Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.377
      1 /*	$NetBSD: kern_sig.c,v 1.377 2019/11/10 13:28:06 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.377 2019/11/10 13:28:06 pgoyette Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 #include <sys/compat_stub.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #define	SIGQUEUE_MAX	32
    112 static pool_cache_t	sigacts_cache	__read_mostly;
    113 static pool_cache_t	ksiginfo_cache	__read_mostly;
    114 static callout_t	proc_stop_ch	__cacheline_aligned;
    115 
    116 sigset_t		contsigmask	__cacheline_aligned;
    117 sigset_t		stopsigmask	__cacheline_aligned;
    118 static sigset_t		vforksigmask	__cacheline_aligned;
    119 sigset_t		sigcantmask	__cacheline_aligned;
    120 
    121 static void	ksiginfo_exechook(struct proc *, void *);
    122 static void	proc_stop(struct proc *, int);
    123 static void	proc_stop_done(struct proc *, int);
    124 static void	proc_stop_callout(void *);
    125 static int	sigchecktrace(void);
    126 static int	sigpost(struct lwp *, sig_t, int, int);
    127 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    128 static int	sigunwait(struct proc *, const ksiginfo_t *);
    129 static void	sigswitch(int, int, bool);
    130 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    131 
    132 static void	sigacts_poolpage_free(struct pool *, void *);
    133 static void	*sigacts_poolpage_alloc(struct pool *, int);
    134 
    135 int (*coredump_vec)(struct lwp *, const char *) =
    136     __FPTRCAST(int (*)(struct lwp *, const char *), enosys);
    137 
    138 /*
    139  * DTrace SDT provider definitions
    140  */
    141 SDT_PROVIDER_DECLARE(proc);
    142 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    143     "struct lwp *", 	/* target thread */
    144     "struct proc *", 	/* target process */
    145     "int");		/* signal */
    146 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    147     "struct lwp *",	/* target thread */
    148     "struct proc *",	/* target process */
    149     "int");  		/* signal */
    150 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    151     "int", 		/* signal */
    152     "ksiginfo_t *", 	/* signal info */
    153     "void (*)(void)");	/* handler address */
    154 
    155 
    156 static struct pool_allocator sigactspool_allocator = {
    157 	.pa_alloc = sigacts_poolpage_alloc,
    158 	.pa_free = sigacts_poolpage_free
    159 };
    160 
    161 #ifdef DEBUG
    162 int	kern_logsigexit = 1;
    163 #else
    164 int	kern_logsigexit = 0;
    165 #endif
    166 
    167 static const char logcoredump[] =
    168     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    169 static const char lognocoredump[] =
    170     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    171 
    172 static kauth_listener_t signal_listener;
    173 
    174 static int
    175 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    176     void *arg0, void *arg1, void *arg2, void *arg3)
    177 {
    178 	struct proc *p;
    179 	int result, signum;
    180 
    181 	result = KAUTH_RESULT_DEFER;
    182 	p = arg0;
    183 	signum = (int)(unsigned long)arg1;
    184 
    185 	if (action != KAUTH_PROCESS_SIGNAL)
    186 		return result;
    187 
    188 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    189 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    190 		result = KAUTH_RESULT_ALLOW;
    191 
    192 	return result;
    193 }
    194 
    195 static int
    196 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    197 {
    198 	memset(obj, 0, sizeof(struct sigacts));
    199 	return 0;
    200 }
    201 
    202 /*
    203  * signal_init:
    204  *
    205  *	Initialize global signal-related data structures.
    206  */
    207 void
    208 signal_init(void)
    209 {
    210 
    211 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    212 
    213 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    214 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    215 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    216 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    217 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    218 
    219 	exechook_establish(ksiginfo_exechook, NULL);
    220 
    221 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    222 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    223 
    224 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    225 	    signal_listener_cb, NULL);
    226 }
    227 
    228 /*
    229  * sigacts_poolpage_alloc:
    230  *
    231  *	Allocate a page for the sigacts memory pool.
    232  */
    233 static void *
    234 sigacts_poolpage_alloc(struct pool *pp, int flags)
    235 {
    236 
    237 	return (void *)uvm_km_alloc(kernel_map,
    238 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    239 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    240 	    | UVM_KMF_WIRED);
    241 }
    242 
    243 /*
    244  * sigacts_poolpage_free:
    245  *
    246  *	Free a page on behalf of the sigacts memory pool.
    247  */
    248 static void
    249 sigacts_poolpage_free(struct pool *pp, void *v)
    250 {
    251 
    252 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    253 }
    254 
    255 /*
    256  * sigactsinit:
    257  *
    258  *	Create an initial sigacts structure, using the same signal state
    259  *	as of specified process.  If 'share' is set, share the sigacts by
    260  *	holding a reference, otherwise just copy it from parent.
    261  */
    262 struct sigacts *
    263 sigactsinit(struct proc *pp, int share)
    264 {
    265 	struct sigacts *ps = pp->p_sigacts, *ps2;
    266 
    267 	if (__predict_false(share)) {
    268 		atomic_inc_uint(&ps->sa_refcnt);
    269 		return ps;
    270 	}
    271 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    272 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    273 	ps2->sa_refcnt = 1;
    274 
    275 	mutex_enter(&ps->sa_mutex);
    276 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    277 	mutex_exit(&ps->sa_mutex);
    278 	return ps2;
    279 }
    280 
    281 /*
    282  * sigactsunshare:
    283  *
    284  *	Make this process not share its sigacts, maintaining all signal state.
    285  */
    286 void
    287 sigactsunshare(struct proc *p)
    288 {
    289 	struct sigacts *ps, *oldps = p->p_sigacts;
    290 
    291 	if (__predict_true(oldps->sa_refcnt == 1))
    292 		return;
    293 
    294 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    295 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    296 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    297 	ps->sa_refcnt = 1;
    298 
    299 	p->p_sigacts = ps;
    300 	sigactsfree(oldps);
    301 }
    302 
    303 /*
    304  * sigactsfree;
    305  *
    306  *	Release a sigacts structure.
    307  */
    308 void
    309 sigactsfree(struct sigacts *ps)
    310 {
    311 
    312 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    313 		mutex_destroy(&ps->sa_mutex);
    314 		pool_cache_put(sigacts_cache, ps);
    315 	}
    316 }
    317 
    318 /*
    319  * siginit:
    320  *
    321  *	Initialize signal state for process 0; set to ignore signals that
    322  *	are ignored by default and disable the signal stack.  Locking not
    323  *	required as the system is still cold.
    324  */
    325 void
    326 siginit(struct proc *p)
    327 {
    328 	struct lwp *l;
    329 	struct sigacts *ps;
    330 	int signo, prop;
    331 
    332 	ps = p->p_sigacts;
    333 	sigemptyset(&contsigmask);
    334 	sigemptyset(&stopsigmask);
    335 	sigemptyset(&vforksigmask);
    336 	sigemptyset(&sigcantmask);
    337 	for (signo = 1; signo < NSIG; signo++) {
    338 		prop = sigprop[signo];
    339 		if (prop & SA_CONT)
    340 			sigaddset(&contsigmask, signo);
    341 		if (prop & SA_STOP)
    342 			sigaddset(&stopsigmask, signo);
    343 		if (prop & SA_STOP && signo != SIGSTOP)
    344 			sigaddset(&vforksigmask, signo);
    345 		if (prop & SA_CANTMASK)
    346 			sigaddset(&sigcantmask, signo);
    347 		if (prop & SA_IGNORE && signo != SIGCONT)
    348 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    349 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    350 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    351 	}
    352 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    353 	p->p_sflag &= ~PS_NOCLDSTOP;
    354 
    355 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    356 	sigemptyset(&p->p_sigpend.sp_set);
    357 
    358 	/*
    359 	 * Reset per LWP state.
    360 	 */
    361 	l = LIST_FIRST(&p->p_lwps);
    362 	l->l_sigwaited = NULL;
    363 	l->l_sigstk = SS_INIT;
    364 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    365 	sigemptyset(&l->l_sigpend.sp_set);
    366 
    367 	/* One reference. */
    368 	ps->sa_refcnt = 1;
    369 }
    370 
    371 /*
    372  * execsigs:
    373  *
    374  *	Reset signals for an exec of the specified process.
    375  */
    376 void
    377 execsigs(struct proc *p)
    378 {
    379 	struct sigacts *ps;
    380 	struct lwp *l;
    381 	int signo, prop;
    382 	sigset_t tset;
    383 	ksiginfoq_t kq;
    384 
    385 	KASSERT(p->p_nlwps == 1);
    386 
    387 	sigactsunshare(p);
    388 	ps = p->p_sigacts;
    389 
    390 	/*
    391 	 * Reset caught signals.  Held signals remain held through
    392 	 * l->l_sigmask (unless they were caught, and are now ignored
    393 	 * by default).
    394 	 *
    395 	 * No need to lock yet, the process has only one LWP and
    396 	 * at this point the sigacts are private to the process.
    397 	 */
    398 	sigemptyset(&tset);
    399 	for (signo = 1; signo < NSIG; signo++) {
    400 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    401 			prop = sigprop[signo];
    402 			if (prop & SA_IGNORE) {
    403 				if ((prop & SA_CONT) == 0)
    404 					sigaddset(&p->p_sigctx.ps_sigignore,
    405 					    signo);
    406 				sigaddset(&tset, signo);
    407 			}
    408 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    409 		}
    410 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    411 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    412 	}
    413 	ksiginfo_queue_init(&kq);
    414 
    415 	mutex_enter(p->p_lock);
    416 	sigclearall(p, &tset, &kq);
    417 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    418 
    419 	/*
    420 	 * Reset no zombies if child dies flag as Solaris does.
    421 	 */
    422 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    423 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    424 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    425 
    426 	/*
    427 	 * Reset per-LWP state.
