kern_sig.c revision 1.379 1 /* $NetBSD: kern_sig.c,v 1.379 2019/11/20 19:37:53 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.379 2019/11/20 19:37:53 pgoyette Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 #include <sys/compat_stub.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm_extern.h>
110
111 #define SIGQUEUE_MAX 32
112 static pool_cache_t sigacts_cache __read_mostly;
113 static pool_cache_t ksiginfo_cache __read_mostly;
114 static callout_t proc_stop_ch __cacheline_aligned;
115
116 sigset_t contsigmask __cacheline_aligned;
117 sigset_t stopsigmask __cacheline_aligned;
118 static sigset_t vforksigmask __cacheline_aligned;
119 sigset_t sigcantmask __cacheline_aligned;
120
121 static void ksiginfo_exechook(struct proc *, void *);
122 static void proc_stop(struct proc *, int);
123 static void proc_stop_done(struct proc *, int);
124 static void proc_stop_callout(void *);
125 static int sigchecktrace(void);
126 static int sigpost(struct lwp *, sig_t, int, int);
127 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
128 static int sigunwait(struct proc *, const ksiginfo_t *);
129 static void sigswitch(int, int, bool);
130 static void sigswitch_unlock_and_switch_away(struct lwp *);
131
132 static void sigacts_poolpage_free(struct pool *, void *);
133 static void *sigacts_poolpage_alloc(struct pool *, int);
134
135 /*
136 * DTrace SDT provider definitions
137 */
138 SDT_PROVIDER_DECLARE(proc);
139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
140 "struct lwp *", /* target thread */
141 "struct proc *", /* target process */
142 "int"); /* signal */
143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
144 "struct lwp *", /* target thread */
145 "struct proc *", /* target process */
146 "int"); /* signal */
147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
148 "int", /* signal */
149 "ksiginfo_t *", /* signal info */
150 "void (*)(void)"); /* handler address */
151
152
153 static struct pool_allocator sigactspool_allocator = {
154 .pa_alloc = sigacts_poolpage_alloc,
155 .pa_free = sigacts_poolpage_free
156 };
157
158 #ifdef DEBUG
159 int kern_logsigexit = 1;
160 #else
161 int kern_logsigexit = 0;
162 #endif
163
164 static const char logcoredump[] =
165 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
166 static const char lognocoredump[] =
167 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
168
169 static kauth_listener_t signal_listener;
170
171 static int
172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
173 void *arg0, void *arg1, void *arg2, void *arg3)
174 {
175 struct proc *p;
176 int result, signum;
177
178 result = KAUTH_RESULT_DEFER;
179 p = arg0;
180 signum = (int)(unsigned long)arg1;
181
182 if (action != KAUTH_PROCESS_SIGNAL)
183 return result;
184
185 if (kauth_cred_uidmatch(cred, p->p_cred) ||
186 (signum == SIGCONT && (curproc->p_session == p->p_session)))
187 result = KAUTH_RESULT_ALLOW;
188
189 return result;
190 }
191
192 static int
193 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
194 {
195 memset(obj, 0, sizeof(struct sigacts));
196 return 0;
197 }
198
199 /*
200 * signal_init:
201 *
202 * Initialize global signal-related data structures.
203 */
204 void
205 signal_init(void)
206 {
207
208 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
209
210 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
211 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
212 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
213 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
214 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
215
216 exechook_establish(ksiginfo_exechook, NULL);
217
218 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
219 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
220
221 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
222 signal_listener_cb, NULL);
223 }
224
225 /*
226 * sigacts_poolpage_alloc:
227 *
228 * Allocate a page for the sigacts memory pool.
229 */
230 static void *
231 sigacts_poolpage_alloc(struct pool *pp, int flags)
232 {
233
234 return (void *)uvm_km_alloc(kernel_map,
235 PAGE_SIZE * 2, PAGE_SIZE * 2,
236 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
237 | UVM_KMF_WIRED);
238 }
239
240 /*
241 * sigacts_poolpage_free:
242 *
243 * Free a page on behalf of the sigacts memory pool.
244 */
245 static void
246 sigacts_poolpage_free(struct pool *pp, void *v)
247 {
248
249 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
250 }
251
252 /*
253 * sigactsinit:
254 *
255 * Create an initial sigacts structure, using the same signal state
256 * as of specified process. If 'share' is set, share the sigacts by
257 * holding a reference, otherwise just copy it from parent.
258 */
259 struct sigacts *
260 sigactsinit(struct proc *pp, int share)
261 {
262 struct sigacts *ps = pp->p_sigacts, *ps2;
263
264 if (__predict_false(share)) {
265 atomic_inc_uint(&ps->sa_refcnt);
266 return ps;
267 }
268 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
269 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
270 ps2->sa_refcnt = 1;
271
272 mutex_enter(&ps->sa_mutex);
273 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
274 mutex_exit(&ps->sa_mutex);
275 return ps2;
276 }
277
278 /*
279 * sigactsunshare:
280 *
281 * Make this process not share its sigacts, maintaining all signal state.
282 */
283 void
284 sigactsunshare(struct proc *p)
285 {
286 struct sigacts *ps, *oldps = p->p_sigacts;
287
288 if (__predict_true(oldps->sa_refcnt == 1))
289 return;
290
291 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
292 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
293 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
294 ps->sa_refcnt = 1;
295
296 p->p_sigacts = ps;
297 sigactsfree(oldps);
298 }
299
300 /*
301 * sigactsfree;
302 *
303 * Release a sigacts structure.
304 */
305 void
306 sigactsfree(struct sigacts *ps)
307 {
308
309 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
310 mutex_destroy(&ps->sa_mutex);
311 pool_cache_put(sigacts_cache, ps);
312 }
313 }
314
315 /*
316 * siginit:
317 *
318 * Initialize signal state for process 0; set to ignore signals that
319 * are ignored by default and disable the signal stack. Locking not
320 * required as the system is still cold.
