kern_sig.c revision 1.358 1 /* $NetBSD: kern_sig.c,v 1.358 2019/05/06 08:05:03 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.358 2019/05/06 08:05:03 kamil Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107
108 #include <uvm/uvm_extern.h>
109
110 #define SIGQUEUE_MAX 32
111 static pool_cache_t sigacts_cache __read_mostly;
112 static pool_cache_t ksiginfo_cache __read_mostly;
113 static callout_t proc_stop_ch __cacheline_aligned;
114
115 sigset_t contsigmask __cacheline_aligned;
116 sigset_t stopsigmask __cacheline_aligned;
117 static sigset_t vforksigmask __cacheline_aligned;
118 sigset_t sigcantmask __cacheline_aligned;
119
120 static void ksiginfo_exechook(struct proc *, void *);
121 static void proc_stop(struct proc *, int);
122 static void proc_stop_done(struct proc *, int);
123 static void proc_stop_callout(void *);
124 static int sigchecktrace(void);
125 static int sigpost(struct lwp *, sig_t, int, int);
126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int sigunwait(struct proc *, const ksiginfo_t *);
128
129 static void sigacts_poolpage_free(struct pool *, void *);
130 static void *sigacts_poolpage_alloc(struct pool *, int);
131
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134 (int (*)(struct lwp *, const char *))enosys;
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 */
715 int
716 sigispending(struct lwp *l, int signo)
717 {
718 struct proc *p = l->l_proc;
719 sigset_t tset;
720
721 membar_consumer();
722
723 tset = l->l_sigpend.sp_set;
724 sigplusset(&p->p_sigpend.sp_set, &tset);
725 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
726 sigminusset(&l->l_sigmask, &tset);
727
728 if (signo == 0) {
729 return firstsig(&tset);
730 }
731 return sigismember(&tset, signo) ? signo : 0;
732 }
733
734 void
735 getucontext(struct lwp *l, ucontext_t *ucp)
736 {
737 struct proc *p = l->l_proc;
738
739 KASSERT(mutex_owned(p->p_lock));
740
741 ucp->uc_flags = 0;
742 ucp->uc_link = l->l_ctxlink;
743 ucp->uc_sigmask = l->l_sigmask;
744 ucp->uc_flags |= _UC_SIGMASK;
745
746 /*
747 * The (unsupplied) definition of the `current execution stack'
748 * in the System V Interface Definition appears to allow returning
749 * the main context stack.
750 */
751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
755 } else {
756 /* Simply copy alternate signal execution stack. */
757 ucp->uc_stack = l->l_sigstk;
758 }
759 ucp->uc_flags |= _UC_STACK;
760 mutex_exit(p->p_lock);
761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
762 mutex_enter(p->p_lock);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * killpg1: common code for kill process group/broadcast kill.
803 */
804 int
805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
806 {
807 struct proc *p, *cp;
808 kauth_cred_t pc;
809 struct pgrp *pgrp;
810 int nfound;
811 int signo = ksi->ksi_signo;
812
813 cp = l->l_proc;
814 pc = l->l_cred;
815 nfound = 0;
816
817 mutex_enter(proc_lock);
818 if (all) {
819 /*
820 * Broadcast.
821 */
822 PROCLIST_FOREACH(p, &allproc) {
823 if (p->p_pid <= 1 || p == cp ||
824 (p->p_flag & PK_SYSTEM) != 0)
825 continue;
826 mutex_enter(p->p_lock);
827 if (kauth_authorize_process(pc,
828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
829 NULL) == 0) {
830 nfound++;
831 if (signo)
832 kpsignal2(p, ksi);
833 }
834 mutex_exit(p->p_lock);
835 }
836 } else {
837 if (pgid == 0)
838 /* Zero pgid means send to my process group. */
839 pgrp = cp->p_pgrp;
840 else {
841 pgrp = pgrp_find(pgid);
842 if (pgrp == NULL)
843 goto out;
844 }
845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
847 continue;
848 mutex_enter(p->p_lock);
849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
850 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
851 nfound++;
852 if (signo && P_ZOMBIE(p) == 0)
853 kpsignal2(p, ksi);
854 }
855 mutex_exit(p->p_lock);
856 }
857 }
858 out:
859 mutex_exit(proc_lock);
860 return nfound ? 0 : ESRCH;
861 }
862
863 /*
864 * Send a signal to a process group. If checktty is set, limit to members
865 * which have a controlling terminal.
866 */
867 void
868 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
869 {
870 ksiginfo_t ksi;
871
872 KASSERT(!cpu_intr_p());
873 KASSERT(mutex_owned(proc_lock));
874
875 KSI_INIT_EMPTY(&ksi);
876 ksi.ksi_signo = sig;
877 kpgsignal(pgrp, &ksi, NULL, checkctty);
878 }
879
880 void
881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
882 {
883 struct proc *p;
884
885 KASSERT(!cpu_intr_p());
886 KASSERT(mutex_owned(proc_lock));
887 KASSERT(pgrp != NULL);
888
889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
891 kpsignal(p, ksi, data);
892 }
893
894 /*
895 * Send a signal caused by a trap to the current LWP. If it will be caught
896 * immediately, deliver it with correct code. Otherwise, post it normally.
897 */
898 void
899 trapsignal(struct lwp *l, ksiginfo_t *ksi)
900 {
901 struct proc *p;
902 struct sigacts *ps;
903 int signo = ksi->ksi_signo;
904 sigset_t *mask;
905 sig_t action;
906
907 KASSERT(KSI_TRAP_P(ksi));
908
909 ksi->ksi_lid = l->l_lid;
910 p = l->l_proc;
911
912 KASSERT(!cpu_intr_p());
913 mutex_enter(proc_lock);
914 mutex_enter(p->p_lock);
915
916 mask = &l->l_sigmask;
917 ps = p->p_sigacts;
918 action = SIGACTION_PS(ps, signo).sa_handler;
919
920 if (ISSET(p->p_slflag, PSL_TRACED) &&
921 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
922 p->p_xsig != SIGKILL &&
923 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
924 p->p_xsig = signo;
925 p->p_sigctx.ps_faked = true;
926 p->p_sigctx.ps_lwp = ksi->ksi_lid;
927 p->p_sigctx.ps_info = ksi->ksi_info;
928 sigswitch(0, signo, false);
929
930 if (ktrpoint(KTR_PSIG)) {
931 if (p->p_emul->e_ktrpsig)
932 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
933 else
934 ktrpsig(signo, action, mask, ksi);
935 }
936 return;
937 }
938
939 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
940 const bool masked = sigismember(mask, signo);
941 if (caught && !masked) {
942 mutex_exit(proc_lock);
943 l->l_ru.ru_nsignals++;
944 kpsendsig(l, ksi, mask);
945 mutex_exit(p->p_lock);
946
947 if (ktrpoint(KTR_PSIG)) {
948 if (p->p_emul->e_ktrpsig)
949 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
950 else
951 ktrpsig(signo, action, mask, ksi);
952 }
953 return;
954 }
955
956 /*
957 * If the signal is masked or ignored, then unmask it and
958 * reset it to the default action so that the process or
959 * its tracer will be notified.
