kern_sig.c revision 1.377 1 /* $NetBSD: kern_sig.c,v 1.377 2019/11/10 13:28:06 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.377 2019/11/10 13:28:06 pgoyette Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 #include <sys/compat_stub.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm_extern.h>
110
111 #define SIGQUEUE_MAX 32
112 static pool_cache_t sigacts_cache __read_mostly;
113 static pool_cache_t ksiginfo_cache __read_mostly;
114 static callout_t proc_stop_ch __cacheline_aligned;
115
116 sigset_t contsigmask __cacheline_aligned;
117 sigset_t stopsigmask __cacheline_aligned;
118 static sigset_t vforksigmask __cacheline_aligned;
119 sigset_t sigcantmask __cacheline_aligned;
120
121 static void ksiginfo_exechook(struct proc *, void *);
122 static void proc_stop(struct proc *, int);
123 static void proc_stop_done(struct proc *, int);
124 static void proc_stop_callout(void *);
125 static int sigchecktrace(void);
126 static int sigpost(struct lwp *, sig_t, int, int);
127 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
128 static int sigunwait(struct proc *, const ksiginfo_t *);
129 static void sigswitch(int, int, bool);
130 static void sigswitch_unlock_and_switch_away(struct lwp *);
131
132 static void sigacts_poolpage_free(struct pool *, void *);
133 static void *sigacts_poolpage_alloc(struct pool *, int);
134
135 int (*coredump_vec)(struct lwp *, const char *) =
136 __FPTRCAST(int (*)(struct lwp *, const char *), enosys);
137
138 /*
139 * DTrace SDT provider definitions
140 */
141 SDT_PROVIDER_DECLARE(proc);
142 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
143 "struct lwp *", /* target thread */
144 "struct proc *", /* target process */
145 "int"); /* signal */
146 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
147 "struct lwp *", /* target thread */
148 "struct proc *", /* target process */
149 "int"); /* signal */
150 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
151 "int", /* signal */
152 "ksiginfo_t *", /* signal info */
153 "void (*)(void)"); /* handler address */
154
155
156 static struct pool_allocator sigactspool_allocator = {
157 .pa_alloc = sigacts_poolpage_alloc,
158 .pa_free = sigacts_poolpage_free
159 };
160
161 #ifdef DEBUG
162 int kern_logsigexit = 1;
163 #else
164 int kern_logsigexit = 0;
165 #endif
166
167 static const char logcoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
169 static const char lognocoredump[] =
170 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
171
172 static kauth_listener_t signal_listener;
173
174 static int
175 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
176 void *arg0, void *arg1, void *arg2, void *arg3)
177 {
178 struct proc *p;
179 int result, signum;
180
181 result = KAUTH_RESULT_DEFER;
182 p = arg0;
183 signum = (int)(unsigned long)arg1;
184
185 if (action != KAUTH_PROCESS_SIGNAL)
186 return result;
187
188 if (kauth_cred_uidmatch(cred, p->p_cred) ||
189 (signum == SIGCONT && (curproc->p_session == p->p_session)))
190 result = KAUTH_RESULT_ALLOW;
191
192 return result;
193 }
194
195 static int
196 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
197 {
198 memset(obj, 0, sizeof(struct sigacts));
199 return 0;
200 }
201
202 /*
203 * signal_init:
204 *
205 * Initialize global signal-related data structures.
206 */
207 void
208 signal_init(void)
209 {
210
211 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
212
213 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
214 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
215 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
216 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
217 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
218
219 exechook_establish(ksiginfo_exechook, NULL);
220
221 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
222 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
223
224 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
225 signal_listener_cb, NULL);
226 }
227
228 /*
229 * sigacts_poolpage_alloc:
230 *
231 * Allocate a page for the sigacts memory pool.
232 */
233 static void *
234 sigacts_poolpage_alloc(struct pool *pp, int flags)
235 {
236
237 return (void *)uvm_km_alloc(kernel_map,
238 PAGE_SIZE * 2, PAGE_SIZE * 2,
239 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
240 | UVM_KMF_WIRED);
241 }
242
243 /*
244 * sigacts_poolpage_free:
245 *
246 * Free a page on behalf of the sigacts memory pool.
247 */
248 static void
249 sigacts_poolpage_free(struct pool *pp, void *v)
250 {
251
252 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
253 }
254
255 /*
256 * sigactsinit:
257 *
258 * Create an initial sigacts structure, using the same signal state
259 * as of specified process. If 'share' is set, share the sigacts by
260 * holding a reference, otherwise just copy it from parent.
261 */
262 struct sigacts *
263 sigactsinit(struct proc *pp, int share)
264 {
265 struct sigacts *ps = pp->p_sigacts, *ps2;
266
267 if (__predict_false(share)) {
268 atomic_inc_uint(&ps->sa_refcnt);
269 return ps;
270 }
271 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
272 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
273 ps2->sa_refcnt = 1;
274
275 mutex_enter(&ps->sa_mutex);
276 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
277 mutex_exit(&ps->sa_mutex);
278 return ps2;
279 }
280
281 /*
282 * sigactsunshare:
283 *
284 * Make this process not share its sigacts, maintaining all signal state.
285 */
286 void
287 sigactsunshare(struct proc *p)
288 {
289 struct sigacts *ps, *oldps = p->p_sigacts;
290
291 if (__predict_true(oldps->sa_refcnt == 1))
292 return;
293
294 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
295 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
296 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
297 ps->sa_refcnt = 1;
298
299 p->p_sigacts = ps;
300 sigactsfree(oldps);
301 }
302
303 /*
304 * sigactsfree;
305 *
306 * Release a sigacts structure.
307 */
308 void
309 sigactsfree(struct sigacts *ps)
310 {
311
312 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
313 mutex_destroy(&ps->sa_mutex);
314 pool_cache_put(sigacts_cache, ps);
315 }
316 }
317
318 /*
319 * siginit:
320 *
321 * Initialize signal state for process 0; set to ignore signals that
322 * are ignored by default and disable the signal stack. Locking not
323 * required as the system is still cold.
324 */
325 void
326 siginit(struct proc *p)
327 {
328 struct lwp *l;
329 struct sigacts *ps;
330 int signo, prop;
331
332 ps = p->p_sigacts;
333 sigemptyset(&contsigmask);
334 sigemptyset(&stopsigmask);
335 sigemptyset(&vforksigmask);
336 sigemptyset(&sigcantmask);
337 for (signo = 1; signo < NSIG; signo++) {
338 prop = sigprop[signo];
339 if (prop & SA_CONT)
340 sigaddset(&contsigmask, signo);
341 if (prop & SA_STOP)
342 sigaddset(&stopsigmask, signo);
343 if (prop & SA_STOP && signo != SIGSTOP)
344 sigaddset(&vforksigmask, signo);
345 if (prop & SA_CANTMASK)
346 sigaddset(&sigcantmask, signo);
347 if (prop & SA_IGNORE && signo != SIGCONT)
348 sigaddset(&p->p_sigctx.ps_sigignore, signo);
349 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
350 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
351 }
352 sigemptyset(&p->p_sigctx.ps_sigcatch);
353 p->p_sflag &= ~PS_NOCLDSTOP;
354
355 ksiginfo_queue_init(&p->p_sigpend.sp_info);
356 sigemptyset(&p->p_sigpend.sp_set);
357
358 /*
359 * Reset per LWP state.
360 */
361 l = LIST_FIRST(&p->p_lwps);
362 l->l_sigwaited = NULL;
363 l->l_sigstk = SS_INIT;
364 ksiginfo_queue_init(&l->l_sigpend.sp_info);
365 sigemptyset(&l->l_sigpend.sp_set);
366
367 /* One reference. */
368 ps->sa_refcnt = 1;
369 }
370
371 /*
372 * execsigs:
373 *
374 * Reset signals for an exec of the specified process.
375 */
376 void
377 execsigs(struct proc *p)
378 {
379 struct sigacts *ps;
380 struct lwp *l;
381 int signo, prop;
382 sigset_t tset;
383 ksiginfoq_t kq;
384
385 KASSERT(p->p_nlwps == 1);
386
387 sigactsunshare(p);
388 ps = p->p_sigacts;
389
390 /*
391 * Reset caught signals. Held signals remain held through
392 * l->l_sigmask (unless they were caught, and are now ignored
393 * by default).
394 *
395 * No need to lock yet, the process has only one LWP and
396 * at this point the sigacts are private to the process.
397 */
398 sigemptyset(&tset);
399 for (signo = 1; signo < NSIG; signo++) {
400 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
401 prop = sigprop[signo];
402 if (prop & SA_IGNORE) {
403 if ((prop & SA_CONT) == 0)
404 sigaddset(&p->p_sigctx.ps_sigignore,
405 signo);
406 sigaddset(&tset, signo);
407 }
408 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
409 }
410 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
411 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
412 }
413 ksiginfo_queue_init(&kq);
414
415 mutex_enter(p->p_lock);
416 sigclearall(p, &tset, &kq);
417 sigemptyset(&p->p_sigctx.ps_sigcatch);
418
419 /*
420 * Reset no zombies if child dies flag as Solaris does.