321 */
322 void
323 siginit(struct proc *p)
324 {
325 struct lwp *l;
326 struct sigacts *ps;
327 int signo, prop;
328
329 ps = p->p_sigacts;
330 sigemptyset(&contsigmask);
331 sigemptyset(&stopsigmask);
332 sigemptyset(&vforksigmask);
333 sigemptyset(&sigcantmask);
334 for (signo = 1; signo < NSIG; signo++) {
335 prop = sigprop[signo];
336 if (prop & SA_CONT)
337 sigaddset(&contsigmask, signo);
338 if (prop & SA_STOP)
339 sigaddset(&stopsigmask, signo);
340 if (prop & SA_STOP && signo != SIGSTOP)
341 sigaddset(&vforksigmask, signo);
342 if (prop & SA_CANTMASK)
343 sigaddset(&sigcantmask, signo);
344 if (prop & SA_IGNORE && signo != SIGCONT)
345 sigaddset(&p->p_sigctx.ps_sigignore, signo);
346 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
347 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
348 }
349 sigemptyset(&p->p_sigctx.ps_sigcatch);
350 p->p_sflag &= ~PS_NOCLDSTOP;
351
352 ksiginfo_queue_init(&p->p_sigpend.sp_info);
353 sigemptyset(&p->p_sigpend.sp_set);
354
355 /*
356 * Reset per LWP state.
357 */
358 l = LIST_FIRST(&p->p_lwps);
359 l->l_sigwaited = NULL;
360 l->l_sigstk = SS_INIT;
361 ksiginfo_queue_init(&l->l_sigpend.sp_info);
362 sigemptyset(&l->l_sigpend.sp_set);
363
364 /* One reference. */
365 ps->sa_refcnt = 1;
366 }
367
368 /*
369 * execsigs:
370 *
371 * Reset signals for an exec of the specified process.
372 */
373 void
374 execsigs(struct proc *p)
375 {
376 struct sigacts *ps;
377 struct lwp *l;
378 int signo, prop;
379 sigset_t tset;
380 ksiginfoq_t kq;
381
382 KASSERT(p->p_nlwps == 1);
383
384 sigactsunshare(p);
385 ps = p->p_sigacts;
386
387 /*
388 * Reset caught signals. Held signals remain held through
389 * l->l_sigmask (unless they were caught, and are now ignored
390 * by default).
391 *
392 * No need to lock yet, the process has only one LWP and
393 * at this point the sigacts are private to the process.
394 */
395 sigemptyset(&tset);
396 for (signo = 1; signo < NSIG; signo++) {
397 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
398 prop = sigprop[signo];
399 if (prop & SA_IGNORE) {
400 if ((prop & SA_CONT) == 0)
401 sigaddset(&p->p_sigctx.ps_sigignore,
402 signo);
403 sigaddset(&tset, signo);
404 }
405 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
406 }
407 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
408 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
409 }
410 ksiginfo_queue_init(&kq);
411
412 mutex_enter(p->p_lock);
413 sigclearall(p, &tset, &kq);
414 sigemptyset(&p->p_sigctx.ps_sigcatch);
415
416 /*
417 * Reset no zombies if child dies flag as Solaris does.
418 */
419 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
420 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
421 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
422
423 /*
424 * Reset per-LWP state.
425 */
426 l = LIST_FIRST(&p->p_lwps);
427 l->l_sigwaited = NULL;
428 l->l_sigstk = SS_INIT;
429 ksiginfo_queue_init(&l->l_sigpend.sp_info);
430 sigemptyset(&l->l_sigpend.sp_set);
431 mutex_exit(p->p_lock);
432
433 ksiginfo_queue_drain(&kq);
434 }
435
436 /*
437 * ksiginfo_exechook:
438 *
439 * Free all pending ksiginfo entries from a process on exec.
440 * Additionally, drain any unused ksiginfo structures in the
441 * system back to the pool.
442 *
443 * XXX This should not be a hook, every process has signals.
444 */
445 static void
446 ksiginfo_exechook(struct proc *p, void *v)
447 {
448 ksiginfoq_t kq;
449
450 ksiginfo_queue_init(&kq);
451
452 mutex_enter(p->p_lock);
453 sigclearall(p, NULL, &kq);
454 mutex_exit(p->p_lock);
455
456 ksiginfo_queue_drain(&kq);
457 }
458
459 /*
460 * ksiginfo_alloc:
461 *
462 * Allocate a new ksiginfo structure from the pool, and optionally copy
463 * an existing one. If the existing ksiginfo_t is from the pool, and
464 * has not been queued somewhere, then just return it. Additionally,
465 * if the existing ksiginfo_t does not contain any information beyond
466 * the signal number, then just return it.
467 */
468 ksiginfo_t *
469 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
470 {
471 ksiginfo_t *kp;
472
473 if (ok != NULL) {
474 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
475 KSI_FROMPOOL)
476 return ok;
477 if (KSI_EMPTY_P(ok))
478 return ok;
479 }
480
481 kp = pool_cache_get(ksiginfo_cache, flags);
482 if (kp == NULL) {
483 #ifdef DIAGNOSTIC
484 printf("Out of memory allocating ksiginfo for pid %d\n",
485 p->p_pid);
486 #endif
487 return NULL;
488 }
489
490 if (ok != NULL) {
491 memcpy(kp, ok, sizeof(*kp));
492 kp->ksi_flags &= ~KSI_QUEUED;
493 } else
494 KSI_INIT_EMPTY(kp);
495
496 kp->ksi_flags |= KSI_FROMPOOL;
497
498 return kp;
499 }
500
501 /*
502 * ksiginfo_free:
503 *
504 * If the given ksiginfo_t is from the pool and has not been queued,
505 * then free it.
506 */
507 void
508 ksiginfo_free(ksiginfo_t *kp)
509 {
510
511 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
512 return;
513 pool_cache_put(ksiginfo_cache, kp);
514 }
515
516 /*
517 * ksiginfo_queue_drain:
518 *
519 * Drain a non-empty ksiginfo_t queue.
520 */
521 void
522 ksiginfo_queue_drain0(ksiginfoq_t *kq)
523 {
524 ksiginfo_t *ksi;
525
526 KASSERT(!TAILQ_EMPTY(kq));
527
528 while (!TAILQ_EMPTY(kq)) {
529 ksi = TAILQ_FIRST(kq);
530 TAILQ_REMOVE(kq, ksi, ksi_list);
531 pool_cache_put(ksiginfo_cache, ksi);
532 }
533 }
534
535 static int
536 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
537 {
538 ksiginfo_t *ksi, *nksi;
539
540 if (sp == NULL)
541 goto out;
542
543 /* Find siginfo and copy it out. */
544 int count = 0;
545 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
546 if (ksi->ksi_signo != signo)
547 continue;
548 if (count++ > 0) /* Only remove the first, count all of them */
549 continue;
550 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
551 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
552 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
553 ksi->ksi_flags &= ~KSI_QUEUED;
554 if (out != NULL) {
555 memcpy(out, ksi, sizeof(*out));
556 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
557 }
558 ksiginfo_free(ksi);
559 }
560 if (count)
561 return count;
562
563 out:
564 /* If there is no siginfo, then manufacture it. */
565 if (out != NULL) {
566 KSI_INIT(out);
567 out->ksi_info._signo = signo;
568 out->ksi_info._code = SI_NOINFO;
569 }
570 return 0;
571 }
572
573 /*
574 * sigget:
575 *
576 * Fetch the first pending signal from a set. Optionally, also fetch
577 * or manufacture a ksiginfo element. Returns the number of the first
578 * pending signal, or zero.