960 */
961 const bool ignored = action == SIG_IGN;
962 if (masked || ignored) {
963 mutex_enter(&ps->sa_mutex);
964 sigdelset(mask, signo);
965 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
966 sigdelset(&p->p_sigctx.ps_sigignore, signo);
967 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
968 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
969 mutex_exit(&ps->sa_mutex);
970 }
971
972 kpsignal2(p, ksi);
973 mutex_exit(p->p_lock);
974 mutex_exit(proc_lock);
975 }
976
977 /*
978 * Fill in signal information and signal the parent for a child status change.
979 */
980 void
981 child_psignal(struct proc *p, int mask)
982 {
983 ksiginfo_t ksi;
984 struct proc *q;
985 int xsig;
986
987 KASSERT(mutex_owned(proc_lock));
988 KASSERT(mutex_owned(p->p_lock));
989
990 xsig = p->p_xsig;
991
992 KSI_INIT(&ksi);
993 ksi.ksi_signo = SIGCHLD;
994 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
995 ksi.ksi_pid = p->p_pid;
996 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
997 ksi.ksi_status = xsig;
998 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
999 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1000
1001 q = p->p_pptr;
1002
1003 mutex_exit(p->p_lock);
1004 mutex_enter(q->p_lock);
1005
1006 if ((q->p_sflag & mask) == 0)
1007 kpsignal2(q, &ksi);
1008
1009 mutex_exit(q->p_lock);
1010 mutex_enter(p->p_lock);
1011 }
1012
1013 void
1014 psignal(struct proc *p, int signo)
1015 {
1016 ksiginfo_t ksi;
1017
1018 KASSERT(!cpu_intr_p());
1019 KASSERT(mutex_owned(proc_lock));
1020
1021 KSI_INIT_EMPTY(&ksi);
1022 ksi.ksi_signo = signo;
1023 mutex_enter(p->p_lock);
1024 kpsignal2(p, &ksi);
1025 mutex_exit(p->p_lock);
1026 }
1027
1028 void
1029 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1030 {
1031 fdfile_t *ff;
1032 file_t *fp;
1033 fdtab_t *dt;
1034
1035 KASSERT(!cpu_intr_p());
1036 KASSERT(mutex_owned(proc_lock));
1037
1038 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1039 size_t fd;
1040 filedesc_t *fdp = p->p_fd;
1041
1042 /* XXXSMP locking */
1043 ksi->ksi_fd = -1;
1044 dt = fdp->fd_dt;
1045 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1046 if ((ff = dt->dt_ff[fd]) == NULL)
1047 continue;
1048 if ((fp = ff->ff_file) == NULL)
1049 continue;
1050 if (fp->f_data == data) {
1051 ksi->ksi_fd = fd;
1052 break;
1053 }
1054 }
1055 }
1056 mutex_enter(p->p_lock);
1057 kpsignal2(p, ksi);
1058 mutex_exit(p->p_lock);
1059 }
1060
1061 /*
1062 * sigismasked:
1063 *
1064 * Returns true if signal is ignored or masked for the specified LWP.
1065 */
1066 int
1067 sigismasked(struct lwp *l, int sig)
1068 {
1069 struct proc *p = l->l_proc;
1070
1071 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1072 sigismember(&l->l_sigmask, sig);
1073 }
1074
1075 /*
1076 * sigpost:
1077 *
1078 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1079 * be able to take the signal.
1080 */
1081 static int
1082 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1083 {
1084 int rv, masked;
1085 struct proc *p = l->l_proc;
1086
1087 KASSERT(mutex_owned(p->p_lock));
1088
1089 /*
1090 * If the LWP is on the way out, sigclear() will be busy draining all
1091 * pending signals. Don't give it more.
1092 */
1093 if (l->l_refcnt == 0)
1094 return 0;
1095
1096 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1097
1098 /*
1099 * Have the LWP check for signals. This ensures that even if no LWP
1100 * is found to take the signal immediately, it should be taken soon.
1101 */
1102 lwp_lock(l);
1103 l->l_flag |= LW_PENDSIG;
1104
1105 /*
1106 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1107 * Note: SIGKILL and SIGSTOP cannot be masked.
1108 */
1109 masked = sigismember(&l->l_sigmask, sig);
1110 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1111 lwp_unlock(l);
1112 return 0;
1113 }
1114
1115 /*
1116 * If killing the process, make it run fast.
1117 */
1118 if (__predict_false((prop & SA_KILL) != 0) &&
1119 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1120 KASSERT(l->l_class == SCHED_OTHER);
1121 lwp_changepri(l, MAXPRI_USER);
1122 }
1123
1124 /*
1125 * If the LWP is running or on a run queue, then we win. If it's
1126 * sleeping interruptably, wake it and make it take the signal. If
1127 * the sleep isn't interruptable, then the chances are it will get
1128 * to see the signal soon anyhow. If suspended, it can't take the
1129 * signal right now. If it's LWP private or for all LWPs, save it
1130 * for later; otherwise punt.
1131 */
1132 rv = 0;
1133
1134 switch (l->l_stat) {
1135 case LSRUN:
1136 case LSONPROC:
1137 lwp_need_userret(l);
1138 rv = 1;
1139 break;
1140
1141 case LSSLEEP:
1142 if ((l->l_flag & LW_SINTR) != 0) {
1143 /* setrunnable() will release the lock. */
1144 setrunnable(l);
1145 return 1;
1146 }
1147 break;
1148
1149 case LSSUSPENDED:
1150 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1151 /* lwp_continue() will release the lock. */
1152 lwp_continue(l);
1153 return 1;
1154 }
1155 break;
1156
1157 case LSSTOP:
1158 if ((prop & SA_STOP) != 0)
1159 break;
1160
1161 /*
1162 * If the LWP is stopped and we are sending a continue
1163 * signal, then start it again.