421 */
422 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
423 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
424 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
425
426 /*
427 * Reset per-LWP state.
428 */
429 l = LIST_FIRST(&p->p_lwps);
430 l->l_sigwaited = NULL;
431 l->l_sigstk = SS_INIT;
432 ksiginfo_queue_init(&l->l_sigpend.sp_info);
433 sigemptyset(&l->l_sigpend.sp_set);
434 mutex_exit(p->p_lock);
435
436 ksiginfo_queue_drain(&kq);
437 }
438
439 /*
440 * ksiginfo_exechook:
441 *
442 * Free all pending ksiginfo entries from a process on exec.
443 * Additionally, drain any unused ksiginfo structures in the
444 * system back to the pool.
445 *
446 * XXX This should not be a hook, every process has signals.
447 */
448 static void
449 ksiginfo_exechook(struct proc *p, void *v)
450 {
451 ksiginfoq_t kq;
452
453 ksiginfo_queue_init(&kq);
454
455 mutex_enter(p->p_lock);
456 sigclearall(p, NULL, &kq);
457 mutex_exit(p->p_lock);
458
459 ksiginfo_queue_drain(&kq);
460 }
461
462 /*
463 * ksiginfo_alloc:
464 *
465 * Allocate a new ksiginfo structure from the pool, and optionally copy
466 * an existing one. If the existing ksiginfo_t is from the pool, and
467 * has not been queued somewhere, then just return it. Additionally,
468 * if the existing ksiginfo_t does not contain any information beyond
469 * the signal number, then just return it.
470 */
471 ksiginfo_t *
472 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
473 {
474 ksiginfo_t *kp;
475
476 if (ok != NULL) {
477 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
478 KSI_FROMPOOL)
479 return ok;
480 if (KSI_EMPTY_P(ok))
481 return ok;
482 }
483
484 kp = pool_cache_get(ksiginfo_cache, flags);
485 if (kp == NULL) {
486 #ifdef DIAGNOSTIC
487 printf("Out of memory allocating ksiginfo for pid %d\n",
488 p->p_pid);
489 #endif
490 return NULL;
491 }
492
493 if (ok != NULL) {
494 memcpy(kp, ok, sizeof(*kp));
495 kp->ksi_flags &= ~KSI_QUEUED;
496 } else
497 KSI_INIT_EMPTY(kp);
498
499 kp->ksi_flags |= KSI_FROMPOOL;
500
501 return kp;
502 }
503
504 /*
505 * ksiginfo_free:
506 *
507 * If the given ksiginfo_t is from the pool and has not been queued,
508 * then free it.
509 */
510 void
511 ksiginfo_free(ksiginfo_t *kp)
512 {
513
514 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
515 return;
516 pool_cache_put(ksiginfo_cache, kp);
517 }
518
519 /*
520 * ksiginfo_queue_drain:
521 *
522 * Drain a non-empty ksiginfo_t queue.
523 */
524 void
525 ksiginfo_queue_drain0(ksiginfoq_t *kq)
526 {
527 ksiginfo_t *ksi;
528
529 KASSERT(!TAILQ_EMPTY(kq));
530
531 while (!TAILQ_EMPTY(kq)) {
532 ksi = TAILQ_FIRST(kq);
533 TAILQ_REMOVE(kq, ksi, ksi_list);
534 pool_cache_put(ksiginfo_cache, ksi);
535 }
536 }
537
538 static int
539 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
540 {
541 ksiginfo_t *ksi, *nksi;
542
543 if (sp == NULL)
544 goto out;
545
546 /* Find siginfo and copy it out. */
547 int count = 0;
548 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
549 if (ksi->ksi_signo != signo)
550 continue;
551 if (count++ > 0) /* Only remove the first, count all of them */
552 continue;
553 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
554 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
555 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
556 ksi->ksi_flags &= ~KSI_QUEUED;
557 if (out != NULL) {
558 memcpy(out, ksi, sizeof(*out));
559 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
560 }
561 ksiginfo_free(ksi);
562 }
563 if (count)
564 return count;
565
566 out:
567 /* If there is no siginfo, then manufacture it. */
568 if (out != NULL) {
569 KSI_INIT(out);
570 out->ksi_info._signo = signo;
571 out->ksi_info._code = SI_NOINFO;
572 }
573 return 0;
574 }
575
576 /*
577 * sigget:
578 *
579 * Fetch the first pending signal from a set. Optionally, also fetch
580 * or manufacture a ksiginfo element. Returns the number of the first
581 * pending signal, or zero.
582 */
583 int
584 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
585 {
586 sigset_t tset;
587 int count;
588
589 /* If there's no pending set, the signal is from the debugger. */
590 if (sp == NULL)
591 goto out;
592
593 /* Construct mask from signo, and 'mask'. */
594 if (signo == 0) {
595 if (mask != NULL) {
596 tset = *mask;
597 __sigandset(&sp->sp_set, &tset);
598 } else
599 tset = sp->sp_set;
600
601 /* If there are no signals pending - return. */
602 if ((signo = firstsig(&tset)) == 0)
603 goto out;
604 } else {
605 KASSERT(sigismember(&sp->sp_set, signo));
606 }
607
608 sigdelset(&sp->sp_set, signo);
609 out:
610 count = siggetinfo(sp, out, signo);
611 if (count > 1)
612 sigaddset(&sp->sp_set, signo);
613 return signo;
614 }
615
616 /*
617 * sigput:
618 *
619 * Append a new ksiginfo element to the list of pending ksiginfo's.
620 */
621 static int
622 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
623 {
624 ksiginfo_t *kp;
625
626 KASSERT(mutex_owned(p->p_lock));
627 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
628
629 sigaddset(&sp->sp_set, ksi->ksi_signo);
630
631 /*
632 * If there is no siginfo, we are done.
633 */
634 if (KSI_EMPTY_P(ksi))
635 return 0;
636
637 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
638
639 size_t count = 0;
640 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
641 count++;
642 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
643 continue;
644 if (kp->ksi_signo == ksi->ksi_signo) {
645 KSI_COPY(ksi, kp);
646 kp->ksi_flags |= KSI_QUEUED;
647 return 0;
648 }
649 }
650
651 if (count >= SIGQUEUE_MAX) {
652 #ifdef DIAGNOSTIC
653 printf("%s(%d): Signal queue is full signal=%d\n",
654 p->p_comm, p->p_pid, ksi->ksi_signo);
655 #endif
656 return EAGAIN;
657 }
658 ksi->ksi_flags |= KSI_QUEUED;
659 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
660
661 return 0;
662 }
663
664 /*
665 * sigclear:
666 *
667 * Clear all pending signals in the specified set.
668 */
669 void
670 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
671 {
672 ksiginfo_t *ksi, *next;
673
674 if (mask == NULL)
675 sigemptyset(&sp->sp_set);
676 else
677 sigminusset(mask, &sp->sp_set);
678
679 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
680 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
681 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
682 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
683 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
684 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
685 }
686 }
687 }
688
689 /*
690 * sigclearall:
691 *
692 * Clear all pending signals in the specified set from a process and
693 * its LWPs.
694 */
695 void
696 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
697 {
698 struct lwp *l;
699
700 KASSERT(mutex_owned(p->p_lock));
701
702 sigclear(&p->p_sigpend, mask, kq);
703
704 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
705 sigclear(&l->l_sigpend, mask, kq);
706 }
707 }
708
709 /*
710 * sigispending:
711 *
712 * Return the first signal number if there are pending signals for the
713 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
714 * and that the signal has been posted to the appopriate queue before
715 * LW_PENDSIG is set.
716 */
717 int
718 sigispending(struct lwp *l, int signo)
719 {
720 struct proc *p = l->l_proc;
721 sigset_t tset;
722
723 membar_consumer();
724
725 tset = l->l_sigpend.sp_set;
726 sigplusset(&p->p_sigpend.sp_set, &tset);
727 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
728 sigminusset(&l->l_sigmask, &tset);
729
730 if (signo == 0) {
731 return firstsig(&tset);
732 }
733 return sigismember(&tset, signo) ? signo : 0;
734 }
735
736 void
737 getucontext(struct lwp *l, ucontext_t *ucp)
738 {
739 struct proc *p = l->l_proc;
740
741 KASSERT(mutex_owned(p->p_lock));
742
743 ucp->uc_flags = 0;
744 ucp->uc_link = l->l_ctxlink;
745 ucp->uc_sigmask = l->l_sigmask;
746 ucp->uc_flags |= _UC_SIGMASK;
747
748 /*
749 * The (unsupplied) definition of the `current execution stack'
750 * in the System V Interface Definition appears to allow returning
751 * the main context stack.