579 */
580 int
581 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
582 {
583 sigset_t tset;
584 int count;
585
586 /* If there's no pending set, the signal is from the debugger. */
587 if (sp == NULL)
588 goto out;
589
590 /* Construct mask from signo, and 'mask'. */
591 if (signo == 0) {
592 if (mask != NULL) {
593 tset = *mask;
594 __sigandset(&sp->sp_set, &tset);
595 } else
596 tset = sp->sp_set;
597
598 /* If there are no signals pending - return. */
599 if ((signo = firstsig(&tset)) == 0)
600 goto out;
601 } else {
602 KASSERT(sigismember(&sp->sp_set, signo));
603 }
604
605 sigdelset(&sp->sp_set, signo);
606 out:
607 count = siggetinfo(sp, out, signo);
608 if (count > 1)
609 sigaddset(&sp->sp_set, signo);
610 return signo;
611 }
612
613 /*
614 * sigput:
615 *
616 * Append a new ksiginfo element to the list of pending ksiginfo's.
617 */
618 static int
619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
620 {
621 ksiginfo_t *kp;
622
623 KASSERT(mutex_owned(p->p_lock));
624 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
625
626 sigaddset(&sp->sp_set, ksi->ksi_signo);
627
628 /*
629 * If there is no siginfo, we are done.
630 */
631 if (KSI_EMPTY_P(ksi))
632 return 0;
633
634 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
635
636 size_t count = 0;
637 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
638 count++;
639 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
640 continue;
641 if (kp->ksi_signo == ksi->ksi_signo) {
642 KSI_COPY(ksi, kp);
643 kp->ksi_flags |= KSI_QUEUED;
644 return 0;
645 }
646 }
647
648 if (count >= SIGQUEUE_MAX) {
649 #ifdef DIAGNOSTIC
650 printf("%s(%d): Signal queue is full signal=%d\n",
651 p->p_comm, p->p_pid, ksi->ksi_signo);
652 #endif
653 return EAGAIN;
654 }
655 ksi->ksi_flags |= KSI_QUEUED;
656 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
657
658 return 0;
659 }
660
661 /*
662 * sigclear:
663 *
664 * Clear all pending signals in the specified set.
665 */
666 void
667 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
668 {
669 ksiginfo_t *ksi, *next;
670
671 if (mask == NULL)
672 sigemptyset(&sp->sp_set);
673 else
674 sigminusset(mask, &sp->sp_set);
675
676 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
677 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
678 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
679 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
680 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
681 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
682 }
683 }
684 }
685
686 /*
687 * sigclearall:
688 *
689 * Clear all pending signals in the specified set from a process and
690 * its LWPs.
691 */
692 void
693 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
694 {
695 struct lwp *l;
696
697 KASSERT(mutex_owned(p->p_lock));
698
699 sigclear(&p->p_sigpend, mask, kq);
700
701 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
702 sigclear(&l->l_sigpend, mask, kq);
703 }
704 }
705
706 /*
707 * sigispending:
708 *
709 * Return the first signal number if there are pending signals for the
710 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
711 * and that the signal has been posted to the appopriate queue before
712 * LW_PENDSIG is set.
713 */
714 int
715 sigispending(struct lwp *l, int signo)
716 {
717 struct proc *p = l->l_proc;
718 sigset_t tset;
719
720 membar_consumer();
721
722 tset = l->l_sigpend.sp_set;
723 sigplusset(&p->p_sigpend.sp_set, &tset);
724 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
725 sigminusset(&l->l_sigmask, &tset);
726
727 if (signo == 0) {
728 return firstsig(&tset);
729 }
730 return sigismember(&tset, signo) ? signo : 0;
731 }
732
733 void
734 getucontext(struct lwp *l, ucontext_t *ucp)
735 {
736 struct proc *p = l->l_proc;
737
738 KASSERT(mutex_owned(p->p_lock));
739
740 ucp->uc_flags = 0;
741 ucp->uc_link = l->l_ctxlink;
742 ucp->uc_sigmask = l->l_sigmask;
743 ucp->uc_flags |= _UC_SIGMASK;
744
745 /*
746 * The (unsupplied) definition of the `current execution stack'
747 * in the System V Interface Definition appears to allow returning
748 * the main context stack.
749 */
750 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
751 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
752 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
753 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
754 } else {
755 /* Simply copy alternate signal execution stack. */
756 ucp->uc_stack = l->l_sigstk;
757 }
758 ucp->uc_flags |= _UC_STACK;
759 mutex_exit(p->p_lock);
760 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
761 mutex_enter(p->p_lock);
762 }
763
764 int
765 setucontext(struct lwp *l, const ucontext_t *ucp)
766 {
767 struct proc *p = l->l_proc;
768 int error;
769
770 KASSERT(mutex_owned(p->p_lock));
771
772 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
773 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
774 if (error != 0)
775 return error;
776 }
777
778 mutex_exit(p->p_lock);
779 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
780 mutex_enter(p->p_lock);
781 if (error != 0)
782 return (error);
783
784 l->l_ctxlink = ucp->uc_link;
785
786 /*
787 * If there was stack information, update whether or not we are
788 * still running on an alternate signal stack.
789 */
790 if ((ucp->uc_flags & _UC_STACK) != 0) {
791 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
792 l->l_sigstk.ss_flags |= SS_ONSTACK;
793 else
794 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
795 }
796
797 return 0;
798 }
799
800 /*
801 * killpg1: common code for kill process group/broadcast kill.
802 */
803 int
804 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
805 {
806 struct proc *p, *cp;
807 kauth_cred_t pc;
808 struct pgrp *pgrp;
809 int nfound;
810 int signo = ksi->ksi_signo;
811
812 cp = l->l_proc;
813 pc = l->l_cred;
814 nfound = 0;
815
816 mutex_enter(proc_lock);
817 if (all) {
818 /*
819 * Broadcast.