1164 */
1165 if ((prop & SA_CONT) != 0) {
1166 if (l->l_wchan != NULL) {
1167 l->l_stat = LSSLEEP;
1168 p->p_nrlwps++;
1169 rv = 1;
1170 break;
1171 }
1172 /* setrunnable() will release the lock. */
1173 setrunnable(l);
1174 return 1;
1175 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1176 /* setrunnable() will release the lock. */
1177 setrunnable(l);
1178 return 1;
1179 }
1180 break;
1181
1182 default:
1183 break;
1184 }
1185
1186 lwp_unlock(l);
1187 return rv;
1188 }
1189
1190 /*
1191 * Notify an LWP that it has a pending signal.
1192 */
1193 void
1194 signotify(struct lwp *l)
1195 {
1196 KASSERT(lwp_locked(l, NULL));
1197
1198 l->l_flag |= LW_PENDSIG;
1199 lwp_need_userret(l);
1200 }
1201
1202 /*
1203 * Find an LWP within process p that is waiting on signal ksi, and hand
1204 * it on.
1205 */
1206 static int
1207 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1208 {
1209 struct lwp *l;
1210 int signo;
1211
1212 KASSERT(mutex_owned(p->p_lock));
1213
1214 signo = ksi->ksi_signo;
1215
1216 if (ksi->ksi_lid != 0) {
1217 /*
1218 * Signal came via _lwp_kill(). Find the LWP and see if
1219 * it's interested.
1220 */
1221 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1222 return 0;
1223 if (l->l_sigwaited == NULL ||
1224 !sigismember(&l->l_sigwaitset, signo))
1225 return 0;
1226 } else {
1227 /*
1228 * Look for any LWP that may be interested.
1229 */
1230 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1231 KASSERT(l->l_sigwaited != NULL);
1232 if (sigismember(&l->l_sigwaitset, signo))
1233 break;
1234 }
1235 }
1236
1237 if (l != NULL) {
1238 l->l_sigwaited->ksi_info = ksi->ksi_info;
1239 l->l_sigwaited = NULL;
1240 LIST_REMOVE(l, l_sigwaiter);
1241 cv_signal(&l->l_sigcv);
1242 return 1;
1243 }
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Send the signal to the process. If the signal has an action, the action
1250 * is usually performed by the target process rather than the caller; we add
1251 * the signal to the set of pending signals for the process.
1252 *
1253 * Exceptions:
1254 * o When a stop signal is sent to a sleeping process that takes the
1255 * default action, the process is stopped without awakening it.
1256 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1257 * regardless of the signal action (eg, blocked or ignored).
1258 *
1259 * Other ignored signals are discarded immediately.
1260 */
1261 int
1262 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1263 {
1264 int prop, signo = ksi->ksi_signo;
1265 struct lwp *l = NULL;
1266 ksiginfo_t *kp;
1267 lwpid_t lid;
1268 sig_t action;
1269 bool toall;
1270 int error = 0;
1271
1272 KASSERT(!cpu_intr_p());
1273 KASSERT(mutex_owned(proc_lock));
1274 KASSERT(mutex_owned(p->p_lock));
1275 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1276 KASSERT(signo > 0 && signo < NSIG);
1277
1278 /*
1279 * If the process is being created by fork, is a zombie or is
1280 * exiting, then just drop the signal here and bail out.
1281 */
1282 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1283 return 0;
1284
1285 /* XXX for core dump/debugger */
1286 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1287 p->p_sigctx.ps_info = ksi->ksi_info;
1288
1289 /*
1290 * Notify any interested parties of the signal.
1291 */
1292 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1293
1294 /*
1295 * Some signals including SIGKILL must act on the entire process.
1296 */
1297 kp = NULL;
1298 prop = sigprop[signo];
1299 toall = ((prop & SA_TOALL) != 0);
1300 lid = toall ? 0 : ksi->ksi_lid;
1301
1302 /*
1303 * If proc is traced, always give parent a chance.
1304 */
1305 if (p->p_slflag & PSL_TRACED) {
1306 action = SIG_DFL;
1307
1308 if (lid == 0) {
1309 /*
1310 * If the process is being traced and the signal
1311 * is being caught, make sure to save any ksiginfo.
1312 */
1313 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1314 goto discard;
1315 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1316 goto out;
1317 }
1318 } else {
1319
1320 /*
1321 * If the signal is being ignored, then drop it. Note: we
1322 * don't set SIGCONT in ps_sigignore, and if it is set to
1323 * SIG_IGN, action will be SIG_DFL here.
1324 */
1325 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1326 goto discard;
1327
1328 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1329 action = SIG_CATCH;
1330 else {
1331 action = SIG_DFL;
1332
1333 /*
1334 * If sending a tty stop signal to a member of an
1335 * orphaned process group, discard the signal here if
1336 * the action is default; don't stop the process below
1337 * if sleeping, and don't clear any pending SIGCONT.
1338 */
1339 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1340 goto discard;
1341
1342 if (prop & SA_KILL && p->p_nice > NZERO)
1343 p->p_nice = NZERO;
1344 }
1345 }
1346
1347 /*
1348 * If stopping or continuing a process, discard any pending
1349 * signals that would do the inverse.
1350 */
1351 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1352 ksiginfoq_t kq;
1353
1354 ksiginfo_queue_init(&kq);
1355 if ((prop & SA_CONT) != 0)
1356 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1357 if ((prop & SA_STOP) != 0)
1358 sigclear(&p->p_sigpend, &contsigmask, &kq);
1359 ksiginfo_queue_drain(&kq); /* XXXSMP */
1360 }
1361
1362 /*
1363 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1364 * please!), check if any LWPs are waiting on it. If yes, pass on
1365 * the signal info. The signal won't be processed further here.
1366 */
1367 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1368 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1369 sigunwait(p, ksi))
1370 goto discard;
1371
1372 /*
1373 * XXXSMP Should be allocated by the caller, we're holding locks
1374 * here.
1375 */
1376 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1377 goto discard;
1378
1379 /*
1380 * LWP private signals are easy - just find the LWP and post
1381 * the signal to it.
1382 */
1383 if (lid != 0) {
1384 l = lwp_find(p, lid);
1385 if (l != NULL) {
1386 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1387 goto out;
1388 membar_producer();
1389 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1390 signo = -1;
1391 }
1392 goto out;
1393 }
1394
1395 /*
1396 * Some signals go to all LWPs, even if posted with _lwp_kill()
1397 * or for an SA process.