    428 	 */
    429 	l = LIST_FIRST(&p->p_lwps);
    430 	l->l_sigwaited = NULL;
    431 	l->l_sigstk = SS_INIT;
    432 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    433 	sigemptyset(&l->l_sigpend.sp_set);
    434 	mutex_exit(p->p_lock);
    435 
    436 	ksiginfo_queue_drain(&kq);
    437 }
    438 
    439 /*
    440  * ksiginfo_exechook:
    441  *
    442  *	Free all pending ksiginfo entries from a process on exec.
    443  *	Additionally, drain any unused ksiginfo structures in the
    444  *	system back to the pool.
    445  *
    446  *	XXX This should not be a hook, every process has signals.
    447  */
    448 static void
    449 ksiginfo_exechook(struct proc *p, void *v)
    450 {
    451 	ksiginfoq_t kq;
    452 
    453 	ksiginfo_queue_init(&kq);
    454 
    455 	mutex_enter(p->p_lock);
    456 	sigclearall(p, NULL, &kq);
    457 	mutex_exit(p->p_lock);
    458 
    459 	ksiginfo_queue_drain(&kq);
    460 }
    461 
    462 /*
    463  * ksiginfo_alloc:
    464  *
    465  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    466  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    467  *	has not been queued somewhere, then just return it.  Additionally,
    468  *	if the existing ksiginfo_t does not contain any information beyond
    469  *	the signal number, then just return it.
    470  */
    471 ksiginfo_t *
    472 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    473 {
    474 	ksiginfo_t *kp;
    475 
    476 	if (ok != NULL) {
    477 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    478 		    KSI_FROMPOOL)
    479 			return ok;
    480 		if (KSI_EMPTY_P(ok))
    481 			return ok;
    482 	}
    483 
    484 	kp = pool_cache_get(ksiginfo_cache, flags);
    485 	if (kp == NULL) {
    486 #ifdef DIAGNOSTIC
    487 		printf("Out of memory allocating ksiginfo for pid %d\n",
    488 		    p->p_pid);
    489 #endif
    490 		return NULL;
    491 	}
    492 
    493 	if (ok != NULL) {
    494 		memcpy(kp, ok, sizeof(*kp));
    495 		kp->ksi_flags &= ~KSI_QUEUED;
    496 	} else
    497 		KSI_INIT_EMPTY(kp);
    498 
    499 	kp->ksi_flags |= KSI_FROMPOOL;
    500 
    501 	return kp;
    502 }
    503 
    504 /*
    505  * ksiginfo_free:
    506  *
    507  *	If the given ksiginfo_t is from the pool and has not been queued,
    508  *	then free it.
    509  */
    510 void
    511 ksiginfo_free(ksiginfo_t *kp)
    512 {
    513 
    514 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    515 		return;
    516 	pool_cache_put(ksiginfo_cache, kp);
    517 }
    518 
    519 /*
    520  * ksiginfo_queue_drain:
    521  *
    522  *	Drain a non-empty ksiginfo_t queue.
    523  */
    524 void
    525 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    526 {
    527 	ksiginfo_t *ksi;
    528 
    529 	KASSERT(!TAILQ_EMPTY(kq));
    530 
    531 	while (!TAILQ_EMPTY(kq)) {
    532 		ksi = TAILQ_FIRST(kq);
    533 		TAILQ_REMOVE(kq, ksi, ksi_list);
    534 		pool_cache_put(ksiginfo_cache, ksi);
    535 	}
    536 }
    537 
    538 static int
    539 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    540 {
    541 	ksiginfo_t *ksi, *nksi;
    542 
    543 	if (sp == NULL)
    544 		goto out;
    545 
    546 	/* Find siginfo and copy it out. */
    547 	int count = 0;
    548 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    549 		if (ksi->ksi_signo != signo)
    550 			continue;
    551 		if (count++ > 0) /* Only remove the first, count all of them */
    552 			continue;
    553 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    554 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    555 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    556 		ksi->ksi_flags &= ~KSI_QUEUED;
    557 		if (out != NULL) {
    558 			memcpy(out, ksi, sizeof(*out));
    559 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    560 		}
    561 		ksiginfo_free(ksi);
    562 	}
    563 	if (count)
    564 		return count;
    565 
    566 out:
    567 	/* If there is no siginfo, then manufacture it. */
    568 	if (out != NULL) {
    569 		KSI_INIT(out);
    570 		out->ksi_info._signo = signo;
    571 		out->ksi_info._code = SI_NOINFO;
    572 	}
    573 	return 0;
    574 }
    575 
    576 /*
    577  * sigget:
    578  *
    579  *	Fetch the first pending signal from a set.  Optionally, also fetch
    580  *	or manufacture a ksiginfo element.  Returns the number of the first
    581  *	pending signal, or zero.
    582  */
    583 int
    584 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    585 {
    586 	sigset_t tset;
    587 	int count;
    588 
    589 	/* If there's no pending set, the signal is from the debugger. */
    590 	if (sp == NULL)
    591 		goto out;
    592 
    593 	/* Construct mask from signo, and 'mask'. */
    594 	if (signo == 0) {
    595 		if (mask != NULL) {
    596 			tset = *mask;
    597 			__sigandset(&sp->sp_set, &tset);
    598 		} else
    599 			tset = sp->sp_set;
    600 
    601 		/* If there are no signals pending - return. */
    602 		if ((signo = firstsig(&tset)) == 0)
    603 			goto out;
    604 	} else {
    605 		KASSERT(sigismember(&sp->sp_set, signo));
    606 	}
    607 
    608 	sigdelset(&sp->sp_set, signo);
    609 out:
    610 	count = siggetinfo(sp, out, signo);
    611 	if (count > 1)
    612 		sigaddset(&sp->sp_set, signo);
    613 	return signo;
    614 }
    615 
    616 /*
    617  * sigput:
    618  *
    619  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    620  */
    621 static int
    622 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    623 {
    624 	ksiginfo_t *kp;
    625 
    626 	KASSERT(mutex_owned(p->p_lock));
    627 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    628 
    629 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    630 
    631 	/*
    632 	 * If there is no siginfo, we are done.
    633 	 */
    634 	if (KSI_EMPTY_P(ksi))
    635 		return 0;
    636 
    637 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    638 
    639 	size_t count = 0;
    640 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    641 		count++;
    642 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    643 			continue;
    644 		if (kp->ksi_signo == ksi->ksi_signo) {
    645 			KSI_COPY(ksi, kp);
    646 			kp->ksi_flags |= KSI_QUEUED;
    647 			return 0;
    648 		}
    649 	}
    650 
    651 	if (count >= SIGQUEUE_MAX) {
    652 #ifdef DIAGNOSTIC
    653 		printf("%s(%d): Signal queue is full signal=%d\n",
    654 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    655 #endif
    656 		return EAGAIN;
    657 	}
    658 	ksi->ksi_flags |= KSI_QUEUED;
    659 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    660 
    661 	return 0;
    662 }
    663 
    664 /*
    665  * sigclear:
    666  *
    667  *	Clear all pending signals in the specified set.
    668  */
    669 void
    670 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    671 {
    672 	ksiginfo_t *ksi, *next;
    673 
    674 	if (mask == NULL)
    675 		sigemptyset(&sp->sp_set);
    676 	else
    677 		sigminusset(mask, &sp->sp_set);
    678 
    679 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    680 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    681 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    682 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    683 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    684 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    685 		}
    686 	}
    687 }
    688 
    689 /*
    690  * sigclearall:
    691  *
    692  *	Clear all pending signals in the specified set from a process and
    693  *	its LWPs.
    694  */
    695 void
    696 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    697 {
    698 	struct lwp *l;
    699 
    700 	KASSERT(mutex_owned(p->p_lock));
    701 
    702 	sigclear(&p->p_sigpend, mask, kq);
    703 
    704 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    705 		sigclear(&l->l_sigpend, mask, kq);
    706 	}
    707 }
    708 
    709 /*
    710  * sigispending:
    711  *
    712  *	Return the first signal number if there are pending signals for the
    713  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    714  *	and that the signal has been posted to the appopriate queue before
    715  *	LW_PENDSIG is set.
    716  */
    717 int
    718 sigispending(struct lwp *l, int signo)
    719 {
    720 	struct proc *p = l->l_proc;
    721 	sigset_t tset;
    722 
    723 	membar_consumer();
    724 
    725 	tset = l->l_sigpend.sp_set;
    726 	sigplusset(&p->p_sigpend.sp_set, &tset);
    727 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    728 	sigminusset(&l->l_sigmask, &tset);
    729 
    730 	if (signo == 0) {
    731 		return firstsig(&tset);
    732 	}
    733 	return sigismember(&tset, signo) ? signo : 0;
    734 }
    735 
    736 void
    737 getucontext(struct lwp *l, ucontext_t *ucp)
    738 {
    739 	struct proc *p = l->l_proc;
    740 
    741 	KASSERT(mutex_owned(p->p_lock));
    742 
    743 	ucp->uc_flags = 0;
    744 	ucp->uc_link = l->l_ctxlink;
    745 	ucp->uc_sigmask = l->l_sigmask;
    746 	ucp->uc_flags |= _UC_SIGMASK;
    747 
    748 	/*
    749 	 * The (unsupplied) definition of the `current execution stack'
    750 	 * in the System V Interface Definition appears to allow returning
    751 	 * the main context stack.
    752 	 */
    753 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    754 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    755 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    756 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    757 	} else {
    758 		/* Simply copy alternate signal execution stack. */
    759 		ucp->uc_stack = l->l_sigstk;
    760 	}
    761 	ucp->uc_flags |= _UC_STACK;
    762 	mutex_exit(p->p_lock);
    763 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    764 	mutex_enter(p->p_lock);
    765 }
    766 
    767 int
    768 setucontext(struct lwp *l, const ucontext_t *ucp)
    769 {
    770 	struct proc *p = l->l_proc;
    771 	int error;
    772 
    773 	KASSERT(mutex_owned(p->p_lock));
    774 
    775 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    776 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    777 		if (error != 0)
    778 			return error;
    779 	}
    780 
    781 	mutex_exit(p->p_lock);
    782 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    783 	mutex_enter(p->p_lock);
    784 	if (error != 0)
    785 		return (error);
    786 
    787 	l->l_ctxlink = ucp->uc_link;
    788 
    789 	/*
    790 	 * If there was stack information, update whether or not we are
    791 	 * still running on an alternate signal stack.