820 */
821 PROCLIST_FOREACH(p, &allproc) {
822 if (p->p_pid <= 1 || p == cp ||
823 (p->p_flag & PK_SYSTEM) != 0)
824 continue;
825 mutex_enter(p->p_lock);
826 if (kauth_authorize_process(pc,
827 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
828 NULL) == 0) {
829 nfound++;
830 if (signo)
831 kpsignal2(p, ksi);
832 }
833 mutex_exit(p->p_lock);
834 }
835 } else {
836 if (pgid == 0)
837 /* Zero pgid means send to my process group. */
838 pgrp = cp->p_pgrp;
839 else {
840 pgrp = pgrp_find(pgid);
841 if (pgrp == NULL)
842 goto out;
843 }
844 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
845 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
846 continue;
847 mutex_enter(p->p_lock);
848 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
849 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
850 nfound++;
851 if (signo && P_ZOMBIE(p) == 0)
852 kpsignal2(p, ksi);
853 }
854 mutex_exit(p->p_lock);
855 }
856 }
857 out:
858 mutex_exit(proc_lock);
859 return nfound ? 0 : ESRCH;
860 }
861
862 /*
863 * Send a signal to a process group. If checktty is set, limit to members
864 * which have a controlling terminal.
865 */
866 void
867 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
868 {
869 ksiginfo_t ksi;
870
871 KASSERT(!cpu_intr_p());
872 KASSERT(mutex_owned(proc_lock));
873
874 KSI_INIT_EMPTY(&ksi);
875 ksi.ksi_signo = sig;
876 kpgsignal(pgrp, &ksi, NULL, checkctty);
877 }
878
879 void
880 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
881 {
882 struct proc *p;
883
884 KASSERT(!cpu_intr_p());
885 KASSERT(mutex_owned(proc_lock));
886 KASSERT(pgrp != NULL);
887
888 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
889 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
890 kpsignal(p, ksi, data);
891 }
892
893 /*
894 * Send a signal caused by a trap to the current LWP. If it will be caught
895 * immediately, deliver it with correct code. Otherwise, post it normally.
896 */
897 void
898 trapsignal(struct lwp *l, ksiginfo_t *ksi)
899 {
900 struct proc *p;
901 struct sigacts *ps;
902 int signo = ksi->ksi_signo;
903 sigset_t *mask;
904 sig_t action;
905
906 KASSERT(KSI_TRAP_P(ksi));
907
908 ksi->ksi_lid = l->l_lid;
909 p = l->l_proc;
910
911 KASSERT(!cpu_intr_p());
912 mutex_enter(proc_lock);
913 mutex_enter(p->p_lock);
914
915 repeat:
916 /*
917 * If we are exiting, demise now.
918 *
919 * This avoids notifying tracer and deadlocking.
920 */
921 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
922 mutex_exit(p->p_lock);
923 mutex_exit(proc_lock);
924 lwp_exit(l);
925 panic("trapsignal");
926 /* NOTREACHED */
927 }
928
929 /*
930 * The process is already stopping.
931 */
932 if ((p->p_sflag & PS_STOPPING) != 0) {
933 mutex_exit(proc_lock);
934 sigswitch_unlock_and_switch_away(l);
935 mutex_enter(proc_lock);
936 mutex_enter(p->p_lock);
937 goto repeat;
938 }
939
940 mask = &l->l_sigmask;
941 ps = p->p_sigacts;
942 action = SIGACTION_PS(ps, signo).sa_handler;
943
944 if (ISSET(p->p_slflag, PSL_TRACED) &&
945 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
946 p->p_xsig != SIGKILL &&
947 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
948 p->p_xsig = signo;
949 p->p_sigctx.ps_faked = true;
950 p->p_sigctx.ps_lwp = ksi->ksi_lid;
951 p->p_sigctx.ps_info = ksi->ksi_info;
952 sigswitch(0, signo, true);
953
954 if (ktrpoint(KTR_PSIG)) {
955 if (p->p_emul->e_ktrpsig)
956 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
957 else
958 ktrpsig(signo, action, mask, ksi);
959 }
960 return;
961 }
962
963 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
964 const bool masked = sigismember(mask, signo);
965 if (caught && !masked) {
966 mutex_exit(proc_lock);
967 l->l_ru.ru_nsignals++;
968 kpsendsig(l, ksi, mask);
969 mutex_exit(p->p_lock);
970
971 if (ktrpoint(KTR_PSIG)) {
972 if (p->p_emul->e_ktrpsig)
973 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
974 else
975 ktrpsig(signo, action, mask, ksi);
976 }
977 return;
978 }
979
980 /*
981 * If the signal is masked or ignored, then unmask it and
982 * reset it to the default action so that the process or
983 * its tracer will be notified.
984 */
985 const bool ignored = action == SIG_IGN;
986 if (masked || ignored) {
987 mutex_enter(&ps->sa_mutex);
988 sigdelset(mask, signo);
989 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
990 sigdelset(&p->p_sigctx.ps_sigignore, signo);
991 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
992 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
993 mutex_exit(&ps->sa_mutex);
994 }
995
996 kpsignal2(p, ksi);
997 mutex_exit(p->p_lock);
998 mutex_exit(proc_lock);
999 }
1000
1001 /*
1002 * Fill in signal information and signal the parent for a child status change.
1003 */
1004 void
1005 child_psignal(struct proc *p, int mask)
1006 {
1007 ksiginfo_t ksi;
1008 struct proc *q;
1009 int xsig;
1010
1011 KASSERT(mutex_owned(proc_lock));
1012 KASSERT(mutex_owned(p->p_lock));
1013
1014 xsig = p->p_xsig;
1015
1016 KSI_INIT(&ksi);
1017 ksi.ksi_signo = SIGCHLD;
1018 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1019 ksi.ksi_pid = p->p_pid;
1020 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1021 ksi.ksi_status = xsig;
1022 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1023 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1024
1025 q = p->p_pptr;
1026
1027 mutex_exit(p->p_lock);
1028 mutex_enter(q->p_lock);
1029
1030 if ((q->p_sflag & mask) == 0)
1031 kpsignal2(q, &ksi);
1032
1033 mutex_exit(q->p_lock);
1034 mutex_enter(p->p_lock);
1035 }
1036
1037 void
1038 psignal(struct proc *p, int signo)
1039 {
1040 ksiginfo_t ksi;
1041
1042 KASSERT(!cpu_intr_p());
1043 KASSERT(mutex_owned(proc_lock));
1044
1045 KSI_INIT_EMPTY(&ksi);
1046 ksi.ksi_signo = signo;
1047 mutex_enter(p->p_lock);
1048 kpsignal2(p, &ksi);
1049 mutex_exit(p->p_lock);
1050 }
1051
1052 void
1053 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1054 {
1055 fdfile_t *ff;
1056 file_t *fp;
1057 fdtab_t *dt;
1058
1059 KASSERT(!cpu_intr_p());
1060 KASSERT(mutex_owned(proc_lock));
1061
1062 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1063 size_t fd;
1064 filedesc_t *fdp = p->p_fd;
1065
1066 /* XXXSMP locking */
1067 ksi->ksi_fd = -1;
1068 dt = fdp->fd_dt;
1069 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1070 if ((ff = dt->dt_ff[fd]) == NULL)
1071 continue;
1072 if ((fp = ff->ff_file) == NULL)
1073 continue;
1074 if (fp->f_data == data) {
1075 ksi->ksi_fd = fd;
1076 break;
1077 }
1078 }
1079 }
1080 mutex_enter(p->p_lock);
1081 kpsignal2(p, ksi);
1082 mutex_exit(p->p_lock);
1083 }
1084
1085 /*
1086 * sigismasked:
1087 *
1088 * Returns true if signal is ignored or masked for the specified LWP.