752 */
753 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
754 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
755 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
756 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
757 } else {
758 /* Simply copy alternate signal execution stack. */
759 ucp->uc_stack = l->l_sigstk;
760 }
761 ucp->uc_flags |= _UC_STACK;
762 mutex_exit(p->p_lock);
763 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
764 mutex_enter(p->p_lock);
765 }
766
767 int
768 setucontext(struct lwp *l, const ucontext_t *ucp)
769 {
770 struct proc *p = l->l_proc;
771 int error;
772
773 KASSERT(mutex_owned(p->p_lock));
774
775 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
776 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
777 if (error != 0)
778 return error;
779 }
780
781 mutex_exit(p->p_lock);
782 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
783 mutex_enter(p->p_lock);
784 if (error != 0)
785 return (error);
786
787 l->l_ctxlink = ucp->uc_link;
788
789 /*
790 * If there was stack information, update whether or not we are
791 * still running on an alternate signal stack.
792 */
793 if ((ucp->uc_flags & _UC_STACK) != 0) {
794 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
795 l->l_sigstk.ss_flags |= SS_ONSTACK;
796 else
797 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
798 }
799
800 return 0;
801 }
802
803 /*
804 * killpg1: common code for kill process group/broadcast kill.
805 */
806 int
807 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
808 {
809 struct proc *p, *cp;
810 kauth_cred_t pc;
811 struct pgrp *pgrp;
812 int nfound;
813 int signo = ksi->ksi_signo;
814
815 cp = l->l_proc;
816 pc = l->l_cred;
817 nfound = 0;
818
819 mutex_enter(proc_lock);
820 if (all) {
821 /*
822 * Broadcast.
823 */
824 PROCLIST_FOREACH(p, &allproc) {
825 if (p->p_pid <= 1 || p == cp ||
826 (p->p_flag & PK_SYSTEM) != 0)
827 continue;
828 mutex_enter(p->p_lock);
829 if (kauth_authorize_process(pc,
830 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
831 NULL) == 0) {
832 nfound++;
833 if (signo)
834 kpsignal2(p, ksi);
835 }
836 mutex_exit(p->p_lock);
837 }
838 } else {
839 if (pgid == 0)
840 /* Zero pgid means send to my process group. */
841 pgrp = cp->p_pgrp;
842 else {
843 pgrp = pgrp_find(pgid);
844 if (pgrp == NULL)
845 goto out;
846 }
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
848 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
849 continue;
850 mutex_enter(p->p_lock);
851 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
852 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
853 nfound++;
854 if (signo && P_ZOMBIE(p) == 0)
855 kpsignal2(p, ksi);
856 }
857 mutex_exit(p->p_lock);
858 }
859 }
860 out:
861 mutex_exit(proc_lock);
862 return nfound ? 0 : ESRCH;
863 }
864
865 /*
866 * Send a signal to a process group. If checktty is set, limit to members
867 * which have a controlling terminal.
868 */
869 void
870 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
871 {
872 ksiginfo_t ksi;
873
874 KASSERT(!cpu_intr_p());
875 KASSERT(mutex_owned(proc_lock));
876
877 KSI_INIT_EMPTY(&ksi);
878 ksi.ksi_signo = sig;
879 kpgsignal(pgrp, &ksi, NULL, checkctty);
880 }
881
882 void
883 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
884 {
885 struct proc *p;
886
887 KASSERT(!cpu_intr_p());
888 KASSERT(mutex_owned(proc_lock));
889 KASSERT(pgrp != NULL);
890
891 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
892 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
893 kpsignal(p, ksi, data);
894 }
895
896 /*
897 * Send a signal caused by a trap to the current LWP. If it will be caught
898 * immediately, deliver it with correct code. Otherwise, post it normally.
899 */
900 void
901 trapsignal(struct lwp *l, ksiginfo_t *ksi)
902 {
903 struct proc *p;
904 struct sigacts *ps;
905 int signo = ksi->ksi_signo;
906 sigset_t *mask;
907 sig_t action;
908
909 KASSERT(KSI_TRAP_P(ksi));
910
911 ksi->ksi_lid = l->l_lid;
912 p = l->l_proc;
913
914 KASSERT(!cpu_intr_p());
915 mutex_enter(proc_lock);
916 mutex_enter(p->p_lock);
917
918 repeat:
919 /*
920 * If we are exiting, demise now.
921 *
922 * This avoids notifying tracer and deadlocking.
923 */
924 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
925 mutex_exit(p->p_lock);
926 mutex_exit(proc_lock);
927 lwp_exit(l);
928 panic("trapsignal");
929 /* NOTREACHED */
930 }
931
932 /*
933 * The process is already stopping.
934 */
935 if ((p->p_sflag & PS_STOPPING) != 0) {
936 mutex_exit(proc_lock);
937 sigswitch_unlock_and_switch_away(l);
938 mutex_enter(proc_lock);
939 mutex_enter(p->p_lock);
940 goto repeat;
941 }
942
943 mask = &l->l_sigmask;
944 ps = p->p_sigacts;
945 action = SIGACTION_PS(ps, signo).sa_handler;
946
947 if (ISSET(p->p_slflag, PSL_TRACED) &&
948 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
949 p->p_xsig != SIGKILL &&
950 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
951 p->p_xsig = signo;
952 p->p_sigctx.ps_faked = true;
953 p->p_sigctx.ps_lwp = ksi->ksi_lid;
954 p->p_sigctx.ps_info = ksi->ksi_info;
955 sigswitch(0, signo, true);
956
957 if (ktrpoint(KTR_PSIG)) {
958 if (p->p_emul->e_ktrpsig)
959 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
960 else
961 ktrpsig(signo, action, mask, ksi);
962 }
963 return;
964 }
965
966 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
967 const bool masked = sigismember(mask, signo);
968 if (caught && !masked) {
969 mutex_exit(proc_lock);
970 l->l_ru.ru_nsignals++;
971 kpsendsig(l, ksi, mask);
972 mutex_exit(p->p_lock);
973
974 if (ktrpoint(KTR_PSIG)) {
975 if (p->p_emul->e_ktrpsig)
976 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
977 else
978 ktrpsig(signo, action, mask, ksi);
979 }
980 return;
981 }
982
983 /*
984 * If the signal is masked or ignored, then unmask it and
985 * reset it to the default action so that the process or
986 * its tracer will be notified.
987 */
988 const bool ignored = action == SIG_IGN;
989 if (masked || ignored) {
990 mutex_enter(&ps->sa_mutex);
991 sigdelset(mask, signo);
992 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
993 sigdelset(&p->p_sigctx.ps_sigignore, signo);
994 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
995 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
996 mutex_exit(&ps->sa_mutex);
997 }
998
999 kpsignal2(p, ksi);
1000 mutex_exit(p->p_lock);
1001 mutex_exit(proc_lock);
1002 }
1003
1004 /*
1005 * Fill in signal information and signal the parent for a child status change.
1006 */
1007 void
1008 child_psignal(struct proc *p, int mask)
1009 {
1010 ksiginfo_t ksi;
1011 struct proc *q;
1012 int xsig;
1013
1014 KASSERT(mutex_owned(proc_lock));
1015 KASSERT(mutex_owned(p->p_lock));
1016
1017 xsig = p->p_xsig;
1018
1019 KSI_INIT(&ksi);
1020 ksi.ksi_signo = SIGCHLD;
1021 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1022 ksi.ksi_pid = p->p_pid;
1023 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1024 ksi.ksi_status = xsig;
1025 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1026 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1027
1028 q = p->p_pptr;
1029
1030 mutex_exit(p->p_lock);
1031 mutex_enter(q->p_lock);
1032
1033 if ((q->p_sflag & mask) == 0)
1034 kpsignal2(q, &ksi);
1035
1036 mutex_exit(q->p_lock);
1037 mutex_enter(p->p_lock);
1038 }
1039
1040 void
1041 psignal(struct proc *p, int signo)
1042 {
1043 ksiginfo_t ksi;
1044
1045 KASSERT(!cpu_intr_p());
1046 KASSERT(mutex_owned(proc_lock));
1047
1048 KSI_INIT_EMPTY(&ksi);
1049 ksi.ksi_signo = signo;
1050 mutex_enter(p->p_lock);
1051 kpsignal2(p, &ksi);
1052 mutex_exit(p->p_lock);
1053 }
1054
1055 void
1056 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1057 {
1058 fdfile_t *ff;
1059 file_t *fp;
1060 fdtab_t *dt;
1061
1062 KASSERT(!cpu_intr_p());
1063 KASSERT(mutex_owned(proc_lock));
1064
1065 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1066 size_t fd;
1067 filedesc_t *fdp = p->p_fd;
1068
1069 /* XXXSMP locking */
1070 ksi->ksi_fd = -1;
1071 dt = fdp->fd_dt;
1072 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1073 if ((ff = dt->dt_ff[fd]) == NULL)
1074 continue;
1075 if ((fp = ff->ff_file) == NULL)
1076 continue;
1077 if (fp->f_data == data) {
1078 ksi->ksi_fd = fd;
1079 break;
1080 }
1081 }
1082 }
1083 mutex_enter(p->p_lock);
1084 kpsignal2(p, ksi);
1085 mutex_exit(p->p_lock);
1086 }
1087
1088 /*
1089 * sigismasked:
1090 *
1091 * Returns true if signal is ignored or masked for the specified LWP.