    792 	 */
    793 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    794 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    795 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    796 		else
    797 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    798 	}
    799 
    800 	return 0;
    801 }
    802 
    803 /*
    804  * killpg1: common code for kill process group/broadcast kill.
    805  */
    806 int
    807 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    808 {
    809 	struct proc	*p, *cp;
    810 	kauth_cred_t	pc;
    811 	struct pgrp	*pgrp;
    812 	int		nfound;
    813 	int		signo = ksi->ksi_signo;
    814 
    815 	cp = l->l_proc;
    816 	pc = l->l_cred;
    817 	nfound = 0;
    818 
    819 	mutex_enter(proc_lock);
    820 	if (all) {
    821 		/*
    822 		 * Broadcast.
    823 		 */
    824 		PROCLIST_FOREACH(p, &allproc) {
    825 			if (p->p_pid <= 1 || p == cp ||
    826 			    (p->p_flag & PK_SYSTEM) != 0)
    827 				continue;
    828 			mutex_enter(p->p_lock);
    829 			if (kauth_authorize_process(pc,
    830 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    831 			    NULL) == 0) {
    832 				nfound++;
    833 				if (signo)
    834 					kpsignal2(p, ksi);
    835 			}
    836 			mutex_exit(p->p_lock);
    837 		}
    838 	} else {
    839 		if (pgid == 0)
    840 			/* Zero pgid means send to my process group. */
    841 			pgrp = cp->p_pgrp;
    842 		else {
    843 			pgrp = pgrp_find(pgid);
    844 			if (pgrp == NULL)
    845 				goto out;
    846 		}
    847 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    848 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    849 				continue;
    850 			mutex_enter(p->p_lock);
    851 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    852 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    853 				nfound++;
    854 				if (signo && P_ZOMBIE(p) == 0)
    855 					kpsignal2(p, ksi);
    856 			}
    857 			mutex_exit(p->p_lock);
    858 		}
    859 	}
    860 out:
    861 	mutex_exit(proc_lock);
    862 	return nfound ? 0 : ESRCH;
    863 }
    864 
    865 /*
    866  * Send a signal to a process group.  If checktty is set, limit to members
    867  * which have a controlling terminal.
    868  */
    869 void
    870 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    871 {
    872 	ksiginfo_t ksi;
    873 
    874 	KASSERT(!cpu_intr_p());
    875 	KASSERT(mutex_owned(proc_lock));
    876 
    877 	KSI_INIT_EMPTY(&ksi);
    878 	ksi.ksi_signo = sig;
    879 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    880 }
    881 
    882 void
    883 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    884 {
    885 	struct proc *p;
    886 
    887 	KASSERT(!cpu_intr_p());
    888 	KASSERT(mutex_owned(proc_lock));
    889 	KASSERT(pgrp != NULL);
    890 
    891 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    892 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    893 			kpsignal(p, ksi, data);
    894 }
    895 
    896 /*
    897  * Send a signal caused by a trap to the current LWP.  If it will be caught
    898  * immediately, deliver it with correct code.  Otherwise, post it normally.
    899  */
    900 void
    901 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    902 {
    903 	struct proc	*p;
    904 	struct sigacts	*ps;
    905 	int signo = ksi->ksi_signo;
    906 	sigset_t *mask;
    907 	sig_t action;
    908 
    909 	KASSERT(KSI_TRAP_P(ksi));
    910 
    911 	ksi->ksi_lid = l->l_lid;
    912 	p = l->l_proc;
    913 
    914 	KASSERT(!cpu_intr_p());
    915 	mutex_enter(proc_lock);
    916 	mutex_enter(p->p_lock);
    917 
    918 repeat:
    919 	/*
    920 	 * If we are exiting, demise now.
    921 	 *
    922 	 * This avoids notifying tracer and deadlocking.
    923 	 */
    924 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    925 		mutex_exit(p->p_lock);
    926 		mutex_exit(proc_lock);
    927 		lwp_exit(l);
    928 		panic("trapsignal");
    929 		/* NOTREACHED */
    930 	}
    931 
    932 	/*
    933 	 * The process is already stopping.
    934 	 */
    935 	if ((p->p_sflag & PS_STOPPING) != 0) {
    936 		mutex_exit(proc_lock);
    937 		sigswitch_unlock_and_switch_away(l);
    938 		mutex_enter(proc_lock);
    939 		mutex_enter(p->p_lock);
    940 		goto repeat;
    941 	}
    942 
    943 	mask = &l->l_sigmask;
    944 	ps = p->p_sigacts;
    945 	action = SIGACTION_PS(ps, signo).sa_handler;
    946 
    947 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    948 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    949 	    p->p_xsig != SIGKILL &&
    950 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    951 		p->p_xsig = signo;
    952 		p->p_sigctx.ps_faked = true;
    953 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    954 		p->p_sigctx.ps_info = ksi->ksi_info;
    955 		sigswitch(0, signo, true);
    956 
    957 		if (ktrpoint(KTR_PSIG)) {
    958 			if (p->p_emul->e_ktrpsig)
    959 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    960 			else
    961 				ktrpsig(signo, action, mask, ksi);
    962 		}
    963 		return;
    964 	}
    965 
    966 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    967 	const bool masked = sigismember(mask, signo);
    968 	if (caught && !masked) {
    969 		mutex_exit(proc_lock);
    970 		l->l_ru.ru_nsignals++;
    971 		kpsendsig(l, ksi, mask);
    972 		mutex_exit(p->p_lock);
    973 
    974 		if (ktrpoint(KTR_PSIG)) {
    975 			if (p->p_emul->e_ktrpsig)
    976 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    977 			else
    978 				ktrpsig(signo, action, mask, ksi);
    979 		}
    980 		return;
    981 	}
    982 
    983 	/*
    984 	 * If the signal is masked or ignored, then unmask it and
    985 	 * reset it to the default action so that the process or
    986 	 * its tracer will be notified.
    987 	 */
    988 	const bool ignored = action == SIG_IGN;
    989 	if (masked || ignored) {
    990 		mutex_enter(&ps->sa_mutex);
    991 		sigdelset(mask, signo);
    992 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    993 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    994 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    995 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    996 		mutex_exit(&ps->sa_mutex);
    997 	}
    998 
    999 	kpsignal2(p, ksi);
   1000 	mutex_exit(p->p_lock);
   1001 	mutex_exit(proc_lock);
   1002 }
   1003 
   1004 /*
   1005  * Fill in signal information and signal the parent for a child status change.
   1006  */
   1007 void
   1008 child_psignal(struct proc *p, int mask)
   1009 {
   1010 	ksiginfo_t ksi;
   1011 	struct proc *q;
   1012 	int xsig;
   1013 
   1014 	KASSERT(mutex_owned(proc_lock));
   1015 	KASSERT(mutex_owned(p->p_lock));
   1016 
   1017 	xsig = p->p_xsig;
   1018 
   1019 	KSI_INIT(&ksi);
   1020 	ksi.ksi_signo = SIGCHLD;
   1021 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1022 	ksi.ksi_pid = p->p_pid;
   1023 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1024 	ksi.ksi_status = xsig;
   1025 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1026 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1027 
   1028 	q = p->p_pptr;
   1029 
   1030 	mutex_exit(p->p_lock);
   1031 	mutex_enter(q->p_lock);
   1032 
   1033 	if ((q->p_sflag & mask) == 0)
   1034 		kpsignal2(q, &ksi);
   1035 
   1036 	mutex_exit(q->p_lock);
   1037 	mutex_enter(p->p_lock);
   1038 }
   1039 
   1040 void
   1041 psignal(struct proc *p, int signo)
   1042 {
   1043 	ksiginfo_t ksi;
   1044 
   1045 	KASSERT(!cpu_intr_p());
   1046 	KASSERT(mutex_owned(proc_lock));
   1047 
   1048 	KSI_INIT_EMPTY(&ksi);
   1049 	ksi.ksi_signo = signo;
   1050 	mutex_enter(p->p_lock);
   1051 	kpsignal2(p, &ksi);
   1052 	mutex_exit(p->p_lock);
   1053 }
   1054 
   1055 void
   1056 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1057 {
   1058 	fdfile_t *ff;
   1059 	file_t *fp;
   1060 	fdtab_t *dt;
   1061 
   1062 	KASSERT(!cpu_intr_p());
   1063 	KASSERT(mutex_owned(proc_lock));
   1064 
   1065 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1066 		size_t fd;
   1067 		filedesc_t *fdp = p->p_fd;
   1068 
   1069 		/* XXXSMP locking */
   1070 		ksi->ksi_fd = -1;
   1071 		dt = fdp->fd_dt;
   1072 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1073 			if ((ff = dt->dt_ff[fd]) == NULL)
   1074 				continue;
   1075 			if ((fp = ff->ff_file) == NULL)
   1076 				continue;
   1077 			if (fp->f_data == data) {
   1078 				ksi->ksi_fd = fd;
   1079 				break;
   1080 			}
   1081 		}
   1082 	}
   1083 	mutex_enter(p->p_lock);
   1084 	kpsignal2(p, ksi);
   1085 	mutex_exit(p->p_lock);
   1086 }
   1087 
   1088 /*
   1089  * sigismasked:
   1090  *
   1091  *	Returns true if signal is ignored or masked for the specified LWP.
   1092  */
   1093 int
   1094 sigismasked(struct lwp *l, int sig)
   1095 {
   1096 	struct proc *p = l->l_proc;
   1097 
   1098 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1099 	    sigismember(&l->l_sigmask, sig);
   1100 }
   1101 
   1102 /*
   1103  * sigpost:
   1104  *
   1105  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1106  *	be able to take the signal.