1089 */
1090 int
1091 sigismasked(struct lwp *l, int sig)
1092 {
1093 struct proc *p = l->l_proc;
1094
1095 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1096 sigismember(&l->l_sigmask, sig);
1097 }
1098
1099 /*
1100 * sigpost:
1101 *
1102 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1103 * be able to take the signal.
1104 */
1105 static int
1106 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1107 {
1108 int rv, masked;
1109 struct proc *p = l->l_proc;
1110
1111 KASSERT(mutex_owned(p->p_lock));
1112
1113 /*
1114 * If the LWP is on the way out, sigclear() will be busy draining all
1115 * pending signals. Don't give it more.
1116 */
1117 if (l->l_refcnt == 0)
1118 return 0;
1119
1120 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1121
1122 lwp_lock(l);
1123 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1124 if ((prop & SA_KILL) != 0)
1125 l->l_flag &= ~LW_DBGSUSPEND;
1126 else {
1127 lwp_unlock(l);
1128 return 0;
1129 }
1130 }
1131
1132 /*
1133 * Have the LWP check for signals. This ensures that even if no LWP
1134 * is found to take the signal immediately, it should be taken soon.
1135 */
1136 l->l_flag |= LW_PENDSIG;
1137
1138 /*
1139 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1140 * Note: SIGKILL and SIGSTOP cannot be masked.
1141 */
1142 masked = sigismember(&l->l_sigmask, sig);
1143 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1144 lwp_unlock(l);
1145 return 0;
1146 }
1147
1148 /*
1149 * If killing the process, make it run fast.
1150 */
1151 if (__predict_false((prop & SA_KILL) != 0) &&
1152 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1153 KASSERT(l->l_class == SCHED_OTHER);
1154 lwp_changepri(l, MAXPRI_USER);
1155 }
1156
1157 /*
1158 * If the LWP is running or on a run queue, then we win. If it's
1159 * sleeping interruptably, wake it and make it take the signal. If
1160 * the sleep isn't interruptable, then the chances are it will get
1161 * to see the signal soon anyhow. If suspended, it can't take the
1162 * signal right now. If it's LWP private or for all LWPs, save it
1163 * for later; otherwise punt.
1164 */
1165 rv = 0;
1166
1167 switch (l->l_stat) {
1168 case LSRUN:
1169 case LSONPROC:
1170 lwp_need_userret(l);
1171 rv = 1;
1172 break;
1173
1174 case LSSLEEP:
1175 if ((l->l_flag & LW_SINTR) != 0) {
1176 /* setrunnable() will release the lock. */
1177 setrunnable(l);
1178 return 1;
1179 }
1180 break;
1181
1182 case LSSUSPENDED:
1183 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1184 /* lwp_continue() will release the lock. */
1185 lwp_continue(l);
1186 return 1;
1187 }
1188 break;
1189
1190 case LSSTOP:
1191 if ((prop & SA_STOP) != 0)
1192 break;
1193
1194 /*
1195 * If the LWP is stopped and we are sending a continue
1196 * signal, then start it again.
1197 */
1198 if ((prop & SA_CONT) != 0) {
1199 if (l->l_wchan != NULL) {
1200 l->l_stat = LSSLEEP;
1201 p->p_nrlwps++;
1202 rv = 1;
1203 break;
1204 }
1205 /* setrunnable() will release the lock. */
1206 setrunnable(l);
1207 return 1;
1208 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1209 /* setrunnable() will release the lock. */
1210 setrunnable(l);
1211 return 1;
1212 }
1213 break;
1214
1215 default:
1216 break;
1217 }
1218
1219 lwp_unlock(l);
1220 return rv;
1221 }
1222
1223 /*
1224 * Notify an LWP that it has a pending signal.
1225 */
1226 void
1227 signotify(struct lwp *l)
1228 {
1229 KASSERT(lwp_locked(l, NULL));
1230
1231 l->l_flag |= LW_PENDSIG;
1232 lwp_need_userret(l);
1233 }
1234
1235 /*
1236 * Find an LWP within process p that is waiting on signal ksi, and hand
1237 * it on.
1238 */
1239 static int
1240 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1241 {
1242 struct lwp *l;
1243 int signo;
1244
1245 KASSERT(mutex_owned(p->p_lock));
1246
1247 signo = ksi->ksi_signo;
1248
1249 if (ksi->ksi_lid != 0) {
1250 /*
1251 * Signal came via _lwp_kill(). Find the LWP and see if
1252 * it's interested.
1253 */
1254 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1255 return 0;
1256 if (l->l_sigwaited == NULL ||
1257 !sigismember(&l->l_sigwaitset, signo))
1258 return 0;
1259 } else {
1260 /*
1261 * Look for any LWP that may be interested.
1262 */
1263 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1264 KASSERT(l->l_sigwaited != NULL);
1265 if (sigismember(&l->l_sigwaitset, signo))
1266 break;
1267 }
1268 }
1269
1270 if (l != NULL) {
1271 l->l_sigwaited->ksi_info = ksi->ksi_info;
1272 l->l_sigwaited = NULL;
1273 LIST_REMOVE(l, l_sigwaiter);
1274 cv_signal(&l->l_sigcv);
1275 return 1;
1276 }
1277
1278 return 0;
1279 }
1280
1281 /*
1282 * Send the signal to the process. If the signal has an action, the action
1283 * is usually performed by the target process rather than the caller; we add
1284 * the signal to the set of pending signals for the process.
