending(struct lwp *l, int signo)
    717 {
    718 	struct proc *p = l->l_proc;
    719 	sigset_t tset;
    720 
    721 	membar_consumer();
    722 
    723 	tset = l->l_sigpend.sp_set;
    724 	sigplusset(&p->p_sigpend.sp_set, &tset);
    725 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    726 	sigminusset(&l->l_sigmask, &tset);
    727 
    728 	if (signo == 0) {
    729 		return firstsig(&tset);
    730 	}
    731 	return sigismember(&tset, signo) ? signo : 0;
    732 }
    733 
    734 void
    735 getucontext(struct lwp *l, ucontext_t *ucp)
    736 {
    737 	struct proc *p = l->l_proc;
    738 
    739 	KASSERT(mutex_owned(p->p_lock));
    740 
    741 	ucp->uc_flags = 0;
    742 	ucp->uc_link = l->l_ctxlink;
    743 	ucp->uc_sigmask = l->l_sigmask;
    744 	ucp->uc_flags |= _UC_SIGMASK;
    745 
    746 	/*
    747 	 * The (unsupplied) definition of the `current execution stack'
    748 	 * in the System V Interface Definition appears to allow returning
    749 	 * the main context stack.
    750 	 */
    751 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    752 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    753 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    754 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    755 	} else {
    756 		/* Simply copy alternate signal execution stack. */
    757 		ucp->uc_stack = l->l_sigstk;
    758 	}
    759 	ucp->uc_flags |= _UC_STACK;
    760 	mutex_exit(p->p_lock);
    761 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    762 	mutex_enter(p->p_lock);
    763 }
    764 
    765 int
    766 setucontext(struct lwp *l, const ucontext_t *ucp)
    767 {
    768 	struct proc *p = l->l_proc;
    769 	int error;
    770 
    771 	KASSERT(mutex_owned(p->p_lock));
    772 
    773 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    774 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    775 		if (error != 0)
    776 			return error;
    777 	}
    778 
    779 	mutex_exit(p->p_lock);
    780 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    781 	mutex_enter(p->p_lock);
    782 	if (error != 0)
    783 		return (error);
    784 
    785 	l->l_ctxlink = ucp->uc_link;
    786 
    787 	/*
    788 	 * If there was stack information, update whether or not we are
    789 	 * still running on an alternate signal stack.
    790 	 */
    791 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    792 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    793 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    794 		else
    795 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    796 	}
    797 
    798 	return 0;
    799 }
    800 
    801 /*
    802  * killpg1: common code for kill process group/broadcast kill.
    803  */
    804 int
    805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    806 {
    807 	struct proc	*p, *cp;
    808 	kauth_cred_t	pc;
    809 	struct pgrp	*pgrp;
    810 	int		nfound;
    811 	int		signo = ksi->ksi_signo;
    812 
    813 	cp = l->l_proc;
    814 	pc = l->l_cred;
    815 	nfound = 0;
    816 
    817 	mutex_enter(proc_lock);
    818 	if (all) {
    819 		/*
    820 		 * Broadcast.
    821 		 */
    822 		PROCLIST_FOREACH(p, &allproc) {
    823 			if (p->p_pid <= 1 || p == cp ||
    824 			    (p->p_flag & PK_SYSTEM) != 0)
    825 				continue;
    826 			mutex_enter(p->p_lock);
    827 			if (kauth_authorize_process(pc,
    828 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    829 			    NULL) == 0) {
    830 				nfound++;
    831 				if (signo)
    832 					kpsignal2(p, ksi);
    833 			}
    834 			mutex_exit(p->p_lock);
    835 		}
    836 	} else {
    837 		if (pgid == 0)
    838 			/* Zero pgid means send to my process group. */
    839 			pgrp = cp->p_pgrp;
    840 		else {
    841 			pgrp = pgrp_find(pgid);
    842 			if (pgrp == NULL)
    843 				goto out;
    844 		}
    845 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    846 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    847 				continue;
    848 			mutex_enter(p->p_lock);
    849 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    850 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    851 				nfound++;
    852 				if (signo && P_ZOMBIE(p) == 0)
    853 					kpsignal2(p, ksi);
    854 			}
    855 			mutex_exit(p->p_lock);
    856 		}
    857 	}
    858 out:
    859 	mutex_exit(proc_lock);
    860 	return nfound ? 0 : ESRCH;
    861 }
    862 
    863 /*
    864  * Send a signal to a process group.  If checktty is set, limit to members
    865  * which have a controlling terminal.
    866  */
    867 void
    868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    869 {
    870 	ksiginfo_t ksi;
    871 
    872 	KASSERT(!cpu_intr_p());
    873 	KASSERT(mutex_owned(proc_lock));
    874 
    875 	KSI_INIT_EMPTY(&ksi);
    876 	ksi.ksi_signo = sig;
    877 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    878 }
    879 
    880 void
    881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    882 {
    883 	struct proc *p;
    884 
    885 	KASSERT(!cpu_intr_p());
    886 	KASSERT(mutex_owned(proc_lock));
    887 	KASSERT(pgrp != NULL);
    888 
    889 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    890 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    891 			kpsignal(p, ksi, data);
    892 }
    893 
    894 /*
    895  * Send a signal caused by a trap to the current LWP.  If it will be caught
    896  * immediately, deliver it with correct code.  Otherwise, post it normally.
    897  */
    898 void
    899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    900 {
    901 	struct proc	*p;
    902 	struct sigacts	*ps;
    903 	int signo = ksi->ksi_signo;
    904 	sigset_t *mask;
    905 
    906 	KASSERT(KSI_TRAP_P(ksi));
    907 
    908 	ksi->ksi_lid = l->l_lid;
    909 	p = l->l_proc;
    910 
    911 	KASSERT(!cpu_intr_p());
    912 	mutex_enter(proc_lock);
    913 	mutex_enter(p->p_lock);
    914 
    915 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    916 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT))) {
    917 		eventswitch(signo, ksi->ksi_code);
    918 		// XXX ktrpoint(KTR_PSIG)
    919 		mutex_exit(p->p_lock);
    920 		return;
    921 	}
    922 
    923 	mask = &l->l_sigmask;
    924 	ps = p->p_sigacts;
    925 
    926 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    927 	const bool masked = sigismember(mask, signo);
    928 	if (caught && !masked) {
    929 		mutex_exit(proc_lock);
    930 		l->l_ru.ru_nsignals++;
    931 		kpsendsig(l, ksi, mask);
    932 		mutex_exit(p->p_lock);
    933 		if (ktrpoint(KTR_PSIG)) {
    934 			if (p->p_emul->e_ktrpsig)
    935 				p->p_emul->e_ktrpsig(signo,
    936 				    SIGACTION_PS(ps, signo).sa_handler,
    937 				    mask, ksi);
    938 			else
    939 				ktrpsig(signo,
    940 				    SIGACTION_PS(ps, signo).sa_handler,
    941 				    mask, ksi);
    942 		}
    943 		return;
    944 	}
    945 
    946 	/*
    947 	 * If the signal is masked or ignored, then unmask it and
    948 	 * reset it to the default action so that the process or
    949 	 * its tracer will be notified.