   1107  */
   1108 static int
   1109 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1110 {
   1111 	int rv, masked;
   1112 	struct proc *p = l->l_proc;
   1113 
   1114 	KASSERT(mutex_owned(p->p_lock));
   1115 
   1116 	/*
   1117 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1118 	 * pending signals.  Don't give it more.
   1119 	 */
   1120 	if (l->l_refcnt == 0)
   1121 		return 0;
   1122 
   1123 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1124 
   1125 	lwp_lock(l);
   1126 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1127 		if ((prop & SA_KILL) != 0)
   1128 			l->l_flag &= ~LW_DBGSUSPEND;
   1129 		else {
   1130 			lwp_unlock(l);
   1131 			return 0;
   1132 		}
   1133 	}
   1134 
   1135 	/*
   1136 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1137 	 * is found to take the signal immediately, it should be taken soon.
   1138 	 */
   1139 	l->l_flag |= LW_PENDSIG;
   1140 
   1141 	/*
   1142 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1143 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1144 	 */
   1145 	masked = sigismember(&l->l_sigmask, sig);
   1146 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1147 		lwp_unlock(l);
   1148 		return 0;
   1149 	}
   1150 
   1151 	/*
   1152 	 * If killing the process, make it run fast.
   1153 	 */
   1154 	if (__predict_false((prop & SA_KILL) != 0) &&
   1155 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1156 		KASSERT(l->l_class == SCHED_OTHER);
   1157 		lwp_changepri(l, MAXPRI_USER);
   1158 	}
   1159 
   1160 	/*
   1161 	 * If the LWP is running or on a run queue, then we win.  If it's
   1162 	 * sleeping interruptably, wake it and make it take the signal.  If
   1163 	 * the sleep isn't interruptable, then the chances are it will get
   1164 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1165 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1166 	 * for later; otherwise punt.
   1167 	 */
   1168 	rv = 0;
   1169 
   1170 	switch (l->l_stat) {
   1171 	case LSRUN:
   1172 	case LSONPROC:
   1173 		lwp_need_userret(l);
   1174 		rv = 1;
   1175 		break;
   1176 
   1177 	case LSSLEEP:
   1178 		if ((l->l_flag & LW_SINTR) != 0) {
   1179 			/* setrunnable() will release the lock. */
   1180 			setrunnable(l);
   1181 			return 1;
   1182 		}
   1183 		break;
   1184 
   1185 	case LSSUSPENDED:
   1186 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1187 			/* lwp_continue() will release the lock. */
   1188 			lwp_continue(l);
   1189 			return 1;
   1190 		}
   1191 		break;
   1192 
   1193 	case LSSTOP:
   1194 		if ((prop & SA_STOP) != 0)
   1195 			break;
   1196 
   1197 		/*
   1198 		 * If the LWP is stopped and we are sending a continue
   1199 		 * signal, then start it again.
   1200 		 */
   1201 		if ((prop & SA_CONT) != 0) {
   1202 			if (l->l_wchan != NULL) {
   1203 				l->l_stat = LSSLEEP;
   1204 				p->p_nrlwps++;
   1205 				rv = 1;
   1206 				break;
   1207 			}
   1208 			/* setrunnable() will release the lock. */
   1209 			setrunnable(l);
   1210 			return 1;
   1211 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1212 			/* setrunnable() will release the lock. */
   1213 			setrunnable(l);
   1214 			return 1;
   1215 		}
   1216 		break;
   1217 
   1218 	default:
   1219 		break;
   1220 	}
   1221 
   1222 	lwp_unlock(l);
   1223 	return rv;
   1224 }
   1225 
   1226 /*
   1227  * Notify an LWP that it has a pending signal.
   1228  */
   1229 void
   1230 signotify(struct lwp *l)
   1231 {
   1232 	KASSERT(lwp_locked(l, NULL));
   1233 
   1234 	l->l_flag |= LW_PENDSIG;
   1235 	lwp_need_userret(l);
   1236 }
   1237 
   1238 /*
   1239  * Find an LWP within process p that is waiting on signal ksi, and hand
   1240  * it on.
   1241  */
   1242 static int
   1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1244 {
   1245 	struct lwp *l;
   1246 	int signo;
   1247 
   1248 	KASSERT(mutex_owned(p->p_lock));
   1249 
   1250 	signo = ksi->ksi_signo;
   1251 
   1252 	if (ksi->ksi_lid != 0) {
   1253 		/*
   1254 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1255 		 * it's interested.
   1256 		 */
   1257 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1258 			return 0;
   1259 		if (l->l_sigwaited == NULL ||
   1260 		    !sigismember(&l->l_sigwaitset, signo))
   1261 			return 0;
   1262 	} else {
   1263 		/*
   1264 		 * Look for any LWP that may be interested.
   1265 		 */
   1266 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1267 			KASSERT(l->l_sigwaited != NULL);
   1268 			if (sigismember(&l->l_sigwaitset, signo))
   1269 				break;
   1270 		}
   1271 	}
   1272 
   1273 	if (l != NULL) {
   1274 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1275 		l->l_sigwaited = NULL;
   1276 		LIST_REMOVE(l, l_sigwaiter);
   1277 		cv_signal(&l->l_sigcv);
   1278 		return 1;
   1279 	}
   1280 
   1281 	return 0;
   1282 }
   1283 
   1284 /*
   1285  * Send the signal to the process.  If the signal has an action, the action
   1286  * is usually performed by the target process rather than the caller; we add
   1287  * the signal to the set of pending signals for the process.
   1288  *
   1289  * Exceptions:
   1290  *   o When a stop signal is sent to a sleeping process that takes the
   1291  *     default action, the process is stopped without awakening it.
   1292  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1293  *     regardless of the signal action (eg, blocked or ignored).
   1294  *
   1295  * Other ignored signals are discarded immediately.
   1296  */
   1297 int
   1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1299 {
   1300 	int prop, signo = ksi->ksi_signo;
   1301 	struct lwp *l = NULL;
   1302 	ksiginfo_t *kp;
   1303 	lwpid_t lid;
   1304 	sig_t action;
   1305 	bool toall;
   1306 	int error = 0;
   1307 
   1308 	KASSERT(!cpu_intr_p());
   1309 	KASSERT(mutex_owned(proc_lock));
   1310 	KASSERT(mutex_owned(p->p_lock));
   1311 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1312 	KASSERT(signo > 0 && signo < NSIG);
   1313 
   1314 	/*
   1315 	 * If the process is being created by fork, is a zombie or is
   1316 	 * exiting, then just drop the signal here and bail out.
   1317 	 */
   1318 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1319 		return 0;
   1320 
   1321 	/*
   1322 	 * Notify any interested parties of the signal.
   1323 	 */
   1324 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1325 
   1326 	/*
   1327 	 * Some signals including SIGKILL must act on the entire process.
   1328 	 */
   1329 	kp = NULL;
   1330 	prop = sigprop[signo];
   1331 	toall = ((prop & SA_TOALL) != 0);
   1332 	lid = toall ? 0 : ksi->ksi_lid;
   1333 
   1334 	/*
   1335 	 * If proc is traced, always give parent a chance.
   1336 	 */
   1337 	if (p->p_slflag & PSL_TRACED) {
   1338 		action = SIG_DFL;
   1339 
   1340 		if (lid == 0) {
   1341 			/*
   1342 			 * If the process is being traced and the signal
   1343 			 * is being caught, make sure to save any ksiginfo.
   1344 			 */
   1345 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1346 				goto discard;
   1347 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1348 				goto out;
   1349 		}
   1350 	} else {
   1351 
   1352 		/*
   1353 		 * If the signal is being ignored, then drop it.  Note: we
   1354 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1355 		 * SIG_IGN, action will be SIG_DFL here.
   1356 		 */
   1357 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1358 			goto discard;
   1359 
   1360 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1361 			action = SIG_CATCH;
   1362 		else {
   1363 			action = SIG_DFL;
   1364 
   1365 			/*
   1366 			 * If sending a tty stop signal to a member of an
   1367 			 * orphaned process group, discard the signal here if
   1368 			 * the action is default; don't stop the process below
   1369 			 * if sleeping, and don't clear any pending SIGCONT.
   1370 			 */
   1371 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1372 				goto discard;
   1373 
   1374 			if (prop & SA_KILL && p->p_nice > NZERO)
   1375 				p->p_nice = NZERO;
   1376 		}
   1377 	}
   1378 
   1379 	/*
   1380 	 * If stopping or continuing a process, discard any pending
   1381 	 * signals that would do the inverse.
   1382 	 */
   1383 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1384 		ksiginfoq_t kq;
   1385 
   1386 		ksiginfo_queue_init(&kq);
   1387 		if ((prop & SA_CONT) != 0)
   1388 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1389 		if ((prop & SA_STOP) != 0)
   1390 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1391 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1392 	}
   1393 
   1394 	/*
   1395 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1396 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1397 	 * the signal info.  The signal won't be processed further here.
   1398 	 */
   1399 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1400 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1401 	    sigunwait(p, ksi))
   1402 		goto discard;
   1403 
   1404 	/*
   1405 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1406 	 * here.
   1407 	 */
   1408 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1409 		goto discard;
   1410 
   1411 	/*
   1412 	 * LWP private signals are easy - just find the LWP and post
   1413 	 * the signal to it.
   1414 	 */
   1415 	if (lid != 0) {
   1416 		l = lwp_find(p, lid);
   1417 		if (l != NULL) {
   1418 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1419 				goto out;
   1420 			membar_producer();
   1421 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1422 				signo = -1;
   1423 		}
   1424 		goto out;
   1425 	}
   1426 
   1427 	/*
   1428 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1429 	 * or for an SA process.
   1430 	 */
   1431 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1432 		if ((p->p_slflag & PSL_TRACED) != 0)
   1433 			goto deliver;
   1434 
   1435 		/*
   1436 		 * If SIGCONT is default (or ignored) and process is
   1437 		 * asleep, we are finished; the process should not
   1438 		 * be awakened.