1285 *
1286 * Exceptions:
1287 * o When a stop signal is sent to a sleeping process that takes the
1288 * default action, the process is stopped without awakening it.
1289 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1290 * regardless of the signal action (eg, blocked or ignored).
1291 *
1292 * Other ignored signals are discarded immediately.
1293 */
1294 int
1295 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1296 {
1297 int prop, signo = ksi->ksi_signo;
1298 struct lwp *l = NULL;
1299 ksiginfo_t *kp;
1300 lwpid_t lid;
1301 sig_t action;
1302 bool toall;
1303 int error = 0;
1304
1305 KASSERT(!cpu_intr_p());
1306 KASSERT(mutex_owned(proc_lock));
1307 KASSERT(mutex_owned(p->p_lock));
1308 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1309 KASSERT(signo > 0 && signo < NSIG);
1310
1311 /*
1312 * If the process is being created by fork, is a zombie or is
1313 * exiting, then just drop the signal here and bail out.
1314 */
1315 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1316 return 0;
1317
1318 /*
1319 * Notify any interested parties of the signal.
1320 */
1321 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1322
1323 /*
1324 * Some signals including SIGKILL must act on the entire process.
1325 */
1326 kp = NULL;
1327 prop = sigprop[signo];
1328 toall = ((prop & SA_TOALL) != 0);
1329 lid = toall ? 0 : ksi->ksi_lid;
1330
1331 /*
1332 * If proc is traced, always give parent a chance.
1333 */
1334 if (p->p_slflag & PSL_TRACED) {
1335 action = SIG_DFL;
1336
1337 if (lid == 0) {
1338 /*
1339 * If the process is being traced and the signal
1340 * is being caught, make sure to save any ksiginfo.
1341 */
1342 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1343 goto discard;
1344 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1345 goto out;
1346 }
1347 } else {
1348
1349 /*
1350 * If the signal is being ignored, then drop it. Note: we
1351 * don't set SIGCONT in ps_sigignore, and if it is set to
1352 * SIG_IGN, action will be SIG_DFL here.
1353 */
1354 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1355 goto discard;
1356
1357 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1358 action = SIG_CATCH;
1359 else {
1360 action = SIG_DFL;
1361
1362 /*
1363 * If sending a tty stop signal to a member of an
1364 * orphaned process group, discard the signal here if
1365 * the action is default; don't stop the process below
1366 * if sleeping, and don't clear any pending SIGCONT.
1367 */
1368 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1369 goto discard;
1370
1371 if (prop & SA_KILL && p->p_nice > NZERO)
1372 p->p_nice = NZERO;
1373 }
1374 }
1375
1376 /*
1377 * If stopping or continuing a process, discard any pending
1378 * signals that would do the inverse.
1379 */
1380 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1381 ksiginfoq_t kq;
1382
1383 ksiginfo_queue_init(&kq);
1384 if ((prop & SA_CONT) != 0)
1385 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1386 if ((prop & SA_STOP) != 0)
1387 sigclear(&p->p_sigpend, &contsigmask, &kq);
1388 ksiginfo_queue_drain(&kq); /* XXXSMP */
1389 }
1390
1391 /*
1392 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1393 * please!), check if any LWPs are waiting on it. If yes, pass on
1394 * the signal info. The signal won't be processed further here.
1395 */
1396 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1397 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1398 sigunwait(p, ksi))
1399 goto discard;
1400
1401 /*
1402 * XXXSMP Should be allocated by the caller, we're holding locks
1403 * here.
1404 */
1405 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1406 goto discard;
1407
1408 /*
1409 * LWP private signals are easy - just find the LWP and post
1410 * the signal to it.
1411 */
1412 if (lid != 0) {
1413 l = lwp_find(p, lid);
1414 if (l != NULL) {
1415 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1416 goto out;
1417 membar_producer();
1418 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1419 signo = -1;
1420 }
1421 goto out;
1422 }
1423
1424 /*
1425 * Some signals go to all LWPs, even if posted with _lwp_kill()
1426 * or for an SA process.
1427 */
1428 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1429 if ((p->p_slflag & PSL_TRACED) != 0)
1430 goto deliver;
1431
1432 /*
1433 * If SIGCONT is default (or ignored) and process is
1434 * asleep, we are finished; the process should not
1435 * be awakened.
1436 */
1437 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1438 goto out;
1439 } else {
1440 /*
1441 * Process is stopped or stopping.
1442 * - If traced, then no action is needed, unless killing.
1443 * - Run the process only if sending SIGCONT or SIGKILL.
1444 */
1445 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1446 goto out;
1447 }
1448 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1449 /*
1450 * Re-adjust p_nstopchild if the process was
1451 * stopped but not yet collected by its parent.
1452 */
1453 if (p->p_stat == SSTOP && !p->p_waited)
1454 p->p_pptr->p_nstopchild--;
1455 p->p_stat = SACTIVE;
1456 p->p_sflag &= ~PS_STOPPING;
1457 if (p->p_slflag & PSL_TRACED) {
1458 KASSERT(signo == SIGKILL);
1459 goto deliver;
1460 }
1461 /*
1462 * Do not make signal pending if SIGCONT is default.
1463 *
1464 * If the process catches SIGCONT, let it handle the
1465 * signal itself (if waiting on event - process runs,
1466 * otherwise continues sleeping).
1467 */
1468 if ((prop & SA_CONT) != 0) {
1469 p->p_xsig = SIGCONT;
1470 p->p_sflag |= PS_CONTINUED;
1471 child_psignal(p, 0);
1472 if (action == SIG_DFL) {
1473 KASSERT(signo != SIGKILL);
1474 goto deliver;
1475 }
1476 }
1477 } else if ((prop & SA_STOP) != 0) {
1478 /*
1479 * Already stopped, don't need to stop again.
1480 * (If we did the shell could get confused.)
1481 */
1482 goto out;
1483 }
1484 }
1485 /*
1486 * Make signal pending.
1487 */
1488 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1489 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1490 goto out;
1491 deliver:
1492 /*
1493 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1494 * visible on the per process list (for sigispending()). This
1495 * is unlikely to be needed in practice, but...
1496 */
1497 membar_producer();
1498
1499 /*
1500 * Try to find an LWP that can take the signal.
1501 */
1502 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1503 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1504 break;
1505 }
1506 signo = -1;
1507 out:
1508 /*
1509 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1510 * with locks held. The caller should take care of this.