    950 	 */
    951 	const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
    952 	if (masked || ignored) {
    953 		mutex_enter(&ps->sa_mutex);
    954 		sigdelset(mask, signo);
    955 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    956 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    957 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    958 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    959 		mutex_exit(&ps->sa_mutex);
    960 	}
    961 
    962 	kpsignal2(p, ksi);
    963 	mutex_exit(p->p_lock);
    964 	mutex_exit(proc_lock);
    965 }
    966 
    967 /*
    968  * Fill in signal information and signal the parent for a child status change.
    969  */
    970 void
    971 child_psignal(struct proc *p, int mask)
    972 {
    973 	ksiginfo_t ksi;
    974 	struct proc *q;
    975 	int xsig;
    976 
    977 	KASSERT(mutex_owned(proc_lock));
    978 	KASSERT(mutex_owned(p->p_lock));
    979 
    980 	xsig = p->p_xsig;
    981 
    982 	KSI_INIT(&ksi);
    983 	ksi.ksi_signo = SIGCHLD;
    984 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    985 	ksi.ksi_pid = p->p_pid;
    986 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    987 	ksi.ksi_status = xsig;
    988 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    989 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    990 
    991 	q = p->p_pptr;
    992 
    993 	mutex_exit(p->p_lock);
    994 	mutex_enter(q->p_lock);
    995 
    996 	if ((q->p_sflag & mask) == 0)
    997 		kpsignal2(q, &ksi);
    998 
    999 	mutex_exit(q->p_lock);
   1000 	mutex_enter(p->p_lock);
   1001 }
   1002 
   1003 void
   1004 psignal(struct proc *p, int signo)
   1005 {
   1006 	ksiginfo_t ksi;
   1007 
   1008 	KASSERT(!cpu_intr_p());
   1009 	KASSERT(mutex_owned(proc_lock));
   1010 
   1011 	KSI_INIT_EMPTY(&ksi);
   1012 	ksi.ksi_signo = signo;
   1013 	mutex_enter(p->p_lock);
   1014 	kpsignal2(p, &ksi);
   1015 	mutex_exit(p->p_lock);
   1016 }
   1017 
   1018 void
   1019 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1020 {
   1021 	fdfile_t *ff;
   1022 	file_t *fp;
   1023 	fdtab_t *dt;
   1024 
   1025 	KASSERT(!cpu_intr_p());
   1026 	KASSERT(mutex_owned(proc_lock));
   1027 
   1028 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1029 		size_t fd;
   1030 		filedesc_t *fdp = p->p_fd;
   1031 
   1032 		/* XXXSMP locking */
   1033 		ksi->ksi_fd = -1;
   1034 		dt = fdp->fd_dt;
   1035 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1036 			if ((ff = dt->dt_ff[fd]) == NULL)
   1037 				continue;
   1038 			if ((fp = ff->ff_file) == NULL)
   1039 				continue;
   1040 			if (fp->f_data == data) {
   1041 				ksi->ksi_fd = fd;
   1042 				break;
   1043 			}
   1044 		}
   1045 	}
   1046 	mutex_enter(p->p_lock);
   1047 	kpsignal2(p, ksi);
   1048 	mutex_exit(p->p_lock);
   1049 }
   1050 
   1051 /*
   1052  * sigismasked:
   1053  *
   1054  *	Returns true if signal is ignored or masked for the specified LWP.
   1055  */
   1056 int
   1057 sigismasked(struct lwp *l, int sig)
   1058 {
   1059 	struct proc *p = l->l_proc;
   1060 
   1061 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1062 	    sigismember(&l->l_sigmask, sig);
   1063 }
   1064 
   1065 /*
   1066  * sigpost:
   1067  *
   1068  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1069  *	be able to take the signal.
   1070  */
   1071 static int
   1072 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1073 {
   1074 	int rv, masked;
   1075 	struct proc *p = l->l_proc;
   1076 
   1077 	KASSERT(mutex_owned(p->p_lock));
   1078 
   1079 	/*
   1080 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1081 	 * pending signals.  Don't give it more.
   1082 	 */
   1083 	if (l->l_refcnt == 0)
   1084 		return 0;
   1085 
   1086 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1087 
   1088 	/*
   1089 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1090 	 * is found to take the signal immediately, it should be taken soon.
   1091 	 */
   1092 	lwp_lock(l);
   1093 	l->l_flag |= LW_PENDSIG;
   1094 
   1095 	/*
   1096 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1097 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1098 	 */
   1099 	masked = sigismember(&l->l_sigmask, sig);
   1100 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1101 		lwp_unlock(l);
   1102 		return 0;
   1103 	}
   1104 
   1105 	/*
   1106 	 * If killing the process, make it run fast.
   1107 	 */
   1108 	if (__predict_false((prop & SA_KILL) != 0) &&
   1109 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1110 		KASSERT(l->l_class == SCHED_OTHER);
   1111 		lwp_changepri(l, MAXPRI_USER);
   1112 	}
   1113 
   1114 	/*
   1115 	 * If the LWP is running or on a run queue, then we win.  If it's
   1116 	 * sleeping interruptably, wake it and make it take the signal.  If
   1117 	 * the sleep isn't interruptable, then the chances are it will get
   1118 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1119 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1120 	 * for later; otherwise punt.
   1121 	 */
   1122 	rv = 0;
   1123 
   1124 	switch (l->l_stat) {
   1125 	case LSRUN:
   1126 	case LSONPROC:
   1127 		lwp_need_userret(l);
   1128 		rv = 1;
   1129 		break;
   1130 
   1131 	case LSSLEEP:
   1132 		if ((l->l_flag & LW_SINTR) != 0) {
   1133 			/* setrunnable() will release the lock. */
   1134 			setrunnable(l);
   1135 			return 1;
   1136 		}
   1137 		break;
   1138 
   1139 	case LSSUSPENDED:
   1140 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1141 			/* lwp_continue() will release the lock. */
   1142 			lwp_continue(l);
   1143 			return 1;
   1144 		}
   1145 		break;
   1146 
   1147 	case LSSTOP:
   1148 		if ((prop & SA_STOP) != 0)
   1149 			break;
   1150 
   1151 		/*
   1152 		 * If the LWP is stopped and we are sending a continue
   1153 		 * signal, then start it again.