   1439 		 */
   1440 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1441 			goto out;
   1442 	} else {
   1443 		/*
   1444 		 * Process is stopped or stopping.
   1445 		 * - If traced, then no action is needed, unless killing.
   1446 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1447 		 */
   1448 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1449 			goto out;
   1450 		}
   1451 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1452 			/*
   1453 			 * Re-adjust p_nstopchild if the process was
   1454 			 * stopped but not yet collected by its parent.
   1455 			 */
   1456 			if (p->p_stat == SSTOP && !p->p_waited)
   1457 				p->p_pptr->p_nstopchild--;
   1458 			p->p_stat = SACTIVE;
   1459 			p->p_sflag &= ~PS_STOPPING;
   1460 			if (p->p_slflag & PSL_TRACED) {
   1461 				KASSERT(signo == SIGKILL);
   1462 				goto deliver;
   1463 			}
   1464 			/*
   1465 			 * Do not make signal pending if SIGCONT is default.
   1466 			 *
   1467 			 * If the process catches SIGCONT, let it handle the
   1468 			 * signal itself (if waiting on event - process runs,
   1469 			 * otherwise continues sleeping).
   1470 			 */
   1471 			if ((prop & SA_CONT) != 0) {
   1472 				p->p_xsig = SIGCONT;
   1473 				p->p_sflag |= PS_CONTINUED;
   1474 				child_psignal(p, 0);
   1475 				if (action == SIG_DFL) {
   1476 					KASSERT(signo != SIGKILL);
   1477 					goto deliver;
   1478 				}
   1479 			}
   1480 		} else if ((prop & SA_STOP) != 0) {
   1481 			/*
   1482 			 * Already stopped, don't need to stop again.
   1483 			 * (If we did the shell could get confused.)
   1484 			 */
   1485 			goto out;
   1486 		}
   1487 	}
   1488 	/*
   1489 	 * Make signal pending.
   1490 	 */
   1491 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1492 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1493 		goto out;
   1494 deliver:
   1495 	/*
   1496 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1497 	 * visible on the per process list (for sigispending()).  This
   1498 	 * is unlikely to be needed in practice, but...
   1499 	 */
   1500 	membar_producer();
   1501 
   1502 	/*
   1503 	 * Try to find an LWP that can take the signal.
   1504 	 */
   1505 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1506 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1507 			break;
   1508 	}
   1509 	signo = -1;
   1510 out:
   1511 	/*
   1512 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1513 	 * with locks held.  The caller should take care of this.
   1514 	 */
   1515 	ksiginfo_free(kp);
   1516 	if (signo == -1)
   1517 		return error;
   1518 discard:
   1519 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1520 	return error;
   1521 }
   1522 
   1523 void
   1524 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1525 {
   1526 	struct proc *p = l->l_proc;
   1527 
   1528 	KASSERT(mutex_owned(p->p_lock));
   1529 	(*p->p_emul->e_sendsig)(ksi, mask);
   1530 }
   1531 
   1532 /*
   1533  * Stop any LWPs sleeping interruptably.
   1534  */
   1535 static void
   1536 proc_stop_lwps(struct proc *p)
   1537 {
   1538 	struct lwp *l;
   1539 
   1540 	KASSERT(mutex_owned(p->p_lock));
   1541 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1542 
   1543 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1544 		lwp_lock(l);
   1545 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1546 			l->l_stat = LSSTOP;
   1547 			p->p_nrlwps--;
   1548 		}
   1549 		lwp_unlock(l);
   1550 	}
   1551 }
   1552 
   1553 /*
   1554  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1555  *
   1556  * Drop p_lock briefly if ppsig is true.
   1557  */
   1558 static void
   1559 proc_stop_done(struct proc *p, int ppmask)
   1560 {
   1561 
   1562 	KASSERT(mutex_owned(proc_lock));
   1563 	KASSERT(mutex_owned(p->p_lock));
   1564 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1565 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1566 
   1567 	p->p_sflag &= ~PS_STOPPING;
   1568 	p->p_stat = SSTOP;
   1569 	p->p_waited = 0;
   1570 	p->p_pptr->p_nstopchild++;
   1571 
   1572 	/* child_psignal drops p_lock briefly. */
   1573 	child_psignal(p, ppmask);
   1574 	cv_broadcast(&p->p_pptr->p_waitcv);
   1575 }
   1576 
   1577 /*
   1578  * Stop the current process and switch away to the debugger notifying
   1579  * an event specific to a traced process only.
   1580  */
   1581 void
   1582 eventswitch(int code, int pe_report_event, int entity)
   1583 {
   1584 	struct lwp *l = curlwp;
   1585 	struct proc *p = l->l_proc;
   1586 	struct sigacts *ps;
   1587 	sigset_t *mask;
   1588 	sig_t action;
   1589 	ksiginfo_t ksi;
   1590 	const int signo = SIGTRAP;
   1591 
   1592 	KASSERT(mutex_owned(proc_lock));
   1593 	KASSERT(mutex_owned(p->p_lock));
   1594 	KASSERT(p->p_pptr != initproc);
   1595 	KASSERT(l->l_stat == LSONPROC);
   1596 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1597 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1598 	KASSERT(p->p_nrlwps > 0);
   1599 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1600 	        (code == TRAP_EXEC));
   1601 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1602 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1603 
   1604 repeat:
   1605 	/*
   1606 	 * If we are exiting, demise now.
   1607 	 *
   1608 	 * This avoids notifying tracer and deadlocking.
   1609 	 */
   1610 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1611 		mutex_exit(p->p_lock);
   1612 		mutex_exit(proc_lock);
   1613 
   1614 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1615 			/* Avoid double lwp_exit() and panic. */
   1616 			return;
   1617 		}
   1618 
   1619 		lwp_exit(l);
   1620 		panic("eventswitch");
   1621 		/* NOTREACHED */
   1622 	}
   1623 
   1624 	/*
   1625 	 * If we are no longer traced, abandon this event signal.
   1626 	 *
   1627 	 * This avoids killing a process after detaching the debugger.
   1628 	 */
   1629 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1630 		mutex_exit(p->p_lock);
   1631 		mutex_exit(proc_lock);
   1632 		return;
   1633 	}
   1634 
   1635 	/*
   1636 	 * If there's a pending SIGKILL process it immediately.
   1637 	 */
   1638 	if (p->p_xsig == SIGKILL ||
   1639 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1640 		mutex_exit(p->p_lock);
   1641 		mutex_exit(proc_lock);
   1642 		return;
   1643 	}
   1644 
   1645 	/*
   1646 	 * The process is already stopping.
   1647 	 */
   1648 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1649 		mutex_exit(proc_lock);
   1650 		sigswitch_unlock_and_switch_away(l);
   1651 		mutex_enter(proc_lock);
   1652 		mutex_enter(p->p_lock);
   1653 		goto repeat;
   1654 	}
   1655 
   1656 	KSI_INIT_TRAP(&ksi);
   1657 	ksi.ksi_lid = l->l_lid;
   1658 	ksi.ksi_signo = signo;
   1659 	ksi.ksi_code = code;
   1660 	ksi.ksi_pe_report_event = pe_report_event;
   1661 
   1662 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1663 	ksi.ksi_pe_other_pid = entity;
   1664 
   1665 	/* Needed for ktrace */
   1666 	ps = p->p_sigacts;
   1667 	action = SIGACTION_PS(ps, signo).sa_handler;
   1668 	mask = &l->l_sigmask;
   1669 
   1670 	p->p_xsig = signo;
   1671 	p->p_sigctx.ps_faked = true;
   1672 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1673 	p->p_sigctx.ps_info = ksi.ksi_info;
   1674 
   1675 	sigswitch(0, signo, true);
   1676 
   1677 	if (code == TRAP_CHLD) {
   1678 		mutex_enter(proc_lock);
   1679 		while (l->l_vforkwaiting)
   1680 			cv_wait(&l->l_waitcv, proc_lock);
   1681 		mutex_exit(proc_lock);
   1682 	}
   1683 
   1684 	if (ktrpoint(KTR_PSIG)) {
   1685 		if (p->p_emul->e_ktrpsig)
   1686 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1687 		else
   1688 			ktrpsig(signo, action, mask, &ksi);
   1689 	}
   1690 }
   1691 
   1692 /*
   1693  * Stop the current process and switch away when being stopped or traced.
   1694  */
   1695 static void
   1696 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1697 {
   1698 	struct lwp *l = curlwp;
   1699 	struct proc *p = l->l_proc;
   1700 
   1701 	KASSERT(mutex_owned(p->p_lock));
   1702 	KASSERT(l->l_stat == LSONPROC);
   1703 	KASSERT(p->p_nrlwps > 0);
   1704 
   1705 	if (proc_lock_held) {
   1706 		KASSERT(mutex_owned(proc_lock));
   1707 	} else {
   1708 		KASSERT(!mutex_owned(proc_lock));
   1709 	}
   1710 
   1711 	/*
   1712 	 * On entry we know that the process needs to stop.  If it's
   1713 	 * the result of a 'sideways' stop signal that has been sourced
   1714 	 * through issignal(), then stop other LWPs in the process too.
   1715 	 */
   1716 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1717 		KASSERT(signo != 0);
   1718 		proc_stop(p, signo);
   1719 		KASSERT(p->p_nrlwps > 0);
   1720 	}
   1721 
   1722 	/*
   1723 	 * If we are the last live LWP, and the stop was a result of
   1724 	 * a new signal, then signal the parent.
   1725 	 */
   1726 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1727 		if (!proc_lock_held && !mutex_tryenter(proc_lock)) {
   1728 			mutex_exit(p->p_lock);
   1729 			mutex_enter(proc_lock);
   1730 			mutex_enter(p->p_lock);
   1731 		}
   1732 
   1733 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1734 			/*
   1735 			 * Note that proc_stop_done() can drop
   1736 			 * p->p_lock briefly.