1398 */
1399 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1400 if ((p->p_slflag & PSL_TRACED) != 0)
1401 goto deliver;
1402
1403 /*
1404 * If SIGCONT is default (or ignored) and process is
1405 * asleep, we are finished; the process should not
1406 * be awakened.
1407 */
1408 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1409 goto out;
1410 } else {
1411 /*
1412 * Process is stopped or stopping.
1413 * - If traced, then no action is needed, unless killing.
1414 * - Run the process only if sending SIGCONT or SIGKILL.
1415 */
1416 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1417 goto out;
1418 }
1419 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1420 /*
1421 * Re-adjust p_nstopchild if the process was
1422 * stopped but not yet collected by its parent.
1423 */
1424 if (p->p_stat == SSTOP && !p->p_waited)
1425 p->p_pptr->p_nstopchild--;
1426 p->p_stat = SACTIVE;
1427 p->p_sflag &= ~PS_STOPPING;
1428 if (p->p_slflag & PSL_TRACED) {
1429 KASSERT(signo == SIGKILL);
1430 goto deliver;
1431 }
1432 /*
1433 * Do not make signal pending if SIGCONT is default.
1434 *
1435 * If the process catches SIGCONT, let it handle the
1436 * signal itself (if waiting on event - process runs,
1437 * otherwise continues sleeping).
1438 */
1439 if ((prop & SA_CONT) != 0) {
1440 p->p_xsig = SIGCONT;
1441 p->p_sflag |= PS_CONTINUED;
1442 child_psignal(p, 0);
1443 if (action == SIG_DFL) {
1444 KASSERT(signo != SIGKILL);
1445 goto deliver;
1446 }
1447 }
1448 } else if ((prop & SA_STOP) != 0) {
1449 /*
1450 * Already stopped, don't need to stop again.
1451 * (If we did the shell could get confused.)
1452 */
1453 goto out;
1454 }
1455 }
1456 /*
1457 * Make signal pending.
1458 */
1459 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1460 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1461 goto out;
1462 deliver:
1463 /*
1464 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1465 * visible on the per process list (for sigispending()). This
1466 * is unlikely to be needed in practice, but...
1467 */
1468 membar_producer();
1469
1470 /*
1471 * Try to find an LWP that can take the signal.
1472 */
1473 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1474 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1475 break;
1476 }
1477 signo = -1;
1478 out:
1479 /*
1480 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1481 * with locks held. The caller should take care of this.
1482 */
1483 ksiginfo_free(kp);
1484 if (signo == -1)
1485 return error;
1486 discard:
1487 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1488 return error;
1489 }
1490
1491 void
1492 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1493 {
1494 struct proc *p = l->l_proc;
1495
1496 KASSERT(mutex_owned(p->p_lock));
1497 (*p->p_emul->e_sendsig)(ksi, mask);
1498 }
1499
1500 /*
1501 * Stop any LWPs sleeping interruptably.
1502 */
1503 static void
1504 proc_stop_lwps(struct proc *p)
1505 {
1506 struct lwp *l;
1507
1508 KASSERT(mutex_owned(p->p_lock));
1509 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1510
1511 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1512 lwp_lock(l);
1513 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1514 l->l_stat = LSSTOP;
1515 p->p_nrlwps--;
1516 }
1517 lwp_unlock(l);
1518 }
1519 }
1520
1521 /*
1522 * Finish stopping of a process. Mark it stopped and notify the parent.
1523 *
1524 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1525 */
1526 static void
1527 proc_stop_done(struct proc *p, int ppmask)
1528 {
1529
1530 KASSERT(mutex_owned(proc_lock));
1531 KASSERT(mutex_owned(p->p_lock));
1532 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1533 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1534
1535 p->p_sflag &= ~PS_STOPPING;
1536 p->p_stat = SSTOP;
1537 p->p_waited = 0;
1538 p->p_pptr->p_nstopchild++;
1539 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1540 /* child_psignal drops p_lock briefly. */
1541 child_psignal(p, ppmask);
1542 cv_broadcast(&p->p_pptr->p_waitcv);
1543 }
1544 }
1545
1546 /*
1547 * Stop the current process and switch away to the debugger notifying
1548 * an event specific to a traced process only.
1549 */
1550 void
1551 eventswitch(int code)
1552 {
1553 struct lwp *l = curlwp;
1554 struct proc *p = l->l_proc;
1555 struct sigacts *ps;
1556 sigset_t *mask;
1557 sig_t action;
1558 ksiginfo_t ksi;
1559 const int signo = SIGTRAP;
1560
1561 KASSERT(mutex_owned(proc_lock));
1562 KASSERT(mutex_owned(p->p_lock));
1563 KASSERT(p->p_pptr != initproc);
1564 KASSERT(l->l_stat == LSONPROC);
1565 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1566 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1567 KASSERT(p->p_nrlwps > 0);
1568 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1569 (code == TRAP_EXEC));
1570
1571 /*
1572 * If there's a pending SIGKILL process it immediately.
1573 */
1574 if (p->p_xsig == SIGKILL ||
1575 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1576 mutex_exit(p->p_lock);
1577 mutex_exit(proc_lock);
1578 return;
1579 }
1580
1581 KSI_INIT_TRAP(&ksi);
1582 ksi.ksi_lid = l->l_lid;
1583 ksi.ksi_info._signo = signo;
1584 ksi.ksi_info._code = code;
1585
1586 /* Needed for ktrace */
1587 ps = p->p_sigacts;
1588 action = SIGACTION_PS(ps, signo).sa_handler;
1589 mask = &l->l_sigmask;
1590
1591 p->p_xsig = signo;
1592 p->p_sigctx.ps_faked = true;
1593 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1594 p->p_sigctx.ps_info = ksi.ksi_info;
1595
1596 sigswitch(0, signo, false);
1597
1598 /* XXX: hangs for VFORK */
1599 if (code == TRAP_CHLD)
1600 return;
1601
1602 if (ktrpoint(KTR_PSIG)) {
1603 if (p->p_emul->e_ktrpsig)
1604 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1605 else
1606 ktrpsig(signo, action, mask, &ksi);
1607 }
1608 }
1609
1610 /*
1611 * Stop the current process and switch away when being stopped or traced.
1612 */
1613 void
1614 sigswitch(int ppmask, int signo, bool relock)
1615 {
1616 struct lwp *l = curlwp;
1617 struct proc *p = l->l_proc;
1618 int biglocks;
1619
1620 KASSERT(mutex_owned(p->p_lock));
1621 KASSERT(l->l_stat == LSONPROC);
1622 KASSERT(p->p_nrlwps > 0);
1623
1624 /*
1625 * On entry we know that the process needs to stop. If it's
1626 * the result of a 'sideways' stop signal that has been sourced
1627 * through issignal(), then stop other LWPs in the process too.