1092 */
1093 int
1094 sigismasked(struct lwp *l, int sig)
1095 {
1096 struct proc *p = l->l_proc;
1097
1098 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1099 sigismember(&l->l_sigmask, sig);
1100 }
1101
1102 /*
1103 * sigpost:
1104 *
1105 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1106 * be able to take the signal.
1107 */
1108 static int
1109 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1110 {
1111 int rv, masked;
1112 struct proc *p = l->l_proc;
1113
1114 KASSERT(mutex_owned(p->p_lock));
1115
1116 /*
1117 * If the LWP is on the way out, sigclear() will be busy draining all
1118 * pending signals. Don't give it more.
1119 */
1120 if (l->l_refcnt == 0)
1121 return 0;
1122
1123 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1124
1125 lwp_lock(l);
1126 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1127 if ((prop & SA_KILL) != 0)
1128 l->l_flag &= ~LW_DBGSUSPEND;
1129 else {
1130 lwp_unlock(l);
1131 return 0;
1132 }
1133 }
1134
1135 /*
1136 * Have the LWP check for signals. This ensures that even if no LWP
1137 * is found to take the signal immediately, it should be taken soon.
1138 */
1139 l->l_flag |= LW_PENDSIG;
1140
1141 /*
1142 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1143 * Note: SIGKILL and SIGSTOP cannot be masked.
1144 */
1145 masked = sigismember(&l->l_sigmask, sig);
1146 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1147 lwp_unlock(l);
1148 return 0;
1149 }
1150
1151 /*
1152 * If killing the process, make it run fast.
1153 */
1154 if (__predict_false((prop & SA_KILL) != 0) &&
1155 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1156 KASSERT(l->l_class == SCHED_OTHER);
1157 lwp_changepri(l, MAXPRI_USER);
1158 }
1159
1160 /*
1161 * If the LWP is running or on a run queue, then we win. If it's
1162 * sleeping interruptably, wake it and make it take the signal. If
1163 * the sleep isn't interruptable, then the chances are it will get
1164 * to see the signal soon anyhow. If suspended, it can't take the
1165 * signal right now. If it's LWP private or for all LWPs, save it
1166 * for later; otherwise punt.
1167 */
1168 rv = 0;
1169
1170 switch (l->l_stat) {
1171 case LSRUN:
1172 case LSONPROC:
1173 lwp_need_userret(l);
1174 rv = 1;
1175 break;
1176
1177 case LSSLEEP:
1178 if ((l->l_flag & LW_SINTR) != 0) {
1179 /* setrunnable() will release the lock. */
1180 setrunnable(l);
1181 return 1;
1182 }
1183 break;
1184
1185 case LSSUSPENDED:
1186 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1187 /* lwp_continue() will release the lock. */
1188 lwp_continue(l);
1189 return 1;
1190 }
1191 break;
1192
1193 case LSSTOP:
1194 if ((prop & SA_STOP) != 0)
1195 break;
1196
1197 /*
1198 * If the LWP is stopped and we are sending a continue
1199 * signal, then start it again.
1200 */
1201 if ((prop & SA_CONT) != 0) {
1202 if (l->l_wchan != NULL) {
1203 l->l_stat = LSSLEEP;
1204 p->p_nrlwps++;
1205 rv = 1;
1206 break;
1207 }
1208 /* setrunnable() will release the lock. */
1209 setrunnable(l);
1210 return 1;
1211 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1212 /* setrunnable() will release the lock. */
1213 setrunnable(l);
1214 return 1;
1215 }
1216 break;
1217
1218 default:
1219 break;
1220 }
1221
1222 lwp_unlock(l);
1223 return rv;
1224 }
1225
1226 /*
1227 * Notify an LWP that it has a pending signal.
1228 */
1229 void
1230 signotify(struct lwp *l)
1231 {
1232 KASSERT(lwp_locked(l, NULL));
1233
1234 l->l_flag |= LW_PENDSIG;
1235 lwp_need_userret(l);
1236 }
1237
1238 /*
1239 * Find an LWP within process p that is waiting on signal ksi, and hand
1240 * it on.
1241 */
1242 static int
1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1244 {
1245 struct lwp *l;
1246 int signo;
1247
1248 KASSERT(mutex_owned(p->p_lock));
1249
1250 signo = ksi->ksi_signo;
1251
1252 if (ksi->ksi_lid != 0) {
1253 /*
1254 * Signal came via _lwp_kill(). Find the LWP and see if
1255 * it's interested.
1256 */
1257 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1258 return 0;
1259 if (l->l_sigwaited == NULL ||
1260 !sigismember(&l->l_sigwaitset, signo))
1261 return 0;
1262 } else {
1263 /*
1264 * Look for any LWP that may be interested.
1265 */
1266 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1267 KASSERT(l->l_sigwaited != NULL);
1268 if (sigismember(&l->l_sigwaitset, signo))
1269 break;
1270 }
1271 }
1272
1273 if (l != NULL) {
1274 l->l_sigwaited->ksi_info = ksi->ksi_info;
1275 l->l_sigwaited = NULL;
1276 LIST_REMOVE(l, l_sigwaiter);
1277 cv_signal(&l->l_sigcv);
1278 return 1;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * Send the signal to the process. If the signal has an action, the action
1286 * is usually performed by the target process rather than the caller; we add
1287 * the signal to the set of pending signals for the process.
1288 *
1289 * Exceptions:
1290 * o When a stop signal is sent to a sleeping process that takes the
1291 * default action, the process is stopped without awakening it.
1292 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1293 * regardless of the signal action (eg, blocked or ignored).
1294 *
1295 * Other ignored signals are discarded immediately.
1296 */
1297 int
1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1299 {
1300 int prop, signo = ksi->ksi_signo;
1301 struct lwp *l = NULL;
1302 ksiginfo_t *kp;
1303 lwpid_t lid;
1304 sig_t action;
1305 bool toall;
1306 int error = 0;
1307
1308 KASSERT(!cpu_intr_p());
1309 KASSERT(mutex_owned(proc_lock));
1310 KASSERT(mutex_owned(p->p_lock));
1311 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1312 KASSERT(signo > 0 && signo < NSIG);
1313
1314 /*
1315 * If the process is being created by fork, is a zombie or is
1316 * exiting, then just drop the signal here and bail out.
1317 */
1318 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1319 return 0;
1320
1321 /*
1322 * Notify any interested parties of the signal.
1323 */
1324 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1325
1326 /*
1327 * Some signals including SIGKILL must act on the entire process.
1328 */
1329 kp = NULL;
1330 prop = sigprop[signo];
1331 toall = ((prop & SA_TOALL) != 0);
1332 lid = toall ? 0 : ksi->ksi_lid;
1333
1334 /*
1335 * If proc is traced, always give parent a chance.
1336 */
1337 if (p->p_slflag & PSL_TRACED) {
1338 action = SIG_DFL;
1339
1340 if (lid == 0) {
1341 /*
1342 * If the process is being traced and the signal
1343 * is being caught, make sure to save any ksiginfo.
1344 */
1345 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1346 goto discard;
1347 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1348 goto out;
1349 }
1350 } else {
1351
1352 /*
1353 * If the signal is being ignored, then drop it. Note: we
1354 * don't set SIGCONT in ps_sigignore, and if it is set to
1355 * SIG_IGN, action will be SIG_DFL here.
1356 */
1357 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1358 goto discard;
1359
1360 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1361 action = SIG_CATCH;
1362 else {
1363 action = SIG_DFL;
1364
1365 /*
1366 * If sending a tty stop signal to a member of an
1367 * orphaned process group, discard the signal here if
1368 * the action is default; don't stop the process below
1369 * if sleeping, and don't clear any pending SIGCONT.
1370 */
1371 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1372 goto discard;
1373
1374 if (prop & SA_KILL && p->p_nice > NZERO)
1375 p->p_nice = NZERO;
1376 }
1377 }
1378
1379 /*
1380 * If stopping or continuing a process, discard any pending
1381 * signals that would do the inverse.
1382 */
1383 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1384 ksiginfoq_t kq;
1385
1386 ksiginfo_queue_init(&kq);
1387 if ((prop & SA_CONT) != 0)
1388 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1389 if ((prop & SA_STOP) != 0)
1390 sigclear(&p->p_sigpend, &contsigmask, &kq);
1391 ksiginfo_queue_drain(&kq); /* XXXSMP */
1392 }
1393
1394 /*
1395 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1396 * please!), check if any LWPs are waiting on it. If yes, pass on
1397 * the signal info. The signal won't be processed further here.
1398 */
1399 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1400 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1401 sigunwait(p, ksi))
1402 goto discard;
1403
1404 /*
1405 * XXXSMP Should be allocated by the caller, we're holding locks
1406 * here.
1407 */
1408 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1409 goto discard;
1410
1411 /*
1412 * LWP private signals are easy - just find the LWP and post
1413 * the signal to it.
1414 */
1415 if (lid != 0) {
1416 l = lwp_find(p, lid);
1417 if (l != NULL) {
1418 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1419 goto out;
1420 membar_producer();
1421 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1422 signo = -1;
1423 }
1424 goto out;
1425 }
1426
1427 /*
1428 * Some signals go to all LWPs, even if posted with _lwp_kill()
1429 * or for an SA process.