   1737 			 */
   1738 			proc_stop_done(p, ppmask);
   1739 		}
   1740 
   1741 		mutex_exit(proc_lock);
   1742 	}
   1743 
   1744 	sigswitch_unlock_and_switch_away(l);
   1745 }
   1746 
   1747 /*
   1748  * Unlock and switch away.
   1749  */
   1750 static void
   1751 sigswitch_unlock_and_switch_away(struct lwp *l)
   1752 {
   1753 	struct proc *p;
   1754 	int biglocks;
   1755 
   1756 	p = l->l_proc;
   1757 
   1758 	KASSERT(mutex_owned(p->p_lock));
   1759 	KASSERT(!mutex_owned(proc_lock));
   1760 
   1761 	KASSERT(l->l_stat == LSONPROC);
   1762 	KASSERT(p->p_nrlwps > 0);
   1763 
   1764 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1765 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1766 		p->p_nrlwps--;
   1767 		lwp_lock(l);
   1768 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1769 		l->l_stat = LSSTOP;
   1770 		lwp_unlock(l);
   1771 	}
   1772 
   1773 	mutex_exit(p->p_lock);
   1774 	lwp_lock(l);
   1775 	mi_switch(l);
   1776 	KERNEL_LOCK(biglocks, l);
   1777 }
   1778 
   1779 /*
   1780  * Check for a signal from the debugger.
   1781  */
   1782 static int
   1783 sigchecktrace(void)
   1784 {
   1785 	struct lwp *l = curlwp;
   1786 	struct proc *p = l->l_proc;
   1787 	int signo;
   1788 
   1789 	KASSERT(mutex_owned(p->p_lock));
   1790 
   1791 	/* If there's a pending SIGKILL, process it immediately. */
   1792 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1793 		return 0;
   1794 
   1795 	/*
   1796 	 * If we are no longer being traced, or the parent didn't
   1797 	 * give us a signal, or we're stopping, look for more signals.
   1798 	 */
   1799 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1800 	    (p->p_sflag & PS_STOPPING) != 0)
   1801 		return 0;
   1802 
   1803 	/*
   1804 	 * If the new signal is being masked, look for other signals.
   1805 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1806 	 */
   1807 	signo = p->p_xsig;
   1808 	p->p_xsig = 0;
   1809 	if (sigismember(&l->l_sigmask, signo)) {
   1810 		signo = 0;
   1811 	}
   1812 	return signo;
   1813 }
   1814 
   1815 /*
   1816  * If the current process has received a signal (should be caught or cause
   1817  * termination, should interrupt current syscall), return the signal number.
   1818  *
   1819  * Stop signals with default action are processed immediately, then cleared;
   1820  * they aren't returned.  This is checked after each entry to the system for
   1821  * a syscall or trap.
   1822  *
   1823  * We will also return -1 if the process is exiting and the current LWP must
   1824  * follow suit.
   1825  */
   1826 int
   1827 issignal(struct lwp *l)
   1828 {
   1829 	struct proc *p;
   1830 	int siglwp, signo, prop;
   1831 	sigpend_t *sp;
   1832 	sigset_t ss;
   1833 
   1834 	p = l->l_proc;
   1835 	sp = NULL;
   1836 	signo = 0;
   1837 
   1838 	KASSERT(p == curproc);
   1839 	KASSERT(mutex_owned(p->p_lock));
   1840 
   1841 	for (;;) {
   1842 		/* Discard any signals that we have decided not to take. */
   1843 		if (signo != 0) {
   1844 			(void)sigget(sp, NULL, signo, NULL);
   1845 		}
   1846 
   1847 		/*
   1848 		 * If the process is stopped/stopping, then stop ourselves
   1849 		 * now that we're on the kernel/userspace boundary.  When
   1850 		 * we awaken, check for a signal from the debugger.
   1851 		 */
   1852 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1853 			sigswitch_unlock_and_switch_away(l);
   1854 			mutex_enter(p->p_lock);
   1855 			continue;
   1856 		} else if (p->p_stat == SACTIVE)
   1857 			signo = sigchecktrace();
   1858 		else
   1859 			signo = 0;
   1860 
   1861 		/* Signals from the debugger are "out of band". */
   1862 		sp = NULL;
   1863 
   1864 		/*
   1865 		 * If the debugger didn't provide a signal, find a pending
   1866 		 * signal from our set.  Check per-LWP signals first, and
   1867 		 * then per-process.
   1868 		 */
   1869 		if (signo == 0) {
   1870 			sp = &l->l_sigpend;
   1871 			ss = sp->sp_set;
   1872 			siglwp = l->l_lid;
   1873 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1874 				sigminusset(&vforksigmask, &ss);
   1875 			sigminusset(&l->l_sigmask, &ss);
   1876 
   1877 			if ((signo = firstsig(&ss)) == 0) {
   1878 				sp = &p->p_sigpend;
   1879 				ss = sp->sp_set;
   1880 				siglwp = 0;
   1881 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1882 					sigminusset(&vforksigmask, &ss);
   1883 				sigminusset(&l->l_sigmask, &ss);
   1884 
   1885 				if ((signo = firstsig(&ss)) == 0) {
   1886 					/*
   1887 					 * No signal pending - clear the
   1888 					 * indicator and bail out.
   1889 					 */
   1890 					lwp_lock(l);
   1891 					l->l_flag &= ~LW_PENDSIG;
   1892 					lwp_unlock(l);
   1893 					sp = NULL;
   1894 					break;
   1895 				}
   1896 			}
   1897 		}
   1898 
   1899 		if (sp) {
   1900 			/* Overwrite process' signal context to correspond
   1901 			 * to the currently reported LWP.  This is necessary
   1902 			 * for PT_GET_SIGINFO to report the correct signal when
   1903 			 * multiple LWPs have pending signals.  We do this only
   1904 			 * when the signal comes from the queue, for signals
   1905 			 * created by the debugger we assume it set correct
   1906 			 * siginfo.
   1907 			 */
   1908 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1909 			if (ksi) {
   1910 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1911 				p->p_sigctx.ps_info = ksi->ksi_info;
   1912 			} else {
   1913 				p->p_sigctx.ps_lwp = siglwp;
   1914 				memset(&p->p_sigctx.ps_info, 0,
   1915 				    sizeof(p->p_sigctx.ps_info));
   1916 				p->p_sigctx.ps_info._signo = signo;
   1917 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1918 			}
   1919 		}
   1920 
   1921 		/*
   1922 		 * We should see pending but ignored signals only if
   1923 		 * we are being traced.
   1924 		 */
   1925 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1926 		    (p->p_slflag & PSL_TRACED) == 0) {
   1927 			/* Discard the signal. */
   1928 			continue;
   1929 		}
   1930 
   1931 		/*
   1932 		 * If traced, always stop, and stay stopped until released
   1933 		 * by the debugger.  If the our parent is our debugger waiting
   1934 		 * for us and we vforked, don't hang as we could deadlock.
   1935 		 */
   1936 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
   1937 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1938 		     (p->p_pptr == p->p_opptr))) {
   1939 			/*
   1940 			 * Take the signal, but don't remove it from the
   1941 			 * siginfo queue, because the debugger can send
   1942 			 * it later.
   1943 			 */
   1944 			if (sp)
   1945 				sigdelset(&sp->sp_set, signo);
   1946 			p->p_xsig = signo;
   1947 
   1948 			/* Handling of signal trace */
   1949 			sigswitch(0, signo, false);
   1950 			mutex_enter(p->p_lock);
   1951 
   1952 			/* Check for a signal from the debugger. */
   1953 			if ((signo = sigchecktrace()) == 0)
   1954 				continue;
   1955 
   1956 			/* Signals from the debugger are "out of band". */
   1957 			sp = NULL;
   1958 		}
   1959 
   1960 		prop = sigprop[signo];
   1961 
   1962 		/*
   1963 		 * Decide whether the signal should be returned.
   1964 		 */
   1965 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1966 		case (long)SIG_DFL:
   1967 			/*
   1968 			 * Don't take default actions on system processes.
   1969 			 */
   1970 			if (p->p_pid <= 1) {
   1971 #ifdef DIAGNOSTIC
   1972 				/*
   1973 				 * Are you sure you want to ignore SIGSEGV
   1974 				 * in init? XXX
   1975 				 */
   1976 				printf_nolog("Process (pid %d) got sig %d\n",
   1977 				    p->p_pid, signo);
   1978 #endif
   1979 				continue;
   1980 			}
   1981 
   1982 			/*
   1983 			 * If there is a pending stop signal to process with
   1984 			 * default action, stop here, then clear the signal.
   1985 			 * However, if process is member of an orphaned
   1986 			 * process group, ignore tty stop signals.
   1987 			 */
   1988 			if (prop & SA_STOP) {
   1989 				/*
   1990 				 * XXX Don't hold proc_lock for p_lflag,
   1991 				 * but it's not a big deal.
   1992 				 */
   1993 				if ((ISSET(p->p_slflag, PSL_TRACED) &&
   1994 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1995 				     (p->p_pptr == p->p_opptr))) ||
   1996 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1997 				    prop & SA_TTYSTOP)) {
   1998 					/* Ignore the signal. */
   1999 					continue;
   2000 				}
   2001 				/* Take the signal. */
   2002 				(void)sigget(sp, NULL, signo, NULL);
   2003 				p->p_xsig = signo;
   2004 				p->p_sflag &= ~PS_CONTINUED;
   2005 				signo = 0;
   2006 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2007 				mutex_enter(p->p_lock);
   2008 			} else if (prop & SA_IGNORE) {
   2009 				/*
   2010 				 * Except for SIGCONT, shouldn't get here.
   2011 				 * Default action is to ignore; drop it.
   2012 				 */
   2013 				continue;
   2014 			}
   2015 			break;
   2016 
   2017 		case (long)SIG_IGN:
   2018 #ifdef DEBUG_ISSIGNAL
   2019 			/*
   2020 			 * Masking above should prevent us ever trying
   2021 			 * to take action on an ignored signal other
   2022 			 * than SIGCONT, unless process is traced.