   1154 		 */
   1155 		if ((prop & SA_CONT) != 0) {
   1156 			if (l->l_wchan != NULL) {
   1157 				l->l_stat = LSSLEEP;
   1158 				p->p_nrlwps++;
   1159 				rv = 1;
   1160 				break;
   1161 			}
   1162 			/* setrunnable() will release the lock. */
   1163 			setrunnable(l);
   1164 			return 1;
   1165 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1166 			/* setrunnable() will release the lock. */
   1167 			setrunnable(l);
   1168 			return 1;
   1169 		}
   1170 		break;
   1171 
   1172 	default:
   1173 		break;
   1174 	}
   1175 
   1176 	lwp_unlock(l);
   1177 	return rv;
   1178 }
   1179 
   1180 /*
   1181  * Notify an LWP that it has a pending signal.
   1182  */
   1183 void
   1184 signotify(struct lwp *l)
   1185 {
   1186 	KASSERT(lwp_locked(l, NULL));
   1187 
   1188 	l->l_flag |= LW_PENDSIG;
   1189 	lwp_need_userret(l);
   1190 }
   1191 
   1192 /*
   1193  * Find an LWP within process p that is waiting on signal ksi, and hand
   1194  * it on.
   1195  */
   1196 static int
   1197 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1198 {
   1199 	struct lwp *l;
   1200 	int signo;
   1201 
   1202 	KASSERT(mutex_owned(p->p_lock));
   1203 
   1204 	signo = ksi->ksi_signo;
   1205 
   1206 	if (ksi->ksi_lid != 0) {
   1207 		/*
   1208 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1209 		 * it's interested.
   1210 		 */
   1211 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1212 			return 0;
   1213 		if (l->l_sigwaited == NULL ||
   1214 		    !sigismember(&l->l_sigwaitset, signo))
   1215 			return 0;
   1216 	} else {
   1217 		/*
   1218 		 * Look for any LWP that may be interested.
   1219 		 */
   1220 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1221 			KASSERT(l->l_sigwaited != NULL);
   1222 			if (sigismember(&l->l_sigwaitset, signo))
   1223 				break;
   1224 		}
   1225 	}
   1226 
   1227 	if (l != NULL) {
   1228 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1229 		l->l_sigwaited = NULL;
   1230 		LIST_REMOVE(l, l_sigwaiter);
   1231 		cv_signal(&l->l_sigcv);
   1232 		return 1;
   1233 	}
   1234 
   1235 	return 0;
   1236 }
   1237 
   1238 /*
   1239  * Send the signal to the process.  If the signal has an action, the action
   1240  * is usually performed by the target process rather than the caller; we add
   1241  * the signal to the set of pending signals for the process.
   1242  *
   1243  * Exceptions:
   1244  *   o When a stop signal is sent to a sleeping process that takes the
   1245  *     default action, the process is stopped without awakening it.
   1246  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1247  *     regardless of the signal action (eg, blocked or ignored).
   1248  *
   1249  * Other ignored signals are discarded immediately.
   1250  */
   1251 int
   1252 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1253 {
   1254 	int prop, signo = ksi->ksi_signo;
   1255 	struct lwp *l = NULL;
   1256 	ksiginfo_t *kp;
   1257 	lwpid_t lid;
   1258 	sig_t action;
   1259 	bool toall;
   1260 	int error = 0;
   1261 
   1262 	KASSERT(!cpu_intr_p());
   1263 	KASSERT(mutex_owned(proc_lock));
   1264 	KASSERT(mutex_owned(p->p_lock));
   1265 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1266 	KASSERT(signo > 0 && signo < NSIG);
   1267 
   1268 	/*
   1269 	 * If the process is being created by fork, is a zombie or is
   1270 	 * exiting, then just drop the signal here and bail out.
   1271 	 */
   1272 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1273 		return 0;
   1274 
   1275 	/* XXX for core dump/debugger */
   1276 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1277 	p->p_sigctx.ps_info = ksi->ksi_info;
   1278 
   1279 	/*
   1280 	 * Notify any interested parties of the signal.
   1281 	 */
   1282 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1283 
   1284 	/*
   1285 	 * Some signals including SIGKILL must act on the entire process.
   1286 	 */
   1287 	kp = NULL;
   1288 	prop = sigprop[signo];
   1289 	toall = ((prop & SA_TOALL) != 0);
   1290 	lid = toall ? 0 : ksi->ksi_lid;
   1291 
   1292 	/*
   1293 	 * If proc is traced, always give parent a chance.
   1294 	 */
   1295 	if (p->p_slflag & PSL_TRACED) {
   1296 		action = SIG_DFL;
   1297 
   1298 		if (lid == 0) {
   1299 			/*
   1300 			 * If the process is being traced and the signal
   1301 			 * is being caught, make sure to save any ksiginfo.
   1302 			 */
   1303 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1304 				goto discard;
   1305 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1306 				goto out;
   1307 		}
   1308 	} else {
   1309 
   1310 		/*
   1311 		 * If the signal is being ignored, then drop it.  Note: we
   1312 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1313 		 * SIG_IGN, action will be SIG_DFL here.
   1314 		 */
   1315 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1316 			goto discard;
   1317 
   1318 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1319 			action = SIG_CATCH;
   1320 		else {
   1321 			action = SIG_DFL;
   1322 
   1323 			/*
   1324 			 * If sending a tty stop signal to a member of an
   1325 			 * orphaned process group, discard the signal here if
   1326 			 * the action is default; don't stop the process below
   1327 			 * if sleeping, and don't clear any pending SIGCONT.
   1328 			 */
   1329 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1330 				goto discard;
   1331 
   1332 			if (prop & SA_KILL && p->p_nice > NZERO)
   1333 				p->p_nice = NZERO;
   1334 		}
   1335 	}
   1336 
   1337 	/*
   1338 	 * If stopping or continuing a process, discard any pending
   1339 	 * signals that would do the inverse.
   1340 	 */
   1341 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1342 		ksiginfoq_t kq;
   1343 
   1344 		ksiginfo_queue_init(&kq);
   1345 		if ((prop & SA_CONT) != 0)
   1346 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1347 		if ((prop & SA_STOP) != 0)
   1348 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1349 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1350 	}
   1351 
   1352 	/*
   1353 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1354 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1355 	 * the signal info.  The signal won't be processed further here.
   1356 	 */
   1357 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1358 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1359 	    sigunwait(p, ksi))
   1360 		goto discard;
   1361 
   1362 	/*
   1363 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1364 	 * here.
   1365 	 */
   1366 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1367 		goto discard;
   1368 
   1369 	/*
   1370 	 * LWP private signals are easy - just find the LWP and post
   1371 	 * the signal to it.