1430 */
1431 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1432 if ((p->p_slflag & PSL_TRACED) != 0)
1433 goto deliver;
1434
1435 /*
1436 * If SIGCONT is default (or ignored) and process is
1437 * asleep, we are finished; the process should not
1438 * be awakened.
1439 */
1440 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1441 goto out;
1442 } else {
1443 /*
1444 * Process is stopped or stopping.
1445 * - If traced, then no action is needed, unless killing.
1446 * - Run the process only if sending SIGCONT or SIGKILL.
1447 */
1448 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1449 goto out;
1450 }
1451 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1452 /*
1453 * Re-adjust p_nstopchild if the process was
1454 * stopped but not yet collected by its parent.
1455 */
1456 if (p->p_stat == SSTOP && !p->p_waited)
1457 p->p_pptr->p_nstopchild--;
1458 p->p_stat = SACTIVE;
1459 p->p_sflag &= ~PS_STOPPING;
1460 if (p->p_slflag & PSL_TRACED) {
1461 KASSERT(signo == SIGKILL);
1462 goto deliver;
1463 }
1464 /*
1465 * Do not make signal pending if SIGCONT is default.
1466 *
1467 * If the process catches SIGCONT, let it handle the
1468 * signal itself (if waiting on event - process runs,
1469 * otherwise continues sleeping).
1470 */
1471 if ((prop & SA_CONT) != 0) {
1472 p->p_xsig = SIGCONT;
1473 p->p_sflag |= PS_CONTINUED;
1474 child_psignal(p, 0);
1475 if (action == SIG_DFL) {
1476 KASSERT(signo != SIGKILL);
1477 goto deliver;
1478 }
1479 }
1480 } else if ((prop & SA_STOP) != 0) {
1481 /*
1482 * Already stopped, don't need to stop again.
1483 * (If we did the shell could get confused.)
1484 */
1485 goto out;
1486 }
1487 }
1488 /*
1489 * Make signal pending.
1490 */
1491 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1492 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1493 goto out;
1494 deliver:
1495 /*
1496 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1497 * visible on the per process list (for sigispending()). This
1498 * is unlikely to be needed in practice, but...
1499 */
1500 membar_producer();
1501
1502 /*
1503 * Try to find an LWP that can take the signal.
1504 */
1505 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1506 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1507 break;
1508 }
1509 signo = -1;
1510 out:
1511 /*
1512 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1513 * with locks held. The caller should take care of this.
1514 */
1515 ksiginfo_free(kp);
1516 if (signo == -1)
1517 return error;
1518 discard:
1519 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1520 return error;
1521 }
1522
1523 void
1524 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1525 {
1526 struct proc *p = l->l_proc;
1527
1528 KASSERT(mutex_owned(p->p_lock));
1529 (*p->p_emul->e_sendsig)(ksi, mask);
1530 }
1531
1532 /*
1533 * Stop any LWPs sleeping interruptably.
1534 */
1535 static void
1536 proc_stop_lwps(struct proc *p)
1537 {
1538 struct lwp *l;
1539
1540 KASSERT(mutex_owned(p->p_lock));
1541 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1542
1543 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1544 lwp_lock(l);
1545 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1546 l->l_stat = LSSTOP;
1547 p->p_nrlwps--;
1548 }
1549 lwp_unlock(l);
1550 }
1551 }
1552
1553 /*
1554 * Finish stopping of a process. Mark it stopped and notify the parent.
1555 *
1556 * Drop p_lock briefly if ppsig is true.
1557 */
1558 static void
1559 proc_stop_done(struct proc *p, int ppmask)
1560 {
1561
1562 KASSERT(mutex_owned(proc_lock));
1563 KASSERT(mutex_owned(p->p_lock));
1564 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1565 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1566
1567 p->p_sflag &= ~PS_STOPPING;
1568 p->p_stat = SSTOP;
1569 p->p_waited = 0;
1570 p->p_pptr->p_nstopchild++;
1571
1572 /* child_psignal drops p_lock briefly. */
1573 child_psignal(p, ppmask);
1574 cv_broadcast(&p->p_pptr->p_waitcv);
1575 }
1576
1577 /*
1578 * Stop the current process and switch away to the debugger notifying
1579 * an event specific to a traced process only.
1580 */
1581 void
1582 eventswitch(int code, int pe_report_event, int entity)
1583 {
1584 struct lwp *l = curlwp;
1585 struct proc *p = l->l_proc;
1586 struct sigacts *ps;
1587 sigset_t *mask;
1588 sig_t action;
1589 ksiginfo_t ksi;
1590 const int signo = SIGTRAP;
1591
1592 KASSERT(mutex_owned(proc_lock));
1593 KASSERT(mutex_owned(p->p_lock));
1594 KASSERT(p->p_pptr != initproc);
1595 KASSERT(l->l_stat == LSONPROC);
1596 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1597 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1598 KASSERT(p->p_nrlwps > 0);
1599 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1600 (code == TRAP_EXEC));
1601 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1602 KASSERT((code != TRAP_LWP) || (entity > 0));
1603
1604 repeat:
1605 /*
1606 * If we are exiting, demise now.
1607 *
1608 * This avoids notifying tracer and deadlocking.
1609 */
1610 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1611 mutex_exit(p->p_lock);
1612 mutex_exit(proc_lock);
1613
1614 if (pe_report_event == PTRACE_LWP_EXIT) {
1615 /* Avoid double lwp_exit() and panic. */
1616 return;
1617 }
1618
1619 lwp_exit(l);
1620 panic("eventswitch");
1621 /* NOTREACHED */
1622 }
1623
1624 /*
1625 * If we are no longer traced, abandon this event signal.
1626 *
1627 * This avoids killing a process after detaching the debugger.
1628 */
1629 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1630 mutex_exit(p->p_lock);
1631 mutex_exit(proc_lock);
1632 return;
1633 }
1634
1635 /*
1636 * If there's a pending SIGKILL process it immediately.
1637 */
1638 if (p->p_xsig == SIGKILL ||
1639 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1640 mutex_exit(p->p_lock);
1641 mutex_exit(proc_lock);
1642 return;
1643 }
1644
1645 /*
1646 * The process is already stopping.
1647 */
1648 if ((p->p_sflag & PS_STOPPING) != 0) {
1649 mutex_exit(proc_lock);
1650 sigswitch_unlock_and_switch_away(l);
1651 mutex_enter(proc_lock);
1652 mutex_enter(p->p_lock);
1653 goto repeat;
1654 }
1655
1656 KSI_INIT_TRAP(&ksi);
1657 ksi.ksi_lid = l->l_lid;
1658 ksi.ksi_signo = signo;
1659 ksi.ksi_code = code;
1660 ksi.ksi_pe_report_event = pe_report_event;
1661
1662 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1663 ksi.ksi_pe_other_pid = entity;
1664
1665 /* Needed for ktrace */
1666 ps = p->p_sigacts;
1667 action = SIGACTION_PS(ps, signo).sa_handler;
1668 mask = &l->l_sigmask;
1669
1670 p->p_xsig = signo;
1671 p->p_sigctx.ps_faked = true;
1672 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1673 p->p_sigctx.ps_info = ksi.ksi_info;
1674
1675 sigswitch(0, signo, true);
1676
1677 if (code == TRAP_CHLD) {
1678 mutex_enter(proc_lock);
1679 while (l->l_vforkwaiting)
1680 cv_wait(&l->l_waitcv, proc_lock);
1681 mutex_exit(proc_lock);
1682 }
1683
1684 if (ktrpoint(KTR_PSIG)) {
1685 if (p->p_emul->e_ktrpsig)
1686 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1687 else
1688 ktrpsig(signo, action, mask, &ksi);
1689 }
1690 }
1691
1692 /*
1693 * Stop the current process and switch away when being stopped or traced.
1694 */
1695 static void
1696 sigswitch(int ppmask, int signo, bool proc_lock_held)
1697 {
1698 struct lwp *l = curlwp;
1699 struct proc *p = l->l_proc;
1700
1701 KASSERT(mutex_owned(p->p_lock));
1702 KASSERT(l->l_stat == LSONPROC);
1703 KASSERT(p->p_nrlwps > 0);
1704
1705 if (proc_lock_held) {
1706 KASSERT(mutex_owned(proc_lock));
1707 } else {
1708 KASSERT(!mutex_owned(proc_lock));
1709 }
1710
1711 /*
1712 * On entry we know that the process needs to stop. If it's
1713 * the result of a 'sideways' stop signal that has been sourced
1714 * through issignal(), then stop other LWPs in the process too.
1715 */
1716 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1717 KASSERT(signo != 0);
1718 proc_stop(p, signo);
1719 KASSERT(p->p_nrlwps > 0);
1720 }
1721
1722 /*
1723 * If we are the last live LWP, and the stop was a result of
1724 * a new signal, then signal the parent.
1725 */
1726 if ((p->p_sflag & PS_STOPPING) != 0) {
1727 if (!proc_lock_held && !mutex_tryenter(proc_lock)) {
1728 mutex_exit(p->p_lock);
1729 mutex_enter(proc_lock);
1730 mutex_enter(p->p_lock);
1731 }
1732
1733 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1734 /*
1735 * Note that proc_stop_done() can drop
1736 * p->p_lock briefly.