   2023 			 */
   2024 			if ((prop & SA_CONT) == 0 &&
   2025 			    (p->p_slflag & PSL_TRACED) == 0)
   2026 				printf_nolog("issignal\n");
   2027 #endif
   2028 			continue;
   2029 
   2030 		default:
   2031 			/*
   2032 			 * This signal has an action, let postsig() process
   2033 			 * it.
   2034 			 */
   2035 			break;
   2036 		}
   2037 
   2038 		break;
   2039 	}
   2040 
   2041 	l->l_sigpendset = sp;
   2042 	return signo;
   2043 }
   2044 
   2045 /*
   2046  * Take the action for the specified signal
   2047  * from the current set of pending signals.
   2048  */
   2049 void
   2050 postsig(int signo)
   2051 {
   2052 	struct lwp	*l;
   2053 	struct proc	*p;
   2054 	struct sigacts	*ps;
   2055 	sig_t		action;
   2056 	sigset_t	*returnmask;
   2057 	ksiginfo_t	ksi;
   2058 
   2059 	l = curlwp;
   2060 	p = l->l_proc;
   2061 	ps = p->p_sigacts;
   2062 
   2063 	KASSERT(mutex_owned(p->p_lock));
   2064 	KASSERT(signo > 0);
   2065 
   2066 	/*
   2067 	 * Set the new mask value and also defer further occurrences of this
   2068 	 * signal.
   2069 	 *
   2070 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2071 	 * not of interest, but rather the mask from before the sigsuspend is
   2072 	 * what we want restored after the signal processing is completed.
   2073 	 */
   2074 	if (l->l_sigrestore) {
   2075 		returnmask = &l->l_sigoldmask;
   2076 		l->l_sigrestore = 0;
   2077 	} else
   2078 		returnmask = &l->l_sigmask;
   2079 
   2080 	/*
   2081 	 * Commit to taking the signal before releasing the mutex.
   2082 	 */
   2083 	action = SIGACTION_PS(ps, signo).sa_handler;
   2084 	l->l_ru.ru_nsignals++;
   2085 	if (l->l_sigpendset == NULL) {
   2086 		/* From the debugger */
   2087 		if (p->p_sigctx.ps_faked &&
   2088 		    signo == p->p_sigctx.ps_info._signo) {
   2089 			KSI_INIT(&ksi);
   2090 			ksi.ksi_info = p->p_sigctx.ps_info;
   2091 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2092 			p->p_sigctx.ps_faked = false;
   2093 		} else {
   2094 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2095 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2096 		}
   2097 	} else
   2098 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2099 
   2100 	if (ktrpoint(KTR_PSIG)) {
   2101 		mutex_exit(p->p_lock);
   2102 		if (p->p_emul->e_ktrpsig)
   2103 			p->p_emul->e_ktrpsig(signo, action,
   2104 			    returnmask, &ksi);
   2105 		else
   2106 			ktrpsig(signo, action, returnmask, &ksi);
   2107 		mutex_enter(p->p_lock);
   2108 	}
   2109 
   2110 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2111 
   2112 	if (action == SIG_DFL) {
   2113 		/*
   2114 		 * Default action, where the default is to kill
   2115 		 * the process.  (Other cases were ignored above.)
   2116 		 */
   2117 		sigexit(l, signo);
   2118 		return;
   2119 	}
   2120 
   2121 	/*
   2122 	 * If we get here, the signal must be caught.
   2123 	 */
   2124 #ifdef DIAGNOSTIC
   2125 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2126 		panic("postsig action");
   2127 #endif
   2128 
   2129 	kpsendsig(l, &ksi, returnmask);
   2130 }
   2131 
   2132 /*
   2133  * sendsig:
   2134  *
   2135  *	Default signal delivery method for NetBSD.
   2136  */
   2137 void
   2138 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2139 {
   2140 	struct sigacts *sa;
   2141 	int sig;
   2142 
   2143 	sig = ksi->ksi_signo;
   2144 	sa = curproc->p_sigacts;
   2145 
   2146 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2147 	case 0:
   2148 	case 1:
   2149 		/* Compat for 1.6 and earlier. */
   2150 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2151 		    break);
   2152 		return;
   2153 	case 2:
   2154 	case 3:
   2155 		sendsig_siginfo(ksi, mask);
   2156 		return;
   2157 	default:
   2158 		break;
   2159 	}
   2160 
   2161 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2162 	sigexit(curlwp, SIGILL);
   2163 }
   2164 
   2165 /*
   2166  * sendsig_reset:
   2167  *
   2168  *	Reset the signal action.  Called from emulation specific sendsig()
   2169  *	before unlocking to deliver the signal.
   2170  */
   2171 void
   2172 sendsig_reset(struct lwp *l, int signo)
   2173 {
   2174 	struct proc *p = l->l_proc;
   2175 	struct sigacts *ps = p->p_sigacts;
   2176 
   2177 	KASSERT(mutex_owned(p->p_lock));
   2178 
   2179 	p->p_sigctx.ps_lwp = 0;
   2180 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2181 
   2182 	mutex_enter(&ps->sa_mutex);
   2183 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2184 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2185 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2186 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2187 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2188 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2189 	}
   2190 	mutex_exit(&ps->sa_mutex);
   2191 }
   2192 
   2193 /*
   2194  * Kill the current process for stated reason.
   2195  */
   2196 void
   2197 killproc(struct proc *p, const char *why)
   2198 {
   2199 
   2200 	KASSERT(mutex_owned(proc_lock));
   2201 
   2202 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2203 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2204 	psignal(p, SIGKILL);
   2205 }
   2206 
   2207 /*
   2208  * Force the current process to exit with the specified signal, dumping core
   2209  * if appropriate.  We bypass the normal tests for masked and caught
   2210  * signals, allowing unrecoverable failures to terminate the process without
   2211  * changing signal state.  Mark the accounting record with the signal
   2212  * termination.  If dumping core, save the signal number for the debugger.
   2213  * Calls exit and does not return.
   2214  */
   2215 void
   2216 sigexit(struct lwp *l, int signo)
   2217 {
   2218 	int exitsig, error, docore;
   2219 	struct proc *p;
   2220 	struct lwp *t;
   2221 
   2222 	p = l->l_proc;
   2223 
   2224 	KASSERT(mutex_owned(p->p_lock));
   2225 	KERNEL_UNLOCK_ALL(l, NULL);
   2226 
   2227 	/*
   2228 	 * Don't permit coredump() multiple times in the same process.
   2229 	 * Call back into sigexit, where we will be suspended until
   2230 	 * the deed is done.  Note that this is a recursive call, but
   2231 	 * LW_WCORE will prevent us from coming back this way.
   2232 	 */
   2233 	if ((p->p_sflag & PS_WCORE) != 0) {
   2234 		lwp_lock(l);
   2235 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2236 		lwp_unlock(l);
   2237 		mutex_exit(p->p_lock);
   2238 		lwp_userret(l);
   2239 		panic("sigexit 1");
   2240 		/* NOTREACHED */
   2241 	}
   2242 
   2243 	/* If process is already on the way out, then bail now. */
   2244 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2245 		mutex_exit(p->p_lock);
   2246 		lwp_exit(l);
   2247 		panic("sigexit 2");
   2248 		/* NOTREACHED */
   2249 	}
   2250 
   2251 	/*
   2252 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2253 	 * so that their registers are available long enough to be dumped.
   2254  	 */
   2255 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2256 		p->p_sflag |= PS_WCORE;
   2257 		for (;;) {
   2258 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2259 				lwp_lock(t);
   2260 				if (t == l) {
   2261 					t->l_flag &=
   2262 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2263 					lwp_unlock(t);
   2264 					continue;
   2265 				}
   2266 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2267 				lwp_suspend(l, t);
   2268 			}
   2269 
   2270 			if (p->p_nrlwps == 1)
   2271 				break;
   2272 
   2273 			/*
   2274 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2275 			 * for everyone else to stop before proceeding.
   2276 			 */
   2277 			p->p_nlwpwait++;
   2278 			cv_broadcast(&p->p_lwpcv);
   2279 			cv_wait(&p->p_lwpcv, p->p_lock);
   2280 			p->p_nlwpwait--;
   2281 		}
   2282 	}
   2283 
   2284 	exitsig = signo;
   2285 	p->p_acflag |= AXSIG;
   2286 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2287 	p->p_sigctx.ps_info._signo = signo;
   2288 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2289 
   2290 	if (docore) {
   2291 		mutex_exit(p->p_lock);
   2292 		error = (*coredump_vec)(l, NULL);
   2293 
   2294 		if (kern_logsigexit) {
   2295 			int uid = l->l_cred ?
   2296 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2297 
   2298 			if (error)
   2299 				log(LOG_INFO, lognocoredump, p->p_pid,
   2300 				    p->p_comm, uid, signo, error);
   2301 			else
   2302 				log(LOG_INFO, logcoredump, p->p_pid,
   2303 				    p->p_comm, uid, signo);
   2304 		}
   2305 
   2306 #ifdef PAX_SEGVGUARD
   2307 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2308 #endif /* PAX_SEGVGUARD */
   2309 		/* Acquire the sched state mutex.  exit1() will release it. */
   2310 		mutex_enter(p->p_lock);
   2311 		if (error == 0)
   2312 			p->p_sflag |= PS_COREDUMP;
   2313 	}
   2314 
   2315 	/* No longer dumping core. */
   2316 	p->p_sflag &= ~PS_WCORE;
   2317 
   2318 	exit1(l, 0, exitsig);
   2319 	/* NOTREACHED */
   2320 }
   2321 
   2322 /*
   2323  * Put process 'p' into the stopped state and optionally, notify the parent.