   1372 	 */
   1373 	if (lid != 0) {
   1374 		l = lwp_find(p, lid);
   1375 		if (l != NULL) {
   1376 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1377 				goto out;
   1378 			membar_producer();
   1379 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1380 				signo = -1;
   1381 		}
   1382 		goto out;
   1383 	}
   1384 
   1385 	/*
   1386 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1387 	 * or for an SA process.
   1388 	 */
   1389 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1390 		if ((p->p_slflag & PSL_TRACED) != 0)
   1391 			goto deliver;
   1392 
   1393 		/*
   1394 		 * If SIGCONT is default (or ignored) and process is
   1395 		 * asleep, we are finished; the process should not
   1396 		 * be awakened.
   1397 		 */
   1398 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1399 			goto out;
   1400 	} else {
   1401 		/*
   1402 		 * Process is stopped or stopping.
   1403 		 * - If traced, then no action is needed, unless killing.
   1404 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1405 		 */
   1406 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1407 			goto out;
   1408 		}
   1409 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1410 			/*
   1411 			 * Re-adjust p_nstopchild if the process was
   1412 			 * stopped but not yet collected by its parent.
   1413 			 */
   1414 			if (p->p_stat == SSTOP && !p->p_waited)
   1415 				p->p_pptr->p_nstopchild--;
   1416 			p->p_stat = SACTIVE;
   1417 			p->p_sflag &= ~PS_STOPPING;
   1418 			if (p->p_slflag & PSL_TRACED) {
   1419 				KASSERT(signo == SIGKILL);
   1420 				goto deliver;
   1421 			}
   1422 			/*
   1423 			 * Do not make signal pending if SIGCONT is default.
   1424 			 *
   1425 			 * If the process catches SIGCONT, let it handle the
   1426 			 * signal itself (if waiting on event - process runs,
   1427 			 * otherwise continues sleeping).
   1428 			 */
   1429 			if ((prop & SA_CONT) != 0) {
   1430 				p->p_xsig = SIGCONT;
   1431 				p->p_sflag |= PS_CONTINUED;
   1432 				child_psignal(p, 0);
   1433 				if (action == SIG_DFL) {
   1434 					KASSERT(signo != SIGKILL);
   1435 					goto deliver;
   1436 				}
   1437 			}
   1438 		} else if ((prop & SA_STOP) != 0) {
   1439 			/*
   1440 			 * Already stopped, don't need to stop again.
   1441 			 * (If we did the shell could get confused.)
   1442 			 */
   1443 			goto out;
   1444 		}
   1445 	}
   1446 	/*
   1447 	 * Make signal pending.
   1448 	 */
   1449 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1450 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1451 		goto out;
   1452 deliver:
   1453 	/*
   1454 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1455 	 * visible on the per process list (for sigispending()).  This
   1456 	 * is unlikely to be needed in practice, but...
   1457 	 */
   1458 	membar_producer();
   1459 
   1460 	/*
   1461 	 * Try to find an LWP that can take the signal.
   1462 	 */
   1463 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1464 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1465 			break;
   1466 	}
   1467 	signo = -1;
   1468 out:
   1469 	/*
   1470 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1471 	 * with locks held.  The caller should take care of this.
   1472 	 */
   1473 	ksiginfo_free(kp);
   1474 	if (signo == -1)
   1475 		return error;
   1476 discard:
   1477 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1478 	return error;
   1479 }
   1480 
   1481 void
   1482 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1483 {
   1484 	struct proc *p = l->l_proc;
   1485 
   1486 	KASSERT(mutex_owned(p->p_lock));
   1487 	(*p->p_emul->e_sendsig)(ksi, mask);
   1488 }
   1489 
   1490 /*
   1491  * Stop any LWPs sleeping interruptably.
   1492  */
   1493 static void
   1494 proc_stop_lwps(struct proc *p)
   1495 {
   1496 	struct lwp *l;
   1497 
   1498 	KASSERT(mutex_owned(p->p_lock));
   1499 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1500 
   1501 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1502 		lwp_lock(l);
   1503 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1504 			l->l_stat = LSSTOP;
   1505 			p->p_nrlwps--;
   1506 		}
   1507 		lwp_unlock(l);
   1508 	}
   1509 }
   1510 
   1511 /*
   1512  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1513  *
   1514  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1515  */
   1516 static void
   1517 proc_stop_done(struct proc *p, int ppmask)
   1518 {
   1519 
   1520 	KASSERT(mutex_owned(proc_lock));
   1521 	KASSERT(mutex_owned(p->p_lock));
   1522 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1523 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1524 
   1525 	p->p_sflag &= ~PS_STOPPING;
   1526 	p->p_stat = SSTOP;
   1527 	p->p_waited = 0;
   1528 	p->p_pptr->p_nstopchild++;
   1529 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1530 		/* child_psignal drops p_lock briefly. */
   1531 		child_psignal(p, ppmask);
   1532 		cv_broadcast(&p->p_pptr->p_waitcv);
   1533 	}
   1534 }
   1535 
   1536 void
   1537 eventswitch(int signo, int code)
   1538 {
   1539 	struct lwp *l = curlwp;
   1540 	struct proc *p = l->l_proc;
   1541 
   1542 	KASSERT(mutex_owned(proc_lock));
   1543 	KASSERT(mutex_owned(p->p_lock));
   1544 	KASSERT(l->l_stat == LSONPROC);
   1545 	KASSERT(p->p_nrlwps > 0);
   1546 
   1547 	p->p_xsig = signo;
   1548 	p->p_sigctx.ps_faked = true;
   1549 	p->p_sigctx.ps_info._signo = signo;
   1550 	p->p_sigctx.ps_info._code = code;
   1551 
   1552 	sigswitch(0, signo, false);
   1553 }
   1554 
   1555 /*
   1556  * Stop the current process and switch away when being stopped or traced.
   1557  */
   1558 void
   1559 sigswitch(int ppmask, int signo, bool relock)
   1560 {
   1561 	struct lwp *l = curlwp;
   1562 	struct proc *p = l->l_proc;
   1563 	int biglocks;
   1564 
   1565 	KASSERT(mutex_owned(p->p_lock));
   1566 	KASSERT(l->l_stat == LSONPROC);
   1567 	KASSERT(p->p_nrlwps > 0);
   1568 
   1569 	/*
   1570 	 * On entry we know that the process needs to stop.  If it's
   1571 	 * the result of a 'sideways' stop signal that has been sourced
   1572 	 * through issignal(), then stop other LWPs in the process too.
   1573 	 */
   1574 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1575 		KASSERT(signo != 0);
   1576 		proc_stop(p, signo);
   1577 		KASSERT(p->p_nrlwps > 0);
   1578 	}
   1579 
   1580 	/*
   1581 	 * If we are the last live LWP, and the stop was a result of
   1582 	 * a new signal, then signal the parent.