1737 */
1738 proc_stop_done(p, ppmask);
1739 }
1740
1741 mutex_exit(proc_lock);
1742 }
1743
1744 sigswitch_unlock_and_switch_away(l);
1745 }
1746
1747 /*
1748 * Unlock and switch away.
1749 */
1750 static void
1751 sigswitch_unlock_and_switch_away(struct lwp *l)
1752 {
1753 struct proc *p;
1754 int biglocks;
1755
1756 p = l->l_proc;
1757
1758 KASSERT(mutex_owned(p->p_lock));
1759 KASSERT(!mutex_owned(proc_lock));
1760
1761 KASSERT(l->l_stat == LSONPROC);
1762 KASSERT(p->p_nrlwps > 0);
1763
1764 KERNEL_UNLOCK_ALL(l, &biglocks);
1765 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1766 p->p_nrlwps--;
1767 lwp_lock(l);
1768 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1769 l->l_stat = LSSTOP;
1770 lwp_unlock(l);
1771 }
1772
1773 mutex_exit(p->p_lock);
1774 lwp_lock(l);
1775 mi_switch(l);
1776 KERNEL_LOCK(biglocks, l);
1777 }
1778
1779 /*
1780 * Check for a signal from the debugger.
1781 */
1782 static int
1783 sigchecktrace(void)
1784 {
1785 struct lwp *l = curlwp;
1786 struct proc *p = l->l_proc;
1787 int signo;
1788
1789 KASSERT(mutex_owned(p->p_lock));
1790
1791 /* If there's a pending SIGKILL, process it immediately. */
1792 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1793 return 0;
1794
1795 /*
1796 * If we are no longer being traced, or the parent didn't
1797 * give us a signal, or we're stopping, look for more signals.
1798 */
1799 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1800 (p->p_sflag & PS_STOPPING) != 0)
1801 return 0;
1802
1803 /*
1804 * If the new signal is being masked, look for other signals.
1805 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1806 */
1807 signo = p->p_xsig;
1808 p->p_xsig = 0;
1809 if (sigismember(&l->l_sigmask, signo)) {
1810 signo = 0;
1811 }
1812 return signo;
1813 }
1814
1815 /*
1816 * If the current process has received a signal (should be caught or cause
1817 * termination, should interrupt current syscall), return the signal number.
1818 *
1819 * Stop signals with default action are processed immediately, then cleared;
1820 * they aren't returned. This is checked after each entry to the system for
1821 * a syscall or trap.
1822 *
1823 * We will also return -1 if the process is exiting and the current LWP must
1824 * follow suit.
1825 */
1826 int
1827 issignal(struct lwp *l)
1828 {
1829 struct proc *p;
1830 int siglwp, signo, prop;
1831 sigpend_t *sp;
1832 sigset_t ss;
1833
1834 p = l->l_proc;
1835 sp = NULL;
1836 signo = 0;
1837
1838 KASSERT(p == curproc);
1839 KASSERT(mutex_owned(p->p_lock));
1840
1841 for (;;) {
1842 /* Discard any signals that we have decided not to take. */
1843 if (signo != 0) {
1844 (void)sigget(sp, NULL, signo, NULL);
1845 }
1846
1847 /*
1848 * If the process is stopped/stopping, then stop ourselves
1849 * now that we're on the kernel/userspace boundary. When
1850 * we awaken, check for a signal from the debugger.
1851 */
1852 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1853 sigswitch_unlock_and_switch_away(l);
1854 mutex_enter(p->p_lock);
1855 continue;
1856 } else if (p->p_stat == SACTIVE)
1857 signo = sigchecktrace();
1858 else
1859 signo = 0;
1860
1861 /* Signals from the debugger are "out of band". */
1862 sp = NULL;
1863
1864 /*
1865 * If the debugger didn't provide a signal, find a pending
1866 * signal from our set. Check per-LWP signals first, and
1867 * then per-process.
1868 */
1869 if (signo == 0) {
1870 sp = &l->l_sigpend;
1871 ss = sp->sp_set;
1872 siglwp = l->l_lid;
1873 if ((p->p_lflag & PL_PPWAIT) != 0)
1874 sigminusset(&vforksigmask, &ss);
1875 sigminusset(&l->l_sigmask, &ss);
1876
1877 if ((signo = firstsig(&ss)) == 0) {
1878 sp = &p->p_sigpend;
1879 ss = sp->sp_set;
1880 siglwp = 0;
1881 if ((p->p_lflag & PL_PPWAIT) != 0)
1882 sigminusset(&vforksigmask, &ss);
1883 sigminusset(&l->l_sigmask, &ss);
1884
1885 if ((signo = firstsig(&ss)) == 0) {
1886 /*
1887 * No signal pending - clear the
1888 * indicator and bail out.
1889 */
1890 lwp_lock(l);
1891 l->l_flag &= ~LW_PENDSIG;
1892 lwp_unlock(l);
1893 sp = NULL;
1894 break;
1895 }
1896 }
1897 }
1898
1899 if (sp) {
1900 /* Overwrite process' signal context to correspond
1901 * to the currently reported LWP. This is necessary
1902 * for PT_GET_SIGINFO to report the correct signal when
1903 * multiple LWPs have pending signals. We do this only
1904 * when the signal comes from the queue, for signals
1905 * created by the debugger we assume it set correct
1906 * siginfo.
1907 */
1908 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1909 if (ksi) {
1910 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1911 p->p_sigctx.ps_info = ksi->ksi_info;
1912 } else {
1913 p->p_sigctx.ps_lwp = siglwp;
1914 memset(&p->p_sigctx.ps_info, 0,
1915 sizeof(p->p_sigctx.ps_info));
1916 p->p_sigctx.ps_info._signo = signo;
1917 p->p_sigctx.ps_info._code = SI_NOINFO;
1918 }
1919 }
1920
1921 /*
1922 * We should see pending but ignored signals only if
1923 * we are being traced.
1924 */
1925 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1926 (p->p_slflag & PSL_TRACED) == 0) {
1927 /* Discard the signal. */
1928 continue;
1929 }
1930
1931 /*
1932 * If traced, always stop, and stay stopped until released
1933 * by the debugger. If the our parent is our debugger waiting
1934 * for us and we vforked, don't hang as we could deadlock.
1935 */
1936 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1937 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1938 (p->p_pptr == p->p_opptr))) {
1939 /*
1940 * Take the signal, but don't remove it from the
1941 * siginfo queue, because the debugger can send
1942 * it later.
1943 */
1944 if (sp)
1945 sigdelset(&sp->sp_set, signo);
1946 p->p_xsig = signo;
1947
1948 /* Handling of signal trace */
1949 sigswitch(0, signo, false);
1950 mutex_enter(p->p_lock);
1951
1952 /* Check for a signal from the debugger. */
1953 if ((signo = sigchecktrace()) == 0)
1954 continue;
1955
1956 /* Signals from the debugger are "out of band". */
1957 sp = NULL;
1958 }
1959
1960 prop = sigprop[signo];
1961
1962 /*
1963 * Decide whether the signal should be returned.
1964 */
1965 switch ((long)SIGACTION(p, signo).sa_handler) {
1966 case (long)SIG_DFL:
1967 /*
1968 * Don't take default actions on system processes.
1969 */
1970 if (p->p_pid <= 1) {
1971 #ifdef DIAGNOSTIC
1972 /*
1973 * Are you sure you want to ignore SIGSEGV
1974 * in init? XXX
1975 */
1976 printf_nolog("Process (pid %d) got sig %d\n",
1977 p->p_pid, signo);
1978 #endif
1979 continue;
1980 }
1981
1982 /*
1983 * If there is a pending stop signal to process with
1984 * default action, stop here, then clear the signal.
1985 * However, if process is member of an orphaned
1986 * process group, ignore tty stop signals.
1987 */
1988 if (prop & SA_STOP) {
1989 /*
1990 * XXX Don't hold proc_lock for p_lflag,
1991 * but it's not a big deal.
1992 */
1993 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1994 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1995 (p->p_pptr == p->p_opptr))) ||
1996 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1997 prop & SA_TTYSTOP)) {
1998 /* Ignore the signal. */
1999 continue;
2000 }
2001 /* Take the signal. */
2002 (void)sigget(sp, NULL, signo, NULL);
2003 p->p_xsig = signo;
2004 p->p_sflag &= ~PS_CONTINUED;
2005 signo = 0;
2006 sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2007 mutex_enter(p->p_lock);
2008 } else if (prop & SA_IGNORE) {
2009 /*
2010 * Except for SIGCONT, shouldn't get here.
2011 * Default action is to ignore; drop it.
2012 */
2013 continue;
2014 }
2015 break;
2016
2017 case (long)SIG_IGN:
2018 #ifdef DEBUG_ISSIGNAL
2019 /*
2020 * Masking above should prevent us ever trying
2021 * to take action on an ignored signal other
2022 * than SIGCONT, unless process is traced.