1628 */
1629 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1630 KASSERT(signo != 0);
1631 proc_stop(p, signo);
1632 KASSERT(p->p_nrlwps > 0);
1633 }
1634
1635 /*
1636 * If we are the last live LWP, and the stop was a result of
1637 * a new signal, then signal the parent.
1638 */
1639 if ((p->p_sflag & PS_STOPPING) != 0) {
1640 if (relock && !mutex_tryenter(proc_lock)) {
1641 mutex_exit(p->p_lock);
1642 mutex_enter(proc_lock);
1643 mutex_enter(p->p_lock);
1644 }
1645
1646 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1647 /*
1648 * Note that proc_stop_done() can drop
1649 * p->p_lock briefly.
1650 */
1651 proc_stop_done(p, ppmask);
1652 }
1653
1654 mutex_exit(proc_lock);
1655 }
1656
1657 /*
1658 * Unlock and switch away.
1659 */
1660 KERNEL_UNLOCK_ALL(l, &biglocks);
1661 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1662 p->p_nrlwps--;
1663 lwp_lock(l);
1664 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1665 l->l_stat = LSSTOP;
1666 lwp_unlock(l);
1667 }
1668
1669 mutex_exit(p->p_lock);
1670 lwp_lock(l);
1671 mi_switch(l);
1672 KERNEL_LOCK(biglocks, l);
1673 }
1674
1675 /*
1676 * Check for a signal from the debugger.
1677 */
1678 static int
1679 sigchecktrace(void)
1680 {
1681 struct lwp *l = curlwp;
1682 struct proc *p = l->l_proc;
1683 int signo;
1684
1685 KASSERT(mutex_owned(p->p_lock));
1686
1687 /* If there's a pending SIGKILL, process it immediately. */
1688 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1689 return 0;
1690
1691 /*
1692 * If we are no longer being traced, or the parent didn't
1693 * give us a signal, or we're stopping, look for more signals.
1694 */
1695 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1696 (p->p_sflag & PS_STOPPING) != 0)
1697 return 0;
1698
1699 /*
1700 * If the new signal is being masked, look for other signals.
1701 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1702 */
1703 signo = p->p_xsig;
1704 p->p_xsig = 0;
1705 if (sigismember(&l->l_sigmask, signo)) {
1706 signo = 0;
1707 }
1708 return signo;
1709 }
1710
1711 /*
1712 * If the current process has received a signal (should be caught or cause
1713 * termination, should interrupt current syscall), return the signal number.
1714 *
1715 * Stop signals with default action are processed immediately, then cleared;
1716 * they aren't returned. This is checked after each entry to the system for
1717 * a syscall or trap.
1718 *
1719 * We will also return -1 if the process is exiting and the current LWP must
1720 * follow suit.
1721 */
1722 int
1723 issignal(struct lwp *l)
1724 {
1725 struct proc *p;
1726 int signo, prop;
1727 sigpend_t *sp;
1728 sigset_t ss;
1729
1730 p = l->l_proc;
1731 sp = NULL;
1732 signo = 0;
1733
1734 KASSERT(p == curproc);
1735 KASSERT(mutex_owned(p->p_lock));
1736
1737 for (;;) {
1738 /* Discard any signals that we have decided not to take. */
1739 if (signo != 0) {
1740 (void)sigget(sp, NULL, signo, NULL);
1741 }
1742
1743 /*
1744 * If the process is stopped/stopping, then stop ourselves
1745 * now that we're on the kernel/userspace boundary. When
1746 * we awaken, check for a signal from the debugger.
1747 */
1748 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1749 sigswitch(PS_NOCLDSTOP, 0, true);
1750 mutex_enter(p->p_lock);
1751 signo = sigchecktrace();
1752 } else if (p->p_stat == SACTIVE)
1753 signo = sigchecktrace();
1754 else
1755 signo = 0;
1756
1757 /* Signals from the debugger are "out of band". */
1758 sp = NULL;
1759
1760 /*
1761 * If the debugger didn't provide a signal, find a pending
1762 * signal from our set. Check per-LWP signals first, and
1763 * then per-process.
1764 */
1765 if (signo == 0) {
1766 sp = &l->l_sigpend;
1767 ss = sp->sp_set;
1768 if ((p->p_lflag & PL_PPWAIT) != 0)
1769 sigminusset(&vforksigmask, &ss);
1770 sigminusset(&l->l_sigmask, &ss);
1771
1772 if ((signo = firstsig(&ss)) == 0) {
1773 sp = &p->p_sigpend;
1774 ss = sp->sp_set;
1775 if ((p->p_lflag & PL_PPWAIT) != 0)
1776 sigminusset(&vforksigmask, &ss);
1777 sigminusset(&l->l_sigmask, &ss);
1778
1779 if ((signo = firstsig(&ss)) == 0) {
1780 /*
1781 * No signal pending - clear the
1782 * indicator and bail out.
1783 */
1784 lwp_lock(l);
1785 l->l_flag &= ~LW_PENDSIG;
1786 lwp_unlock(l);
1787 sp = NULL;
1788 break;
1789 }
1790 }
1791 }
1792
1793 /*
1794 * We should see pending but ignored signals only if
1795 * we are being traced.
1796 */
1797 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1798 (p->p_slflag & PSL_TRACED) == 0) {
1799 /* Discard the signal. */
1800 continue;
1801 }
1802
1803 /*
1804 * If traced, always stop, and stay stopped until released
1805 * by the debugger. If the our parent is our debugger waiting
1806 * for us and we vforked, don't hang as we could deadlock.
1807 */
1808 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1809 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1810 (p->p_pptr == p->p_opptr))) {
1811 /*
1812 * Take the signal, but don't remove it from the
1813 * siginfo queue, because the debugger can send
1814 * it later.
1815 */
1816 if (sp)
1817 sigdelset(&sp->sp_set, signo);
1818 p->p_xsig = signo;
1819
1820 /* Handling of signal trace */
1821 sigswitch(0, signo, true);
1822 mutex_enter(p->p_lock);
1823
1824 /* Check for a signal from the debugger. */
1825 if ((signo = sigchecktrace()) == 0)
1826 continue;
1827
1828 /* Signals from the debugger are "out of band". */
1829 sp = NULL;
1830 }
1831
1832 prop = sigprop[signo];
1833
1834 /*
1835 * Decide whether the signal should be returned.