   1583 	 */
   1584 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1585 		if (relock && !mutex_tryenter(proc_lock)) {
   1586 			mutex_exit(p->p_lock);
   1587 			mutex_enter(proc_lock);
   1588 			mutex_enter(p->p_lock);
   1589 		}
   1590 
   1591 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1592 			/*
   1593 			 * Note that proc_stop_done() can drop
   1594 			 * p->p_lock briefly.
   1595 			 */
   1596 			proc_stop_done(p, ppmask);
   1597 		}
   1598 
   1599 		mutex_exit(proc_lock);
   1600 	}
   1601 
   1602 	/*
   1603 	 * Unlock and switch away.
   1604 	 */
   1605 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1606 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1607 		p->p_nrlwps--;
   1608 		lwp_lock(l);
   1609 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1610 		l->l_stat = LSSTOP;
   1611 		lwp_unlock(l);
   1612 	}
   1613 
   1614 	mutex_exit(p->p_lock);
   1615 	lwp_lock(l);
   1616 	mi_switch(l);
   1617 	KERNEL_LOCK(biglocks, l);
   1618 	mutex_enter(p->p_lock);
   1619 }
   1620 
   1621 /*
   1622  * Check for a signal from the debugger.
   1623  */
   1624 static int
   1625 sigchecktrace(void)
   1626 {
   1627 	struct lwp *l = curlwp;
   1628 	struct proc *p = l->l_proc;
   1629 	int signo;
   1630 
   1631 	KASSERT(mutex_owned(p->p_lock));
   1632 
   1633 	/* If there's a pending SIGKILL, process it immediately. */
   1634 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1635 		return 0;
   1636 
   1637 	/*
   1638 	 * If we are no longer being traced, or the parent didn't
   1639 	 * give us a signal, or we're stopping, look for more signals.
   1640 	 */
   1641 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1642 	    (p->p_sflag & PS_STOPPING) != 0)
   1643 		return 0;
   1644 
   1645 	/*
   1646 	 * If the new signal is being masked, look for other signals.
   1647 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1648 	 */
   1649 	signo = p->p_xsig;
   1650 	p->p_xsig = 0;
   1651 	if (sigismember(&l->l_sigmask, signo)) {
   1652 		signo = 0;
   1653 	}
   1654 	return signo;
   1655 }
   1656 
   1657 /*
   1658  * If the current process has received a signal (should be caught or cause
   1659  * termination, should interrupt current syscall), return the signal number.
   1660  *
   1661  * Stop signals with default action are processed immediately, then cleared;
   1662  * they aren't returned.  This is checked after each entry to the system for
   1663  * a syscall or trap.
   1664  *
   1665  * We will also return -1 if the process is exiting and the current LWP must
   1666  * follow suit.
   1667  */
   1668 int
   1669 issignal(struct lwp *l)
   1670 {
   1671 	struct proc *p;
   1672 	int signo, prop;
   1673 	sigpend_t *sp;
   1674 	sigset_t ss;
   1675 
   1676 	p = l->l_proc;
   1677 	sp = NULL;
   1678 	signo = 0;
   1679 
   1680 	KASSERT(p == curproc);
   1681 	KASSERT(mutex_owned(p->p_lock));
   1682 
   1683 	for (;;) {
   1684 		/* Discard any signals that we have decided not to take. */
   1685 		if (signo != 0) {
   1686 			(void)sigget(sp, NULL, signo, NULL);
   1687 		}
   1688 
   1689 		/*
   1690 		 * If the process is stopped/stopping, then stop ourselves
   1691 		 * now that we're on the kernel/userspace boundary.  When
   1692 		 * we awaken, check for a signal from the debugger.
   1693 		 */
   1694 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1695 			sigswitch(PS_NOCLDSTOP, 0, true);
   1696 			signo = sigchecktrace();
   1697 		} else if (p->p_stat == SACTIVE)
   1698 			signo = sigchecktrace();
   1699 		else
   1700 			signo = 0;
   1701 
   1702 		/* Signals from the debugger are "out of band". */
   1703 		sp = NULL;
   1704 
   1705 		/*
   1706 		 * If the debugger didn't provide a signal, find a pending
   1707 		 * signal from our set.  Check per-LWP signals first, and
   1708 		 * then per-process.
   1709 		 */
   1710 		if (signo == 0) {
   1711 			sp = &l->l_sigpend;
   1712 			ss = sp->sp_set;
   1713 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1714 				sigminusset(&vforksigmask, &ss);
   1715 			sigminusset(&l->l_sigmask, &ss);
   1716 
   1717 			if ((signo = firstsig(&ss)) == 0) {
   1718 				sp = &p->p_sigpend;
   1719 				ss = sp->sp_set;
   1720 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1721 					sigminusset(&vforksigmask, &ss);
   1722 				sigminusset(&l->l_sigmask, &ss);
   1723 
   1724 				if ((signo = firstsig(&ss)) == 0) {
   1725 					/*
   1726 					 * No signal pending - clear the
   1727 					 * indicator and bail out.
   1728 					 */
   1729 					lwp_lock(l);
   1730 					l->l_flag &= ~LW_PENDSIG;
   1731 					lwp_unlock(l);
   1732 					sp = NULL;
   1733 					break;
   1734 				}
   1735 			}
   1736 		}
   1737 
   1738 		/*
   1739 		 * We should see pending but ignored signals only if
   1740 		 * we are being traced.
   1741 		 */
   1742 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1743 		    (p->p_slflag & PSL_TRACED) == 0) {
   1744 			/* Discard the signal. */
   1745 			continue;
   1746 		}
   1747 
   1748 		/*
   1749 		 * If traced, always stop, and stay stopped until released
   1750 		 * by the debugger.  If the our parent is our debugger waiting
   1751 		 * for us and we vforked, don't hang as we could deadlock.
   1752 		 */
   1753 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
   1754 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1755 		     (p->p_pptr == p->p_opptr))) {
   1756 			/*
   1757 			 * Take the signal, but don't remove it from the
   1758 			 * siginfo queue, because the debugger can send
   1759 			 * it later.
   1760 			 */
   1761 			if (sp)
   1762 				sigdelset(&sp->sp_set, signo);
   1763 			p->p_xsig = signo;
   1764 
   1765 			/* Handling of signal trace */
   1766 			sigswitch(0, signo, true);
   1767 
   1768 			/* Check for a signal from the debugger. */
   1769 			if ((signo = sigchecktrace()) == 0)
   1770 				continue;
   1771 
   1772 			/* Signals from the debugger are "out of band". */
   1773 			sp = NULL;
   1774 		}
   1775 
   1776 		prop = sigprop[signo];
   1777 
   1778 		/*
   1779 		 * Decide whether the signal should be returned.
   1780 		 */
   1781 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1782 		case (long)SIG_DFL:
   1783 			/*
   1784 			 * Don't take default actions on system processes.