   2324  */
   2325 void
   2326 proc_stop(struct proc *p, int signo)
   2327 {
   2328 	struct lwp *l;
   2329 
   2330 	KASSERT(mutex_owned(p->p_lock));
   2331 
   2332 	/*
   2333 	 * First off, set the stopping indicator and bring all sleeping
   2334 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2335 	 * unlock between here and the p->p_nrlwps check below.
   2336 	 */
   2337 	p->p_sflag |= PS_STOPPING;
   2338 	membar_producer();
   2339 
   2340 	proc_stop_lwps(p);
   2341 
   2342 	/*
   2343 	 * If there are no LWPs available to take the signal, then we
   2344 	 * signal the parent process immediately.  Otherwise, the last
   2345 	 * LWP to stop will take care of it.
   2346 	 */
   2347 
   2348 	if (p->p_nrlwps == 0) {
   2349 		proc_stop_done(p, PS_NOCLDSTOP);
   2350 	} else {
   2351 		/*
   2352 		 * Have the remaining LWPs come to a halt, and trigger
   2353 		 * proc_stop_callout() to ensure that they do.
   2354 		 */
   2355 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2356 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2357 		}
   2358 		callout_schedule(&proc_stop_ch, 1);
   2359 	}
   2360 }
   2361 
   2362 /*
   2363  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2364  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2365  * to allow LWPs to release any locks that they may hold before stopping.
   2366  *
   2367  * Non-interruptable sleeps can be long, and there is the potential for an
   2368  * LWP to begin sleeping interruptably soon after the process has been set
   2369  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2370  * stopping, and so complete halt of the process and the return of status
   2371  * information to the parent could be delayed indefinitely.
   2372  *
   2373  * To handle this race, proc_stop_callout() runs once per tick while there
   2374  * are stopping processes in the system.  It sets LWPs that are sleeping
   2375  * interruptably into the LSSTOP state.
   2376  *
   2377  * Note that we are not concerned about keeping all LWPs stopped while the
   2378  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2379  * What we do need to ensure is that all LWPs in a stopping process have
   2380  * stopped at least once, so that notification can be sent to the parent
   2381  * process.
   2382  */
   2383 static void
   2384 proc_stop_callout(void *cookie)
   2385 {
   2386 	bool more, restart;
   2387 	struct proc *p;
   2388 
   2389 	(void)cookie;
   2390 
   2391 	do {
   2392 		restart = false;
   2393 		more = false;
   2394 
   2395 		mutex_enter(proc_lock);
   2396 		PROCLIST_FOREACH(p, &allproc) {
   2397 			mutex_enter(p->p_lock);
   2398 
   2399 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2400 				mutex_exit(p->p_lock);
   2401 				continue;
   2402 			}
   2403 
   2404 			/* Stop any LWPs sleeping interruptably. */
   2405 			proc_stop_lwps(p);
   2406 			if (p->p_nrlwps == 0) {
   2407 				/*
   2408 				 * We brought the process to a halt.
   2409 				 * Mark it as stopped and notify the
   2410 				 * parent.
   2411 				 *
   2412 				 * Note that proc_stop_done() will
   2413 				 * drop p->p_lock briefly.
   2414 				 * Arrange to restart and check
   2415 				 * all processes again.
   2416 				 */
   2417 				restart = true;
   2418 				proc_stop_done(p, PS_NOCLDSTOP);
   2419 			} else
   2420 				more = true;
   2421 
   2422 			mutex_exit(p->p_lock);
   2423 			if (restart)
   2424 				break;
   2425 		}
   2426 		mutex_exit(proc_lock);
   2427 	} while (restart);
   2428 
   2429 	/*
   2430 	 * If we noted processes that are stopping but still have
   2431 	 * running LWPs, then arrange to check again in 1 tick.
   2432 	 */
   2433 	if (more)
   2434 		callout_schedule(&proc_stop_ch, 1);
   2435 }
   2436 
   2437 /*
   2438  * Given a process in state SSTOP, set the state back to SACTIVE and
   2439  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2440  */
   2441 void
   2442 proc_unstop(struct proc *p)
   2443 {
   2444 	struct lwp *l;
   2445 	int sig;
   2446 
   2447 	KASSERT(mutex_owned(proc_lock));
   2448 	KASSERT(mutex_owned(p->p_lock));
   2449 
   2450 	p->p_stat = SACTIVE;
   2451 	p->p_sflag &= ~PS_STOPPING;
   2452 	sig = p->p_xsig;
   2453 
   2454 	if (!p->p_waited)
   2455 		p->p_pptr->p_nstopchild--;
   2456 
   2457 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2458 		lwp_lock(l);
   2459 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2460 			lwp_unlock(l);
   2461 			continue;
   2462 		}
   2463 		if (l->l_wchan == NULL) {
   2464 			setrunnable(l);
   2465 			continue;
   2466 		}
   2467 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2468 			setrunnable(l);
   2469 			sig = 0;
   2470 		} else {
   2471 			l->l_stat = LSSLEEP;
   2472 			p->p_nrlwps++;
   2473 			lwp_unlock(l);
   2474 		}
   2475 	}
   2476 }
   2477 
   2478 void
   2479 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2480                const register_t *ret, int error)
   2481 {
   2482 	struct lwp *l = curlwp;
   2483 	struct proc *p = l->l_proc;
   2484 	struct sigacts *ps;
   2485 	sigset_t *mask;
   2486 	sig_t action;
   2487 	ksiginfo_t ksi;
   2488 	size_t i, sy_narg;
   2489 	const int signo = SIGTRAP;
   2490 
   2491 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2492 	KASSERT(p->p_pptr != initproc);
   2493 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2494 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2495 
   2496 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2497 
   2498 	KSI_INIT_TRAP(&ksi);
   2499 	ksi.ksi_lid = l->l_lid;
   2500 	ksi.ksi_signo = signo;
   2501 	ksi.ksi_code = trapno;
   2502 
   2503 	ksi.ksi_sysnum = sysnum;
   2504 	if (trapno == TRAP_SCE) {
   2505 		ksi.ksi_retval[0] = 0;
   2506 		ksi.ksi_retval[1] = 0;
   2507 		ksi.ksi_error = 0;
   2508 	} else {
   2509 		ksi.ksi_retval[0] = ret[0];
   2510 		ksi.ksi_retval[1] = ret[1];
   2511 		ksi.ksi_error = error;
   2512 	}
   2513 
   2514 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2515 
   2516 	for (i = 0; i < sy_narg; i++)
   2517 		ksi.ksi_args[i] = args[i];
   2518 
   2519 	mutex_enter(p->p_lock);
   2520 
   2521 repeat:
   2522 	/*
   2523 	 * If we are exiting, demise now.
   2524 	 *
   2525 	 * This avoids notifying tracer and deadlocking.
   2526 	 */
   2527 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2528 		mutex_exit(p->p_lock);
   2529 		lwp_exit(l);
   2530 		panic("proc_stoptrace");
   2531 		/* NOTREACHED */
   2532 	}
   2533 
   2534 	/*
   2535 	 * If there's a pending SIGKILL process it immediately.
   2536 	 */
   2537 	if (p->p_xsig == SIGKILL ||
   2538 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2539 		mutex_exit(p->p_lock);
   2540 		return;
   2541 	}
   2542 
   2543 	/*
   2544 	 * If we are no longer traced, abandon this event signal.
   2545 	 *
   2546 	 * This avoids killing a process after detaching the debugger.
   2547 	 */
   2548 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2549 		mutex_exit(p->p_lock);
   2550 		return;
   2551 	}
   2552 
   2553 	/*
   2554 	 * The process is already stopping.
   2555 	 */
   2556 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2557 		sigswitch_unlock_and_switch_away(l);
   2558 		mutex_enter(p->p_lock);
   2559 		goto repeat;
   2560 	}
   2561 
   2562 	/* Needed for ktrace */
   2563 	ps = p->p_sigacts;
   2564 	action = SIGACTION_PS(ps, signo).sa_handler;
   2565 	mask = &l->l_sigmask;
   2566 
   2567 	p->p_xsig = signo;
   2568 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2569 	p->p_sigctx.ps_info = ksi.ksi_info;
   2570 	sigswitch(0, signo, false);
   2571 
   2572 	if (ktrpoint(KTR_PSIG)) {
   2573 		if (p->p_emul->e_ktrpsig)
   2574 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2575 		else
   2576 			ktrpsig(signo, action, mask, &ksi);
   2577 	}
   2578 }
   2579 
   2580 static int
   2581 filt_sigattach(struct knote *kn)
   2582 {
   2583 	struct proc *p = curproc;
   2584 
   2585 	kn->kn_obj = p;
   2586 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2587 
   2588 	mutex_enter(p->p_lock);
   2589 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2590 	mutex_exit(p->p_lock);
   2591 
   2592 	return 0;
   2593 }
   2594 
   2595 static void
   2596 filt_sigdetach(struct knote *kn)
   2597 {
   2598 	struct proc *p = kn->kn_obj;
   2599 
   2600 	mutex_enter(p->p_lock);
   2601 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2602 	mutex_exit(p->p_lock);
   2603 }
   2604 
   2605 /*
   2606  * Signal knotes are shared with proc knotes, so we apply a mask to
   2607  * the hint in order to differentiate them from process hints.  This
   2608  * could be avoided by using a signal-specific knote list, but probably
   2609  * isn't worth the trouble.
   2610  */
   2611 static int
   2612 filt_signal(struct knote *kn, long hint)
   2613 {
   2614 
   2615 	if (hint & NOTE_SIGNAL) {
   2616 		hint &= ~NOTE_SIGNAL;
   2617 
   2618 		if (kn->kn_id == hint)
   2619 			kn->kn_data++;
   2620 	}
   2621 	return (kn->kn_data != 0);
   2622 }
   2623 
   2624 const struct filterops sig_filtops = {
   2625 		.f_isfd = 0,
   2626 		.f_attach = filt_sigattach,
   2627 		.f_detach = filt_sigdetach,
   2628 		.f_event = filt_signal,
   2629 };
   2630