2023 */
2024 if ((prop & SA_CONT) == 0 &&
2025 (p->p_slflag & PSL_TRACED) == 0)
2026 printf_nolog("issignal\n");
2027 #endif
2028 continue;
2029
2030 default:
2031 /*
2032 * This signal has an action, let postsig() process
2033 * it.
2034 */
2035 break;
2036 }
2037
2038 break;
2039 }
2040
2041 l->l_sigpendset = sp;
2042 return signo;
2043 }
2044
2045 /*
2046 * Take the action for the specified signal
2047 * from the current set of pending signals.
2048 */
2049 void
2050 postsig(int signo)
2051 {
2052 struct lwp *l;
2053 struct proc *p;
2054 struct sigacts *ps;
2055 sig_t action;
2056 sigset_t *returnmask;
2057 ksiginfo_t ksi;
2058
2059 l = curlwp;
2060 p = l->l_proc;
2061 ps = p->p_sigacts;
2062
2063 KASSERT(mutex_owned(p->p_lock));
2064 KASSERT(signo > 0);
2065
2066 /*
2067 * Set the new mask value and also defer further occurrences of this
2068 * signal.
2069 *
2070 * Special case: user has done a sigsuspend. Here the current mask is
2071 * not of interest, but rather the mask from before the sigsuspend is
2072 * what we want restored after the signal processing is completed.
2073 */
2074 if (l->l_sigrestore) {
2075 returnmask = &l->l_sigoldmask;
2076 l->l_sigrestore = 0;
2077 } else
2078 returnmask = &l->l_sigmask;
2079
2080 /*
2081 * Commit to taking the signal before releasing the mutex.
2082 */
2083 action = SIGACTION_PS(ps, signo).sa_handler;
2084 l->l_ru.ru_nsignals++;
2085 if (l->l_sigpendset == NULL) {
2086 /* From the debugger */
2087 if (p->p_sigctx.ps_faked &&
2088 signo == p->p_sigctx.ps_info._signo) {
2089 KSI_INIT(&ksi);
2090 ksi.ksi_info = p->p_sigctx.ps_info;
2091 ksi.ksi_lid = p->p_sigctx.ps_lwp;
2092 p->p_sigctx.ps_faked = false;
2093 } else {
2094 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2095 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
2096 }
2097 } else
2098 sigget(l->l_sigpendset, &ksi, signo, NULL);
2099
2100 if (ktrpoint(KTR_PSIG)) {
2101 mutex_exit(p->p_lock);
2102 if (p->p_emul->e_ktrpsig)
2103 p->p_emul->e_ktrpsig(signo, action,
2104 returnmask, &ksi);
2105 else
2106 ktrpsig(signo, action, returnmask, &ksi);
2107 mutex_enter(p->p_lock);
2108 }
2109
2110 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2111
2112 if (action == SIG_DFL) {
2113 /*
2114 * Default action, where the default is to kill
2115 * the process. (Other cases were ignored above.)
2116 */
2117 sigexit(l, signo);
2118 return;
2119 }
2120
2121 /*
2122 * If we get here, the signal must be caught.
2123 */
2124 #ifdef DIAGNOSTIC
2125 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2126 panic("postsig action");
2127 #endif
2128
2129 kpsendsig(l, &ksi, returnmask);
2130 }
2131
2132 /*
2133 * sendsig:
2134 *
2135 * Default signal delivery method for NetBSD.
2136 */
2137 void
2138 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2139 {
2140 struct sigacts *sa;
2141 int sig;
2142
2143 sig = ksi->ksi_signo;
2144 sa = curproc->p_sigacts;
2145
2146 switch (sa->sa_sigdesc[sig].sd_vers) {
2147 case 0:
2148 case 1:
2149 /* Compat for 1.6 and earlier. */
2150 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2151 break);
2152 return;
2153 case 2:
2154 case 3:
2155 sendsig_siginfo(ksi, mask);
2156 return;
2157 default:
2158 break;
2159 }
2160
2161 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2162 sigexit(curlwp, SIGILL);
2163 }
2164
2165 /*
2166 * sendsig_reset:
2167 *
2168 * Reset the signal action. Called from emulation specific sendsig()
2169 * before unlocking to deliver the signal.
2170 */
2171 void
2172 sendsig_reset(struct lwp *l, int signo)
2173 {
2174 struct proc *p = l->l_proc;
2175 struct sigacts *ps = p->p_sigacts;
2176
2177 KASSERT(mutex_owned(p->p_lock));
2178
2179 p->p_sigctx.ps_lwp = 0;
2180 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2181
2182 mutex_enter(&ps->sa_mutex);
2183 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2184 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2185 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2186 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2187 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2188 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2189 }
2190 mutex_exit(&ps->sa_mutex);
2191 }
2192
2193 /*
2194 * Kill the current process for stated reason.
2195 */
2196 void
2197 killproc(struct proc *p, const char *why)
2198 {
2199
2200 KASSERT(mutex_owned(proc_lock));
2201
2202 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2203 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2204 psignal(p, SIGKILL);
2205 }
2206
2207 /*
2208 * Force the current process to exit with the specified signal, dumping core
2209 * if appropriate. We bypass the normal tests for masked and caught
2210 * signals, allowing unrecoverable failures to terminate the process without
2211 * changing signal state. Mark the accounting record with the signal
2212 * termination. If dumping core, save the signal number for the debugger.
2213 * Calls exit and does not return.
2214 */
2215 void
2216 sigexit(struct lwp *l, int signo)
2217 {
2218 int exitsig, error, docore;
2219 struct proc *p;
2220 struct lwp *t;
2221
2222 p = l->l_proc;
2223
2224 KASSERT(mutex_owned(p->p_lock));
2225 KERNEL_UNLOCK_ALL(l, NULL);
2226
2227 /*
2228 * Don't permit coredump() multiple times in the same process.
2229 * Call back into sigexit, where we will be suspended until
2230 * the deed is done. Note that this is a recursive call, but
2231 * LW_WCORE will prevent us from coming back this way.
2232 */
2233 if ((p->p_sflag & PS_WCORE) != 0) {
2234 lwp_lock(l);
2235 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2236 lwp_unlock(l);
2237 mutex_exit(p->p_lock);
2238 lwp_userret(l);
2239 panic("sigexit 1");
2240 /* NOTREACHED */
2241 }
2242
2243 /* If process is already on the way out, then bail now. */
2244 if ((p->p_sflag & PS_WEXIT) != 0) {
2245 mutex_exit(p->p_lock);
2246 lwp_exit(l);
2247 panic("sigexit 2");
2248 /* NOTREACHED */
2249 }
2250
2251 /*
2252 * Prepare all other LWPs for exit. If dumping core, suspend them
2253 * so that their registers are available long enough to be dumped.
2254 */
2255 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2256 p->p_sflag |= PS_WCORE;
2257 for (;;) {
2258 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2259 lwp_lock(t);
2260 if (t == l) {
2261 t->l_flag &=
2262 ~(LW_WSUSPEND | LW_DBGSUSPEND);
2263 lwp_unlock(t);
2264 continue;
2265 }
2266 t->l_flag |= (LW_WCORE | LW_WEXIT);
2267 lwp_suspend(l, t);
2268 }
2269
2270 if (p->p_nrlwps == 1)
2271 break;
2272
2273 /*
2274 * Kick any LWPs sitting in lwp_wait1(), and wait
2275 * for everyone else to stop before proceeding.
2276 */
2277 p->p_nlwpwait++;
2278 cv_broadcast(&p->p_lwpcv);
2279 cv_wait(&p->p_lwpcv, p->p_lock);
2280 p->p_nlwpwait--;
2281 }
2282 }
2283
2284 exitsig = signo;
2285 p->p_acflag |= AXSIG;
2286 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2287 p->p_sigctx.ps_info._signo = signo;
2288 p->p_sigctx.ps_info._code = SI_NOINFO;
2289
2290 if (docore) {
2291 mutex_exit(p->p_lock);
2292 error = (*coredump_vec)(l, NULL);
2293
2294 if (kern_logsigexit) {
2295 int uid = l->l_cred ?
2296 (int)kauth_cred_geteuid(l->l_cred) : -1;
2297
2298 if (error)
2299 log(LOG_INFO, lognocoredump, p->p_pid,
2300 p->p_comm, uid, signo, error);
2301 else
2302 log(LOG_INFO, logcoredump, p->p_pid,
2303 p->p_comm, uid, signo);
2304 }
2305
2306 #ifdef PAX_SEGVGUARD
2307 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2308 #endif /* PAX_SEGVGUARD */
2309 /* Acquire the sched state mutex. exit1() will release it. */
2310 mutex_enter(p->p_lock);
2311 if (error == 0)
2312 p->p_sflag |= PS_COREDUMP;
2313 }
2314
2315 /* No longer dumping core. */
2316 p->p_sflag &= ~PS_WCORE;
2317
2318 exit1(l, 0, exitsig);
2319 /* NOTREACHED */
2320 }
2321
2322 /*
2323 * Put process 'p' into the stopped state and optionally, notify the parent.