   1785 			 */
   1786 			if (p->p_pid <= 1) {
   1787 #ifdef DIAGNOSTIC
   1788 				/*
   1789 				 * Are you sure you want to ignore SIGSEGV
   1790 				 * in init? XXX
   1791 				 */
   1792 				printf_nolog("Process (pid %d) got sig %d\n",
   1793 				    p->p_pid, signo);
   1794 #endif
   1795 				continue;
   1796 			}
   1797 
   1798 			/*
   1799 			 * If there is a pending stop signal to process with
   1800 			 * default action, stop here, then clear the signal.
   1801 			 * However, if process is member of an orphaned
   1802 			 * process group, ignore tty stop signals.
   1803 			 */
   1804 			if (prop & SA_STOP) {
   1805 				/*
   1806 				 * XXX Don't hold proc_lock for p_lflag,
   1807 				 * but it's not a big deal.
   1808 				 */
   1809 				if ((ISSET(p->p_slflag, PSL_TRACED) &&
   1810 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1811 				     (p->p_pptr == p->p_opptr))) ||
   1812 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1813 				    prop & SA_TTYSTOP)) {
   1814 					/* Ignore the signal. */
   1815 					continue;
   1816 				}
   1817 				/* Take the signal. */
   1818 				(void)sigget(sp, NULL, signo, NULL);
   1819 				p->p_xsig = signo;
   1820 				p->p_sflag &= ~PS_CONTINUED;
   1821 				signo = 0;
   1822 				sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
   1823 			} else if (prop & SA_IGNORE) {
   1824 				/*
   1825 				 * Except for SIGCONT, shouldn't get here.
   1826 				 * Default action is to ignore; drop it.
   1827 				 */
   1828 				continue;
   1829 			}
   1830 			break;
   1831 
   1832 		case (long)SIG_IGN:
   1833 #ifdef DEBUG_ISSIGNAL
   1834 			/*
   1835 			 * Masking above should prevent us ever trying
   1836 			 * to take action on an ignored signal other
   1837 			 * than SIGCONT, unless process is traced.
   1838 			 */
   1839 			if ((prop & SA_CONT) == 0 &&
   1840 			    (p->p_slflag & PSL_TRACED) == 0)
   1841 				printf_nolog("issignal\n");
   1842 #endif
   1843 			continue;
   1844 
   1845 		default:
   1846 			/*
   1847 			 * This signal has an action, let postsig() process
   1848 			 * it.
   1849 			 */
   1850 			break;
   1851 		}
   1852 
   1853 		break;
   1854 	}
   1855 
   1856 	l->l_sigpendset = sp;
   1857 	return signo;
   1858 }
   1859 
   1860 /*
   1861  * Take the action for the specified signal
   1862  * from the current set of pending signals.
   1863  */
   1864 void
   1865 postsig(int signo)
   1866 {
   1867 	struct lwp	*l;
   1868 	struct proc	*p;
   1869 	struct sigacts	*ps;
   1870 	sig_t		action;
   1871 	sigset_t	*returnmask;
   1872 	ksiginfo_t	ksi;
   1873 
   1874 	l = curlwp;
   1875 	p = l->l_proc;
   1876 	ps = p->p_sigacts;
   1877 
   1878 	KASSERT(mutex_owned(p->p_lock));
   1879 	KASSERT(signo > 0);
   1880 
   1881 	/*
   1882 	 * Set the new mask value and also defer further occurrences of this
   1883 	 * signal.
   1884 	 *
   1885 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1886 	 * not of interest, but rather the mask from before the sigsuspend is
   1887 	 * what we want restored after the signal processing is completed.
   1888 	 */
   1889 	if (l->l_sigrestore) {
   1890 		returnmask = &l->l_sigoldmask;
   1891 		l->l_sigrestore = 0;
   1892 	} else
   1893 		returnmask = &l->l_sigmask;
   1894 
   1895 	/*
   1896 	 * Commit to taking the signal before releasing the mutex.
   1897 	 */
   1898 	action = SIGACTION_PS(ps, signo).sa_handler;
   1899 	l->l_ru.ru_nsignals++;
   1900 	if (l->l_sigpendset == NULL) {
   1901 		/* From the debugger */
   1902 		if (p->p_sigctx.ps_faked &&
   1903 		    signo == p->p_sigctx.ps_info._signo) {
   1904 			KSI_INIT(&ksi);
   1905 			ksi.ksi_info = p->p_sigctx.ps_info;
   1906 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   1907 			p->p_sigctx.ps_faked = false;
   1908 		} else {
   1909 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1910 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1911 		}
   1912 	} else
   1913 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1914 
   1915 	if (ktrpoint(KTR_PSIG)) {
   1916 		mutex_exit(p->p_lock);
   1917 		if (p->p_emul->e_ktrpsig)
   1918 			p->p_emul->e_ktrpsig(signo, action,
   1919 			    returnmask, &ksi);
   1920 		else
   1921 			ktrpsig(signo, action, returnmask, &ksi);
   1922 		mutex_enter(p->p_lock);
   1923 	}
   1924 
   1925 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1926 
   1927 	if (action == SIG_DFL) {
   1928 		/*
   1929 		 * Default action, where the default is to kill
   1930 		 * the process.  (Other cases were ignored above.)
   1931 		 */
   1932 		sigexit(l, signo);
   1933 		return;
   1934 	}
   1935 
   1936 	/*
   1937 	 * If we get here, the signal must be caught.
   1938 	 */
   1939 #ifdef DIAGNOSTIC
   1940 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1941 		panic("postsig action");
   1942 #endif
   1943 
   1944 	kpsendsig(l, &ksi, returnmask);
   1945 }
   1946 
   1947 /*
   1948  * sendsig:
   1949  *
   1950  *	Default signal delivery method for NetBSD.
   1951  */
   1952 void
   1953 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1954 {
   1955 	struct sigacts *sa;
   1956 	int sig;
   1957 
   1958 	sig = ksi->ksi_signo;
   1959 	sa = curproc->p_sigacts;
   1960 
   1961 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1962 	case 0:
   1963 	case 1:
   1964 		/* Compat for 1.6 and earlier. */
   1965 		if (sendsig_sigcontext_vec == NULL) {
   1966 			break;
   1967 		}
   1968 		(*sendsig_sigcontext_vec)(ksi, mask);
   1969 		return;
   1970 	case 2:
   1971 	case 3:
   1972 		sendsig_siginfo(ksi, mask);
   1973 		return;
   1974 	default:
   1975 		break;
   1976 	}
   1977 
   1978 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1979 	sigexit(curlwp, SIGILL);
   1980 }
   1981 
   1982 /*
   1983  * sendsig_reset:
   1984  *
   1985  *	Reset the signal action.  Called from emulation specific sendsig()
   1986  *	before unlocking to deliver the signal.