1511 */
1512 ksiginfo_free(kp);
1513 if (signo == -1)
1514 return error;
1515 discard:
1516 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1517 return error;
1518 }
1519
1520 void
1521 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1522 {
1523 struct proc *p = l->l_proc;
1524
1525 KASSERT(mutex_owned(p->p_lock));
1526 (*p->p_emul->e_sendsig)(ksi, mask);
1527 }
1528
1529 /*
1530 * Stop any LWPs sleeping interruptably.
1531 */
1532 static void
1533 proc_stop_lwps(struct proc *p)
1534 {
1535 struct lwp *l;
1536
1537 KASSERT(mutex_owned(p->p_lock));
1538 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1539
1540 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1541 lwp_lock(l);
1542 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1543 l->l_stat = LSSTOP;
1544 p->p_nrlwps--;
1545 }
1546 lwp_unlock(l);
1547 }
1548 }
1549
1550 /*
1551 * Finish stopping of a process. Mark it stopped and notify the parent.
1552 *
1553 * Drop p_lock briefly if ppsig is true.
1554 */
1555 static void
1556 proc_stop_done(struct proc *p, int ppmask)
1557 {
1558
1559 KASSERT(mutex_owned(proc_lock));
1560 KASSERT(mutex_owned(p->p_lock));
1561 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1562 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1563
1564 p->p_sflag &= ~PS_STOPPING;
1565 p->p_stat = SSTOP;
1566 p->p_waited = 0;
1567 p->p_pptr->p_nstopchild++;
1568
1569 /* child_psignal drops p_lock briefly. */
1570 child_psignal(p, ppmask);
1571 cv_broadcast(&p->p_pptr->p_waitcv);
1572 }
1573
1574 /*
1575 * Stop the current process and switch away to the debugger notifying
1576 * an event specific to a traced process only.
1577 */
1578 void
1579 eventswitch(int code, int pe_report_event, int entity)
1580 {
1581 struct lwp *l = curlwp;
1582 struct proc *p = l->l_proc;
1583 struct sigacts *ps;
1584 sigset_t *mask;
1585 sig_t action;
1586 ksiginfo_t ksi;
1587 const int signo = SIGTRAP;
1588
1589 KASSERT(mutex_owned(proc_lock));
1590 KASSERT(mutex_owned(p->p_lock));
1591 KASSERT(p->p_pptr != initproc);
1592 KASSERT(l->l_stat == LSONPROC);
1593 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1594 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1595 KASSERT(p->p_nrlwps > 0);
1596 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1597 (code == TRAP_EXEC));
1598 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1599 KASSERT((code != TRAP_LWP) || (entity > 0));
1600
1601 repeat:
1602 /*
1603 * If we are exiting, demise now.
1604 *
1605 * This avoids notifying tracer and deadlocking.
1606 */
1607 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1608 mutex_exit(p->p_lock);
1609 mutex_exit(proc_lock);
1610
1611 if (pe_report_event == PTRACE_LWP_EXIT) {
1612 /* Avoid double lwp_exit() and panic. */
1613 return;
1614 }
1615
1616 lwp_exit(l);
1617 panic("eventswitch");
1618 /* NOTREACHED */
1619 }
1620
1621 /*
1622 * If we are no longer traced, abandon this event signal.
1623 *
1624 * This avoids killing a process after detaching the debugger.
1625 */
1626 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1627 mutex_exit(p->p_lock);
1628 mutex_exit(proc_lock);
1629 return;
1630 }
1631
1632 /*
1633 * If there's a pending SIGKILL process it immediately.
1634 */
1635 if (p->p_xsig == SIGKILL ||
1636 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1637 mutex_exit(p->p_lock);
1638 mutex_exit(proc_lock);
1639 return;
1640 }
1641
1642 /*
1643 * The process is already stopping.
1644 */
1645 if ((p->p_sflag & PS_STOPPING) != 0) {
1646 mutex_exit(proc_lock);
1647 sigswitch_unlock_and_switch_away(l);
1648 mutex_enter(proc_lock);
1649 mutex_enter(p->p_lock);
1650 goto repeat;
1651 }
1652
1653 KSI_INIT_TRAP(&ksi);
1654 ksi.ksi_lid = l->l_lid;
1655 ksi.ksi_signo = signo;
1656 ksi.ksi_code = code;
1657 ksi.ksi_pe_report_event = pe_report_event;
1658
1659 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1660 ksi.ksi_pe_other_pid = entity;
1661
1662 /* Needed for ktrace */
1663 ps = p->p_sigacts;
1664 action = SIGACTION_PS(ps, signo).sa_handler;
1665 mask = &l->l_sigmask;
1666
1667 p->p_xsig = signo;
1668 p->p_sigctx.ps_faked = true;
1669 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1670 p->p_sigctx.ps_info = ksi.ksi_info;
1671
1672 sigswitch(0, signo, true);
1673
1674 if (code == TRAP_CHLD) {
1675 mutex_enter(proc_lock);
1676 while (l->l_vforkwaiting)
1677 cv_wait(&l->l_waitcv, proc_lock);
1678 mutex_exit(proc_lock);
1679 }
1680
1681 if (ktrpoint(KTR_PSIG)) {
1682 if (p->p_emul->e_ktrpsig)
1683 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1684 else
1685 ktrpsig(signo, action, mask, &ksi);
1686 }
1687 }
1688
1689 /*
1690 * Stop the current process and switch away when being stopped or traced.
1691 */
1692 static void
1693 sigswitch(int ppmask, int signo, bool proc_lock_held)
1694 {
1695 struct lwp *l = curlwp;
1696 struct proc *p = l->l_proc;
1697
1698 KASSERT(mutex_owned(p->p_lock));
1699 KASSERT(l->l_stat == LSONPROC);
1700 KASSERT(p->p_nrlwps > 0);
1701
1702 if (proc_lock_held) {
1703 KASSERT(mutex_owned(proc_lock));
1704 } else {
1705 KASSERT(!mutex_owned(proc_lock));
1706 }
1707
1708 /*
1709 * On entry we know that the process needs to stop. If it's
1710 * the result of a 'sideways' stop signal that has been sourced
1711 * through issignal(), then stop other LWPs in the process too.
1712 */
1713 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1714 KASSERT(signo != 0);
1715 proc_stop(p, signo);
1716 KASSERT(p->p_nrlwps > 0);
1717 }
1718
1719 /*
1720 * If we are the last live LWP, and the stop was a result of
1721 * a new signal, then signal the parent.