1836 */
1837 switch ((long)SIGACTION(p, signo).sa_handler) {
1838 case (long)SIG_DFL:
1839 /*
1840 * Don't take default actions on system processes.
1841 */
1842 if (p->p_pid <= 1) {
1843 #ifdef DIAGNOSTIC
1844 /*
1845 * Are you sure you want to ignore SIGSEGV
1846 * in init? XXX
1847 */
1848 printf_nolog("Process (pid %d) got sig %d\n",
1849 p->p_pid, signo);
1850 #endif
1851 continue;
1852 }
1853
1854 /*
1855 * If there is a pending stop signal to process with
1856 * default action, stop here, then clear the signal.
1857 * However, if process is member of an orphaned
1858 * process group, ignore tty stop signals.
1859 */
1860 if (prop & SA_STOP) {
1861 /*
1862 * XXX Don't hold proc_lock for p_lflag,
1863 * but it's not a big deal.
1864 */
1865 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1866 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1867 (p->p_pptr == p->p_opptr))) ||
1868 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1869 prop & SA_TTYSTOP)) {
1870 /* Ignore the signal. */
1871 continue;
1872 }
1873 /* Take the signal. */
1874 (void)sigget(sp, NULL, signo, NULL);
1875 p->p_xsig = signo;
1876 p->p_sflag &= ~PS_CONTINUED;
1877 signo = 0;
1878 sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1879 mutex_enter(p->p_lock);
1880 } else if (prop & SA_IGNORE) {
1881 /*
1882 * Except for SIGCONT, shouldn't get here.
1883 * Default action is to ignore; drop it.
1884 */
1885 continue;
1886 }
1887 break;
1888
1889 case (long)SIG_IGN:
1890 #ifdef DEBUG_ISSIGNAL
1891 /*
1892 * Masking above should prevent us ever trying
1893 * to take action on an ignored signal other
1894 * than SIGCONT, unless process is traced.
1895 */
1896 if ((prop & SA_CONT) == 0 &&
1897 (p->p_slflag & PSL_TRACED) == 0)
1898 printf_nolog("issignal\n");
1899 #endif
1900 continue;
1901
1902 default:
1903 /*
1904 * This signal has an action, let postsig() process
1905 * it.
1906 */
1907 break;
1908 }
1909
1910 break;
1911 }
1912
1913 l->l_sigpendset = sp;
1914 return signo;
1915 }
1916
1917 /*
1918 * Take the action for the specified signal
1919 * from the current set of pending signals.
1920 */
1921 void
1922 postsig(int signo)
1923 {
1924 struct lwp *l;
1925 struct proc *p;
1926 struct sigacts *ps;
1927 sig_t action;
1928 sigset_t *returnmask;
1929 ksiginfo_t ksi;
1930
1931 l = curlwp;
1932 p = l->l_proc;
1933 ps = p->p_sigacts;
1934
1935 KASSERT(mutex_owned(p->p_lock));
1936 KASSERT(signo > 0);
1937
1938 /*
1939 * Set the new mask value and also defer further occurrences of this
1940 * signal.
1941 *
1942 * Special case: user has done a sigsuspend. Here the current mask is
1943 * not of interest, but rather the mask from before the sigsuspend is
1944 * what we want restored after the signal processing is completed.
1945 */
1946 if (l->l_sigrestore) {
1947 returnmask = &l->l_sigoldmask;
1948 l->l_sigrestore = 0;
1949 } else
1950 returnmask = &l->l_sigmask;
1951
1952 /*
1953 * Commit to taking the signal before releasing the mutex.
1954 */
1955 action = SIGACTION_PS(ps, signo).sa_handler;
1956 l->l_ru.ru_nsignals++;
1957 if (l->l_sigpendset == NULL) {
1958 /* From the debugger */
1959 if (p->p_sigctx.ps_faked &&
1960 signo == p->p_sigctx.ps_info._signo) {
1961 KSI_INIT(&ksi);
1962 ksi.ksi_info = p->p_sigctx.ps_info;
1963 ksi.ksi_lid = p->p_sigctx.ps_lwp;
1964 p->p_sigctx.ps_faked = false;
1965 } else {
1966 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1967 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1968 }
1969 } else
1970 sigget(l->l_sigpendset, &ksi, signo, NULL);
1971
1972 if (ktrpoint(KTR_PSIG)) {
1973 mutex_exit(p->p_lock);
1974 if (p->p_emul->e_ktrpsig)
1975 p->p_emul->e_ktrpsig(signo, action,
1976 returnmask, &ksi);
1977 else
1978 ktrpsig(signo, action, returnmask, &ksi);
1979 mutex_enter(p->p_lock);
1980 }
1981
1982 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1983
1984 if (action == SIG_DFL) {
1985 /*
1986 * Default action, where the default is to kill
1987 * the process. (Other cases were ignored above.)
1988 */
1989 sigexit(l, signo);
1990 return;
1991 }
1992
1993 /*
1994 * If we get here, the signal must be caught.
1995 */
1996 #ifdef DIAGNOSTIC
1997 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1998 panic("postsig action");
1999 #endif
2000
2001 kpsendsig(l, &ksi, returnmask);
2002 }
2003
2004 /*
2005 * sendsig:
2006 *
2007 * Default signal delivery method for NetBSD.
2008 */
2009 void
2010 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2011 {
2012 struct sigacts *sa;
2013 int sig;
2014
2015 sig = ksi->ksi_signo;
2016 sa = curproc->p_sigacts;
2017
2018 switch (sa->sa_sigdesc[sig].sd_vers) {
2019 case 0:
2020 case 1:
2021 /* Compat for 1.6 and earlier. */
2022 if (sendsig_sigcontext_vec == NULL) {
2023 break;
2024 }
2025 (*sendsig_sigcontext_vec)(ksi, mask);
2026 return;
2027 case 2:
2028 case 3:
2029 sendsig_siginfo(ksi, mask);
2030 return;
2031 default:
2032 break;
2033 }
2034
2035 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2036 sigexit(curlwp, SIGILL);
2037 }
2038
2039 /*
2040 * sendsig_reset:
2041 *
2042 * Reset the signal action. Called from emulation specific sendsig()
2043 * before unlocking to deliver the signal.