   1987  */
   1988 void
   1989 sendsig_reset(struct lwp *l, int signo)
   1990 {
   1991 	struct proc *p = l->l_proc;
   1992 	struct sigacts *ps = p->p_sigacts;
   1993 
   1994 	KASSERT(mutex_owned(p->p_lock));
   1995 
   1996 	p->p_sigctx.ps_lwp = 0;
   1997 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   1998 
   1999 	mutex_enter(&ps->sa_mutex);
   2000 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2001 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2002 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2003 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2004 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2005 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2006 	}
   2007 	mutex_exit(&ps->sa_mutex);
   2008 }
   2009 
   2010 /*
   2011  * Kill the current process for stated reason.
   2012  */
   2013 void
   2014 killproc(struct proc *p, const char *why)
   2015 {
   2016 
   2017 	KASSERT(mutex_owned(proc_lock));
   2018 
   2019 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2020 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2021 	psignal(p, SIGKILL);
   2022 }
   2023 
   2024 /*
   2025  * Force the current process to exit with the specified signal, dumping core
   2026  * if appropriate.  We bypass the normal tests for masked and caught
   2027  * signals, allowing unrecoverable failures to terminate the process without
   2028  * changing signal state.  Mark the accounting record with the signal
   2029  * termination.  If dumping core, save the signal number for the debugger.
   2030  * Calls exit and does not return.
   2031  */
   2032 void
   2033 sigexit(struct lwp *l, int signo)
   2034 {
   2035 	int exitsig, error, docore;
   2036 	struct proc *p;
   2037 	struct lwp *t;
   2038 
   2039 	p = l->l_proc;
   2040 
   2041 	KASSERT(mutex_owned(p->p_lock));
   2042 	KERNEL_UNLOCK_ALL(l, NULL);
   2043 
   2044 	/*
   2045 	 * Don't permit coredump() multiple times in the same process.
   2046 	 * Call back into sigexit, where we will be suspended until
   2047 	 * the deed is done.  Note that this is a recursive call, but
   2048 	 * LW_WCORE will prevent us from coming back this way.
   2049 	 */
   2050 	if ((p->p_sflag & PS_WCORE) != 0) {
   2051 		lwp_lock(l);
   2052 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2053 		lwp_unlock(l);
   2054 		mutex_exit(p->p_lock);
   2055 		lwp_userret(l);
   2056 		panic("sigexit 1");
   2057 		/* NOTREACHED */
   2058 	}
   2059 
   2060 	/* If process is already on the way out, then bail now. */
   2061 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2062 		mutex_exit(p->p_lock);
   2063 		lwp_exit(l);
   2064 		panic("sigexit 2");
   2065 		/* NOTREACHED */
   2066 	}
   2067 
   2068 	/*
   2069 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2070 	 * so that their registers are available long enough to be dumped.
   2071  	 */
   2072 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2073 		p->p_sflag |= PS_WCORE;
   2074 		for (;;) {
   2075 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2076 				lwp_lock(t);
   2077 				if (t == l) {
   2078 					t->l_flag &= ~LW_WSUSPEND;
   2079 					lwp_unlock(t);
   2080 					continue;
   2081 				}
   2082 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2083 				lwp_suspend(l, t);
   2084 			}
   2085 
   2086 			if (p->p_nrlwps == 1)
   2087 				break;
   2088 
   2089 			/*
   2090 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2091 			 * for everyone else to stop before proceeding.
   2092 			 */
   2093 			p->p_nlwpwait++;
   2094 			cv_broadcast(&p->p_lwpcv);
   2095 			cv_wait(&p->p_lwpcv, p->p_lock);
   2096 			p->p_nlwpwait--;
   2097 		}
   2098 	}
   2099 
   2100 	exitsig = signo;
   2101 	p->p_acflag |= AXSIG;
   2102 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2103 	p->p_sigctx.ps_info._signo = signo;
   2104 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2105 
   2106 	if (docore) {
   2107 		mutex_exit(p->p_lock);
   2108 		error = (*coredump_vec)(l, NULL);
   2109 
   2110 		if (kern_logsigexit) {
   2111 			int uid = l->l_cred ?
   2112 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2113 
   2114 			if (error)
   2115 				log(LOG_INFO, lognocoredump, p->p_pid,
   2116 				    p->p_comm, uid, signo, error);
   2117 			else
   2118 				log(LOG_INFO, logcoredump, p->p_pid,
   2119 				    p->p_comm, uid, signo);
   2120 		}
   2121 
   2122 #ifdef PAX_SEGVGUARD
   2123 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2124 #endif /* PAX_SEGVGUARD */
   2125 		/* Acquire the sched state mutex.  exit1() will release it. */
   2126 		mutex_enter(p->p_lock);
   2127 		if (error == 0)
   2128 			p->p_sflag |= PS_COREDUMP;
   2129 	}
   2130 
   2131 	/* No longer dumping core. */
   2132 	p->p_sflag &= ~PS_WCORE;
   2133 
   2134 	exit1(l, 0, exitsig);
   2135 	/* NOTREACHED */
   2136 }
   2137 
   2138 /*
   2139  * Put process 'p' into the stopped state and optionally, notify the parent.
   2140  */
   2141 void
   2142 proc_stop(struct proc *p, int signo)
   2143 {
   2144 	struct lwp *l;
   2145 
   2146 	KASSERT(mutex_owned(p->p_lock));
   2147 
   2148 	/*
   2149 	 * First off, set the stopping indicator and bring all sleeping
   2150 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2151 	 * unlock between here and the p->p_nrlwps check below.
   2152 	 */
   2153 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
   2154 	membar_producer();
   2155 
   2156 	proc_stop_lwps(p);
   2157 
   2158 	/*
   2159 	 * If there are no LWPs available to take the signal, then we
   2160 	 * signal the parent process immediately.  Otherwise, the last
   2161 	 * LWP to stop will take care of it.
   2162 	 */
   2163 
   2164 	if (p->p_nrlwps == 0) {
   2165 		proc_stop_done(p, PS_NOCLDSTOP);
   2166 	} else {
   2167 		/*
   2168 		 * Have the remaining LWPs come to a halt, and trigger
   2169 		 * proc_stop_callout() to ensure that they do.
   2170 		 */
   2171 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2172 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2173 		}
   2174 		callout_schedule(&proc_stop_ch, 1);
   2175 	}
   2176 }
   2177 
   2178 /*
   2179  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2180  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2181  * to allow LWPs to release any locks that they may hold before stopping.
   2182  *
   2183  * Non-interruptable sleeps can be long, and there is the potential for an
   2184  * LWP to begin sleeping interruptably soon after the process has been set
   2185  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2186  * stopping, and so complete halt of the process and the return of status
   2187  * information to the parent could be delayed indefinitely.