2324 */
2325 void
2326 proc_stop(struct proc *p, int signo)
2327 {
2328 struct lwp *l;
2329
2330 KASSERT(mutex_owned(p->p_lock));
2331
2332 /*
2333 * First off, set the stopping indicator and bring all sleeping
2334 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2335 * unlock between here and the p->p_nrlwps check below.
2336 */
2337 p->p_sflag |= PS_STOPPING;
2338 membar_producer();
2339
2340 proc_stop_lwps(p);
2341
2342 /*
2343 * If there are no LWPs available to take the signal, then we
2344 * signal the parent process immediately. Otherwise, the last
2345 * LWP to stop will take care of it.
2346 */
2347
2348 if (p->p_nrlwps == 0) {
2349 proc_stop_done(p, PS_NOCLDSTOP);
2350 } else {
2351 /*
2352 * Have the remaining LWPs come to a halt, and trigger
2353 * proc_stop_callout() to ensure that they do.
2354 */
2355 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2356 sigpost(l, SIG_DFL, SA_STOP, signo);
2357 }
2358 callout_schedule(&proc_stop_ch, 1);
2359 }
2360 }
2361
2362 /*
2363 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2364 * but wait for them to come to a halt at the kernel-user boundary. This is
2365 * to allow LWPs to release any locks that they may hold before stopping.
2366 *
2367 * Non-interruptable sleeps can be long, and there is the potential for an
2368 * LWP to begin sleeping interruptably soon after the process has been set
2369 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2370 * stopping, and so complete halt of the process and the return of status
2371 * information to the parent could be delayed indefinitely.
2372 *
2373 * To handle this race, proc_stop_callout() runs once per tick while there
2374 * are stopping processes in the system. It sets LWPs that are sleeping
2375 * interruptably into the LSSTOP state.
2376 *
2377 * Note that we are not concerned about keeping all LWPs stopped while the
2378 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2379 * What we do need to ensure is that all LWPs in a stopping process have
2380 * stopped at least once, so that notification can be sent to the parent
2381 * process.
2382 */
2383 static void
2384 proc_stop_callout(void *cookie)
2385 {
2386 bool more, restart;
2387 struct proc *p;
2388
2389 (void)cookie;
2390
2391 do {
2392 restart = false;
2393 more = false;
2394
2395 mutex_enter(proc_lock);
2396 PROCLIST_FOREACH(p, &allproc) {
2397 mutex_enter(p->p_lock);
2398
2399 if ((p->p_sflag & PS_STOPPING) == 0) {
2400 mutex_exit(p->p_lock);
2401 continue;
2402 }
2403
2404 /* Stop any LWPs sleeping interruptably. */
2405 proc_stop_lwps(p);
2406 if (p->p_nrlwps == 0) {
2407 /*
2408 * We brought the process to a halt.
2409 * Mark it as stopped and notify the
2410 * parent.
2411 *
2412 * Note that proc_stop_done() will
2413 * drop p->p_lock briefly.
2414 * Arrange to restart and check
2415 * all processes again.
2416 */
2417 restart = true;
2418 proc_stop_done(p, PS_NOCLDSTOP);
2419 } else
2420 more = true;
2421
2422 mutex_exit(p->p_lock);
2423 if (restart)
2424 break;
2425 }
2426 mutex_exit(proc_lock);
2427 } while (restart);
2428
2429 /*
2430 * If we noted processes that are stopping but still have
2431 * running LWPs, then arrange to check again in 1 tick.
2432 */
2433 if (more)
2434 callout_schedule(&proc_stop_ch, 1);
2435 }
2436
2437 /*
2438 * Given a process in state SSTOP, set the state back to SACTIVE and
2439 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2440 */
2441 void
2442 proc_unstop(struct proc *p)
2443 {
2444 struct lwp *l;
2445 int sig;
2446
2447 KASSERT(mutex_owned(proc_lock));
2448 KASSERT(mutex_owned(p->p_lock));
2449
2450 p->p_stat = SACTIVE;
2451 p->p_sflag &= ~PS_STOPPING;
2452 sig = p->p_xsig;
2453
2454 if (!p->p_waited)
2455 p->p_pptr->p_nstopchild--;
2456
2457 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2458 lwp_lock(l);
2459 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2460 lwp_unlock(l);
2461 continue;
2462 }
2463 if (l->l_wchan == NULL) {
2464 setrunnable(l);
2465 continue;
2466 }
2467 if (sig && (l->l_flag & LW_SINTR) != 0) {
2468 setrunnable(l);
2469 sig = 0;
2470 } else {
2471 l->l_stat = LSSLEEP;
2472 p->p_nrlwps++;
2473 lwp_unlock(l);
2474 }
2475 }
2476 }
2477
2478 void
2479 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2480 const register_t *ret, int error)
2481 {
2482 struct lwp *l = curlwp;
2483 struct proc *p = l->l_proc;
2484 struct sigacts *ps;
2485 sigset_t *mask;
2486 sig_t action;
2487 ksiginfo_t ksi;
2488 size_t i, sy_narg;
2489 const int signo = SIGTRAP;
2490
2491 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2492 KASSERT(p->p_pptr != initproc);
2493 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2494 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2495
2496 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2497
2498 KSI_INIT_TRAP(&ksi);
2499 ksi.ksi_lid = l->l_lid;
2500 ksi.ksi_signo = signo;
2501 ksi.ksi_code = trapno;
2502
2503 ksi.ksi_sysnum = sysnum;
2504 if (trapno == TRAP_SCE) {
2505 ksi.ksi_retval[0] = 0;
2506 ksi.ksi_retval[1] = 0;
2507 ksi.ksi_error = 0;
2508 } else {
2509 ksi.ksi_retval[0] = ret[0];
2510 ksi.ksi_retval[1] = ret[1];
2511 ksi.ksi_error = error;
2512 }
2513
2514 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2515
2516 for (i = 0; i < sy_narg; i++)
2517 ksi.ksi_args[i] = args[i];
2518
2519 mutex_enter(p->p_lock);
2520
2521 repeat:
2522 /*
2523 * If we are exiting, demise now.
2524 *
2525 * This avoids notifying tracer and deadlocking.
2526 */
2527 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2528 mutex_exit(p->p_lock);
2529 lwp_exit(l);
2530 panic("proc_stoptrace");
2531 /* NOTREACHED */
2532 }
2533
2534 /*
2535 * If there's a pending SIGKILL process it immediately.
2536 */
2537 if (p->p_xsig == SIGKILL ||
2538 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2539 mutex_exit(p->p_lock);
2540 return;
2541 }
2542
2543 /*
2544 * If we are no longer traced, abandon this event signal.
2545 *
2546 * This avoids killing a process after detaching the debugger.
2547 */
2548 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2549 mutex_exit(p->p_lock);
2550 return;
2551 }
2552
2553 /*
2554 * The process is already stopping.
2555 */
2556 if ((p->p_sflag & PS_STOPPING) != 0) {
2557 sigswitch_unlock_and_switch_away(l);
2558 mutex_enter(p->p_lock);
2559 goto repeat;
2560 }
2561
2562 /* Needed for ktrace */
2563 ps = p->p_sigacts;
2564 action = SIGACTION_PS(ps, signo).sa_handler;
2565 mask = &l->l_sigmask;
2566
2567 p->p_xsig = signo;
2568 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2569 p->p_sigctx.ps_info = ksi.ksi_info;
2570 sigswitch(0, signo, false);
2571
2572 if (ktrpoint(KTR_PSIG)) {
2573 if (p->p_emul->e_ktrpsig)
2574 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2575 else
2576 ktrpsig(signo, action, mask, &ksi);
2577 }
2578 }
2579
2580 static int
2581 filt_sigattach(struct knote *kn)
2582 {
2583 struct proc *p = curproc;
2584
2585 kn->kn_obj = p;
2586 kn->kn_flags |= EV_CLEAR; /* automatically set */
2587
2588 mutex_enter(p->p_lock);
2589 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2590 mutex_exit(p->p_lock);
2591
2592 return 0;
2593 }
2594
2595 static void
2596 filt_sigdetach(struct knote *kn)
2597 {
2598 struct proc *p = kn->kn_obj;
2599
2600 mutex_enter(p->p_lock);
2601 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2602 mutex_exit(p->p_lock);
2603 }
2604
2605 /*
2606 * Signal knotes are shared with proc knotes, so we apply a mask to
2607 * the hint in order to differentiate them from process hints. This
2608 * could be avoided by using a signal-specific knote list, but probably
2609 * isn't worth the trouble.
2610 */
2611 static int
2612 filt_signal(struct knote *kn, long hint)
2613 {
2614
2615 if (hint & NOTE_SIGNAL) {
2616 hint &= ~NOTE_SIGNAL;
2617
2618 if (kn->kn_id == hint)
2619 kn->kn_data++;
2620 }
2621 return (kn->kn_data != 0);
2622 }
2623
2624 const struct filterops sig_filtops = {
2625 .f_isfd = 0,
2626 .f_attach = filt_sigattach,
2627 .f_detach = filt_sigdetach,
2628 .f_event = filt_signal,
2629 };
2630