2044 */
2045 void
2046 sendsig_reset(struct lwp *l, int signo)
2047 {
2048 struct proc *p = l->l_proc;
2049 struct sigacts *ps = p->p_sigacts;
2050
2051 KASSERT(mutex_owned(p->p_lock));
2052
2053 p->p_sigctx.ps_lwp = 0;
2054 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2055
2056 mutex_enter(&ps->sa_mutex);
2057 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2058 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2059 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2060 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2061 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2062 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2063 }
2064 mutex_exit(&ps->sa_mutex);
2065 }
2066
2067 /*
2068 * Kill the current process for stated reason.
2069 */
2070 void
2071 killproc(struct proc *p, const char *why)
2072 {
2073
2074 KASSERT(mutex_owned(proc_lock));
2075
2076 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2077 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2078 psignal(p, SIGKILL);
2079 }
2080
2081 /*
2082 * Force the current process to exit with the specified signal, dumping core
2083 * if appropriate. We bypass the normal tests for masked and caught
2084 * signals, allowing unrecoverable failures to terminate the process without
2085 * changing signal state. Mark the accounting record with the signal
2086 * termination. If dumping core, save the signal number for the debugger.
2087 * Calls exit and does not return.
2088 */
2089 void
2090 sigexit(struct lwp *l, int signo)
2091 {
2092 int exitsig, error, docore;
2093 struct proc *p;
2094 struct lwp *t;
2095
2096 p = l->l_proc;
2097
2098 KASSERT(mutex_owned(p->p_lock));
2099 KERNEL_UNLOCK_ALL(l, NULL);
2100
2101 /*
2102 * Don't permit coredump() multiple times in the same process.
2103 * Call back into sigexit, where we will be suspended until
2104 * the deed is done. Note that this is a recursive call, but
2105 * LW_WCORE will prevent us from coming back this way.
2106 */
2107 if ((p->p_sflag & PS_WCORE) != 0) {
2108 lwp_lock(l);
2109 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2110 lwp_unlock(l);
2111 mutex_exit(p->p_lock);
2112 lwp_userret(l);
2113 panic("sigexit 1");
2114 /* NOTREACHED */
2115 }
2116
2117 /* If process is already on the way out, then bail now. */
2118 if ((p->p_sflag & PS_WEXIT) != 0) {
2119 mutex_exit(p->p_lock);
2120 lwp_exit(l);
2121 panic("sigexit 2");
2122 /* NOTREACHED */
2123 }
2124
2125 /*
2126 * Prepare all other LWPs for exit. If dumping core, suspend them
2127 * so that their registers are available long enough to be dumped.
2128 */
2129 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2130 p->p_sflag |= PS_WCORE;
2131 for (;;) {
2132 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2133 lwp_lock(t);
2134 if (t == l) {
2135 t->l_flag &= ~LW_WSUSPEND;
2136 lwp_unlock(t);
2137 continue;
2138 }
2139 t->l_flag |= (LW_WCORE | LW_WEXIT);
2140 lwp_suspend(l, t);
2141 }
2142
2143 if (p->p_nrlwps == 1)
2144 break;
2145
2146 /*
2147 * Kick any LWPs sitting in lwp_wait1(), and wait
2148 * for everyone else to stop before proceeding.
2149 */
2150 p->p_nlwpwait++;
2151 cv_broadcast(&p->p_lwpcv);
2152 cv_wait(&p->p_lwpcv, p->p_lock);
2153 p->p_nlwpwait--;
2154 }
2155 }
2156
2157 exitsig = signo;
2158 p->p_acflag |= AXSIG;
2159 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2160 p->p_sigctx.ps_info._signo = signo;
2161 p->p_sigctx.ps_info._code = SI_NOINFO;
2162
2163 if (docore) {
2164 mutex_exit(p->p_lock);
2165 error = (*coredump_vec)(l, NULL);
2166
2167 if (kern_logsigexit) {
2168 int uid = l->l_cred ?
2169 (int)kauth_cred_geteuid(l->l_cred) : -1;
2170
2171 if (error)
2172 log(LOG_INFO, lognocoredump, p->p_pid,
2173 p->p_comm, uid, signo, error);
2174 else
2175 log(LOG_INFO, logcoredump, p->p_pid,
2176 p->p_comm, uid, signo);
2177 }
2178
2179 #ifdef PAX_SEGVGUARD
2180 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2181 #endif /* PAX_SEGVGUARD */
2182 /* Acquire the sched state mutex. exit1() will release it. */
2183 mutex_enter(p->p_lock);
2184 if (error == 0)
2185 p->p_sflag |= PS_COREDUMP;
2186 }
2187
2188 /* No longer dumping core. */
2189 p->p_sflag &= ~PS_WCORE;
2190
2191 exit1(l, 0, exitsig);
2192 /* NOTREACHED */
2193 }
2194
2195 /*
2196 * Put process 'p' into the stopped state and optionally, notify the parent.
2197 */
2198 void
2199 proc_stop(struct proc *p, int signo)
2200 {
2201 struct lwp *l;
2202
2203 KASSERT(mutex_owned(p->p_lock));
2204
2205 /*
2206 * First off, set the stopping indicator and bring all sleeping
2207 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2208 * unlock between here and the p->p_nrlwps check below.
2209 */
2210 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2211 membar_producer();
2212
2213 proc_stop_lwps(p);
2214
2215 /*
2216 * If there are no LWPs available to take the signal, then we
2217 * signal the parent process immediately. Otherwise, the last
2218 * LWP to stop will take care of it.
2219 */
2220
2221 if (p->p_nrlwps == 0) {
2222 proc_stop_done(p, PS_NOCLDSTOP);
2223 } else {
2224 /*
2225 * Have the remaining LWPs come to a halt, and trigger
2226 * proc_stop_callout() to ensure that they do.
2227 */
2228 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2229 sigpost(l, SIG_DFL, SA_STOP, signo);
2230 }
2231 callout_schedule(&proc_stop_ch, 1);
2232 }
2233 }
2234
2235 /*
2236 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2237 * but wait for them to come to a halt at the kernel-user boundary. This is
2238 * to allow LWPs to release any locks that they may hold before stopping.
2239 *
2240 * Non-interruptable sleeps can be long, and there is the potential for an
2241 * LWP to begin sleeping interruptably soon after the process has been set
2242 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2243 * stopping, and so complete halt of the process and the return of status
2244 * information to the parent could be delayed indefinitely.
2245 *
2246 * To handle this race, proc_stop_callout() runs once per tick while there
2247 * are stopping processes in the system. It sets LWPs that are sleeping
2248 * interruptably into the LSSTOP state.
2249 *
2250 * Note that we are not concerned about keeping all LWPs stopped while the
2251 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2252 * What we do need to ensure is that all LWPs in a stopping process have
2253 * stopped at least once, so that notification can be sent to the parent
2254 * process.