   2188  *
   2189  * To handle this race, proc_stop_callout() runs once per tick while there
   2190  * are stopping processes in the system.  It sets LWPs that are sleeping
   2191  * interruptably into the LSSTOP state.
   2192  *
   2193  * Note that we are not concerned about keeping all LWPs stopped while the
   2194  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2195  * What we do need to ensure is that all LWPs in a stopping process have
   2196  * stopped at least once, so that notification can be sent to the parent
   2197  * process.
   2198  */
   2199 static void
   2200 proc_stop_callout(void *cookie)
   2201 {
   2202 	bool more, restart;
   2203 	struct proc *p;
   2204 
   2205 	(void)cookie;
   2206 
   2207 	do {
   2208 		restart = false;
   2209 		more = false;
   2210 
   2211 		mutex_enter(proc_lock);
   2212 		PROCLIST_FOREACH(p, &allproc) {
   2213 			mutex_enter(p->p_lock);
   2214 
   2215 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2216 				mutex_exit(p->p_lock);
   2217 				continue;
   2218 			}
   2219 
   2220 			/* Stop any LWPs sleeping interruptably. */
   2221 			proc_stop_lwps(p);
   2222 			if (p->p_nrlwps == 0) {
   2223 				/*
   2224 				 * We brought the process to a halt.
   2225 				 * Mark it as stopped and notify the
   2226 				 * parent.
   2227 				 */
   2228 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2229 					/*
   2230 					 * Note that proc_stop_done() will
   2231 					 * drop p->p_lock briefly.
   2232 					 * Arrange to restart and check
   2233 					 * all processes again.
   2234 					 */
   2235 					restart = true;
   2236 				}
   2237 				proc_stop_done(p, PS_NOCLDSTOP);
   2238 			} else
   2239 				more = true;
   2240 
   2241 			mutex_exit(p->p_lock);
   2242 			if (restart)
   2243 				break;
   2244 		}
   2245 		mutex_exit(proc_lock);
   2246 	} while (restart);
   2247 
   2248 	/*
   2249 	 * If we noted processes that are stopping but still have
   2250 	 * running LWPs, then arrange to check again in 1 tick.
   2251 	 */
   2252 	if (more)
   2253 		callout_schedule(&proc_stop_ch, 1);
   2254 }
   2255 
   2256 /*
   2257  * Given a process in state SSTOP, set the state back to SACTIVE and
   2258  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2259  */
   2260 void
   2261 proc_unstop(struct proc *p)
   2262 {
   2263 	struct lwp *l;
   2264 	int sig;
   2265 
   2266 	KASSERT(mutex_owned(proc_lock));
   2267 	KASSERT(mutex_owned(p->p_lock));
   2268 
   2269 	p->p_stat = SACTIVE;
   2270 	p->p_sflag &= ~PS_STOPPING;
   2271 	sig = p->p_xsig;
   2272 
   2273 	if (!p->p_waited)
   2274 		p->p_pptr->p_nstopchild--;
   2275 
   2276 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2277 		lwp_lock(l);
   2278 		if (l->l_stat != LSSTOP) {
   2279 			lwp_unlock(l);
   2280 			continue;
   2281 		}
   2282 		if (l->l_wchan == NULL) {
   2283 			setrunnable(l);
   2284 			continue;
   2285 		}
   2286 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2287 			setrunnable(l);
   2288 			sig = 0;
   2289 		} else {
   2290 			l->l_stat = LSSLEEP;
   2291 			p->p_nrlwps++;
   2292 			lwp_unlock(l);
   2293 		}
   2294 	}
   2295 }
   2296 
   2297 void
   2298 proc_stoptrace(int trapno)
   2299 {
   2300 	struct lwp *l = curlwp;
   2301 	struct proc *p = l->l_proc;
   2302 	struct sigacts *ps;
   2303 	sigset_t *mask;
   2304 	sig_t action;
   2305 	ksiginfo_t ksi;
   2306 	const int signo = SIGTRAP;
   2307 
   2308 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2309 
   2310 	KSI_INIT_TRAP(&ksi);
   2311 	ksi.ksi_lid = l->l_lid;
   2312 	ksi.ksi_info._signo = signo;
   2313 	ksi.ksi_info._code = trapno;
   2314 
   2315 	mutex_enter(p->p_lock);
   2316 
   2317 	/* Needed for ktrace */
   2318 	ps = p->p_sigacts;
   2319 	action = SIGACTION_PS(ps, signo).sa_handler;
   2320 	mask = &l->l_sigmask;
   2321 
   2322 	/* initproc (PID1) cannot became a debugger */
   2323 	KASSERT(p->p_pptr != initproc);
   2324 
   2325 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2326 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2327 
   2328 	p->p_xsig = signo;
   2329 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2330 	p->p_sigctx.ps_info = ksi.ksi_info;
   2331 	sigswitch(0, signo, true);
   2332 	mutex_exit(p->p_lock);
   2333 
   2334 	if (ktrpoint(KTR_PSIG)) {
   2335 		if (p->p_emul->e_ktrpsig)
   2336 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2337 		else
   2338 			ktrpsig(signo, action, mask, &ksi);
   2339 	}
   2340 }
   2341 
   2342 static int
   2343 filt_sigattach(struct knote *kn)
   2344 {
   2345 	struct proc *p = curproc;
   2346 
   2347 	kn->kn_obj = p;
   2348 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2349 
   2350 	mutex_enter(p->p_lock);
   2351 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2352 	mutex_exit(p->p_lock);
   2353 
   2354 	return 0;
   2355 }
   2356 
   2357 static void
   2358 filt_sigdetach(struct knote *kn)
   2359 {
   2360 	struct proc *p = kn->kn_obj;
   2361 
   2362 	mutex_enter(p->p_lock);
   2363 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2364 	mutex_exit(p->p_lock);
   2365 }
   2366 
   2367 /*
   2368  * Signal knotes are shared with proc knotes, so we apply a mask to
   2369  * the hint in order to differentiate them from process hints.  This
   2370  * could be avoided by using a signal-specific knote list, but probably
   2371  * isn't worth the trouble.
   2372  */
   2373 static int
   2374 filt_signal(struct knote *kn, long hint)
   2375 {
   2376 
   2377 	if (hint & NOTE_SIGNAL) {
   2378 		hint &= ~NOTE_SIGNAL;
   2379 
   2380 		if (kn->kn_id == hint)
   2381 			kn->kn_data++;
   2382 	}
   2383 	return (kn->kn_data != 0);
   2384 }
   2385 
   2386 const struct filterops sig_filtops = {
   2387 		.f_isfd = 0,
   2388 		.f_attach = filt_sigattach,
   2389 		.f_detach = filt_sigdetach,
   2390 		.f_event = filt_signal,
   2391 };
   2392