2255 */
2256 static void
2257 proc_stop_callout(void *cookie)
2258 {
2259 bool more, restart;
2260 struct proc *p;
2261
2262 (void)cookie;
2263
2264 do {
2265 restart = false;
2266 more = false;
2267
2268 mutex_enter(proc_lock);
2269 PROCLIST_FOREACH(p, &allproc) {
2270 mutex_enter(p->p_lock);
2271
2272 if ((p->p_sflag & PS_STOPPING) == 0) {
2273 mutex_exit(p->p_lock);
2274 continue;
2275 }
2276
2277 /* Stop any LWPs sleeping interruptably. */
2278 proc_stop_lwps(p);
2279 if (p->p_nrlwps == 0) {
2280 /*
2281 * We brought the process to a halt.
2282 * Mark it as stopped and notify the
2283 * parent.
2284 */
2285 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2286 /*
2287 * Note that proc_stop_done() will
2288 * drop p->p_lock briefly.
2289 * Arrange to restart and check
2290 * all processes again.
2291 */
2292 restart = true;
2293 }
2294 proc_stop_done(p, PS_NOCLDSTOP);
2295 } else
2296 more = true;
2297
2298 mutex_exit(p->p_lock);
2299 if (restart)
2300 break;
2301 }
2302 mutex_exit(proc_lock);
2303 } while (restart);
2304
2305 /*
2306 * If we noted processes that are stopping but still have
2307 * running LWPs, then arrange to check again in 1 tick.
2308 */
2309 if (more)
2310 callout_schedule(&proc_stop_ch, 1);
2311 }
2312
2313 /*
2314 * Given a process in state SSTOP, set the state back to SACTIVE and
2315 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2316 */
2317 void
2318 proc_unstop(struct proc *p)
2319 {
2320 struct lwp *l;
2321 int sig;
2322
2323 KASSERT(mutex_owned(proc_lock));
2324 KASSERT(mutex_owned(p->p_lock));
2325
2326 p->p_stat = SACTIVE;
2327 p->p_sflag &= ~PS_STOPPING;
2328 sig = p->p_xsig;
2329
2330 if (!p->p_waited)
2331 p->p_pptr->p_nstopchild--;
2332
2333 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2334 lwp_lock(l);
2335 if (l->l_stat != LSSTOP) {
2336 lwp_unlock(l);
2337 continue;
2338 }
2339 if (l->l_wchan == NULL) {
2340 setrunnable(l);
2341 continue;
2342 }
2343 if (sig && (l->l_flag & LW_SINTR) != 0) {
2344 setrunnable(l);
2345 sig = 0;
2346 } else {
2347 l->l_stat = LSSLEEP;
2348 p->p_nrlwps++;
2349 lwp_unlock(l);
2350 }
2351 }
2352 }
2353
2354 void
2355 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2356 const register_t *ret, int error)
2357 {
2358 struct lwp *l = curlwp;
2359 struct proc *p = l->l_proc;
2360 struct sigacts *ps;
2361 sigset_t *mask;
2362 sig_t action;
2363 ksiginfo_t ksi;
2364 size_t i, sy_narg;
2365 const int signo = SIGTRAP;
2366
2367 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2368 KASSERT(p->p_pptr != initproc);
2369 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2370 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2371
2372 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2373
2374 KSI_INIT_TRAP(&ksi);
2375 ksi.ksi_lid = l->l_lid;
2376 ksi.ksi_signo = signo;
2377 ksi.ksi_code = trapno;
2378
2379 ksi.ksi_sysnum = sysnum;
2380 if (trapno == TRAP_SCE) {
2381 ksi.ksi_retval[0] = 0;
2382 ksi.ksi_retval[1] = 0;
2383 ksi.ksi_error = 0;
2384 } else {
2385 ksi.ksi_retval[0] = ret[0];
2386 ksi.ksi_retval[1] = ret[1];
2387 ksi.ksi_error = error;
2388 }
2389
2390 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2391
2392 for (i = 0; i < sy_narg; i++)
2393 ksi.ksi_args[i] = args[i];
2394
2395 mutex_enter(p->p_lock);
2396
2397 /*
2398 * If there's a pending SIGKILL process it immediately.
2399 */
2400 if (p->p_xsig == SIGKILL ||
2401 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2402 mutex_exit(p->p_lock);
2403 return;
2404 }
2405
2406 /* Needed for ktrace */
2407 ps = p->p_sigacts;
2408 action = SIGACTION_PS(ps, signo).sa_handler;
2409 mask = &l->l_sigmask;
2410
2411 p->p_xsig = signo;
2412 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2413 p->p_sigctx.ps_info = ksi.ksi_info;
2414 sigswitch(0, signo, true);
2415
2416 if (ktrpoint(KTR_PSIG)) {
2417 if (p->p_emul->e_ktrpsig)
2418 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2419 else
2420 ktrpsig(signo, action, mask, &ksi);
2421 }
2422 }
2423
2424 static int
2425 filt_sigattach(struct knote *kn)
2426 {
2427 struct proc *p = curproc;
2428
2429 kn->kn_obj = p;
2430 kn->kn_flags |= EV_CLEAR; /* automatically set */
2431
2432 mutex_enter(p->p_lock);
2433 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2434 mutex_exit(p->p_lock);
2435
2436 return 0;
2437 }
2438
2439 static void
2440 filt_sigdetach(struct knote *kn)
2441 {
2442 struct proc *p = kn->kn_obj;
2443
2444 mutex_enter(p->p_lock);
2445 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2446 mutex_exit(p->p_lock);
2447 }
2448
2449 /*
2450 * Signal knotes are shared with proc knotes, so we apply a mask to
2451 * the hint in order to differentiate them from process hints. This
2452 * could be avoided by using a signal-specific knote list, but probably
2453 * isn't worth the trouble.
2454 */
2455 static int
2456 filt_signal(struct knote *kn, long hint)
2457 {
2458
2459 if (hint & NOTE_SIGNAL) {
2460 hint &= ~NOTE_SIGNAL;
2461
2462 if (kn->kn_id == hint)
2463 kn->kn_data++;
2464 }
2465 return (kn->kn_data != 0);
2466 }
2467
2468 const struct filterops sig_filtops = {
2469 .f_isfd = 0,
2470 .f_attach = filt_sigattach,
2471 .f_detach = filt_sigdetach,
2472 .f_event = filt_signal,
2473 };
2474