1722 */
1723 if ((p->p_sflag & PS_STOPPING) != 0) {
1724 if (!proc_lock_held && !mutex_tryenter(proc_lock)) {
1725 mutex_exit(p->p_lock);
1726 mutex_enter(proc_lock);
1727 mutex_enter(p->p_lock);
1728 }
1729
1730 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1731 /*
1732 * Note that proc_stop_done() can drop
1733 * p->p_lock briefly.
1734 */
1735 proc_stop_done(p, ppmask);
1736 }
1737
1738 mutex_exit(proc_lock);
1739 }
1740
1741 sigswitch_unlock_and_switch_away(l);
1742 }
1743
1744 /*
1745 * Unlock and switch away.
1746 */
1747 static void
1748 sigswitch_unlock_and_switch_away(struct lwp *l)
1749 {
1750 struct proc *p;
1751 int biglocks;
1752
1753 p = l->l_proc;
1754
1755 KASSERT(mutex_owned(p->p_lock));
1756 KASSERT(!mutex_owned(proc_lock));
1757
1758 KASSERT(l->l_stat == LSONPROC);
1759 KASSERT(p->p_nrlwps > 0);
1760
1761 KERNEL_UNLOCK_ALL(l, &biglocks);
1762 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1763 p->p_nrlwps--;
1764 lwp_lock(l);
1765 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1766 l->l_stat = LSSTOP;
1767 lwp_unlock(l);
1768 }
1769
1770 mutex_exit(p->p_lock);
1771 lwp_lock(l);
1772 mi_switch(l);
1773 KERNEL_LOCK(biglocks, l);
1774 }
1775
1776 /*
1777 * Check for a signal from the debugger.
1778 */
1779 static int
1780 sigchecktrace(void)
1781 {
1782 struct lwp *l = curlwp;
1783 struct proc *p = l->l_proc;
1784 int signo;
1785
1786 KASSERT(mutex_owned(p->p_lock));
1787
1788 /* If there's a pending SIGKILL, process it immediately. */
1789 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1790 return 0;
1791
1792 /*
1793 * If we are no longer being traced, or the parent didn't
1794 * give us a signal, or we're stopping, look for more signals.
1795 */
1796 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1797 (p->p_sflag & PS_STOPPING) != 0)
1798 return 0;
1799
1800 /*
1801 * If the new signal is being masked, look for other signals.
1802 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1803 */
1804 signo = p->p_xsig;
1805 p->p_xsig = 0;
1806 if (sigismember(&l->l_sigmask, signo)) {
1807 signo = 0;
1808 }
1809 return signo;
1810 }
1811
1812 /*
1813 * If the current process has received a signal (should be caught or cause
1814 * termination, should interrupt current syscall), return the signal number.
1815 *
1816 * Stop signals with default action are processed immediately, then cleared;
1817 * they aren't returned. This is checked after each entry to the system for
1818 * a syscall or trap.
1819 *
1820 * We will also return -1 if the process is exiting and the current LWP must
1821 * follow suit.
1822 */
1823 int
1824 issignal(struct lwp *l)
1825 {
1826 struct proc *p;
1827 int siglwp, signo, prop;
1828 sigpend_t *sp;
1829 sigset_t ss;
1830
1831 p = l->l_proc;
1832 sp = NULL;
1833 signo = 0;
1834
1835 KASSERT(p == curproc);
1836 KASSERT(mutex_owned(p->p_lock));
1837
1838 for (;;) {
1839 /* Discard any signals that we have decided not to take. */
1840 if (signo != 0) {
1841 (void)sigget(sp, NULL, signo, NULL);
1842 }
1843
1844 /*
1845 * If the process is stopped/stopping, then stop ourselves
1846 * now that we're on the kernel/userspace boundary. When
1847 * we awaken, check for a signal from the debugger.
1848 */
1849 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1850 sigswitch_unlock_and_switch_away(l);
1851 mutex_enter(p->p_lock);
1852 continue;
1853 } else if (p->p_stat == SACTIVE)
1854 signo = sigchecktrace();
1855 else
1856 signo = 0;
1857
1858 /* Signals from the debugger are "out of band". */
1859 sp = NULL;
1860
1861 /*
1862 * If the debugger didn't provide a signal, find a pending
1863 * signal from our set. Check per-LWP signals first, and
1864 * then per-process.
1865 */
1866 if (signo == 0) {
1867 sp = &l->l_sigpend;
1868 ss = sp->sp_set;
1869 siglwp = l->l_lid;
1870 if ((p->p_lflag & PL_PPWAIT) != 0)
1871 sigminusset(&vforksigmask, &ss);
1872 sigminusset(&l->l_sigmask, &ss);
1873
1874 if ((signo = firstsig(&ss)) == 0) {
1875 sp = &p->p_sigpend;
1876 ss = sp->sp_set;
1877 siglwp = 0;
1878 if ((p->p_lflag & PL_PPWAIT) != 0)
1879 sigminusset(&vforksigmask, &ss);
1880 sigminusset(&l->l_sigmask, &ss);
1881
1882 if ((signo = firstsig(&ss)) == 0) {
1883 /*
1884 * No signal pending - clear the
1885 * indicator and bail out.
1886 */
1887 lwp_lock(l);
1888 l->l_flag &= ~LW_PENDSIG;
1889 lwp_unlock(l);
1890 sp = NULL;
1891 break;
1892 }
1893 }
1894 }
1895
1896 if (sp) {
1897 /* Overwrite process' signal context to correspond
1898 * to the currently reported LWP. This is necessary
1899 * for PT_GET_SIGINFO to report the correct signal when
1900 * multiple LWPs have pending signals. We do this only
1901 * when the signal comes from the queue, for signals
1902 * created by the debugger we assume it set correct
1903 * siginfo.
1904 */
1905 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1906 if (ksi) {
1907 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1908 p->p_sigctx.ps_info = ksi->ksi_info;
1909 } else {
1910 p->p_sigctx.ps_lwp = siglwp;
1911 memset(&p->p_sigctx.ps_info, 0,
1912 sizeof(p->p_sigctx.ps_info));
1913 p->p_sigctx.ps_info._signo = signo;
1914 p->p_sigctx.ps_info._code = SI_NOINFO;
1915 }
1916 }
1917
1918 /*
1919 * We should see pending but ignored signals only if
1920 * we are being traced.
1921 */
1922 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1923 (p->p_slflag & PSL_TRACED) == 0) {
1924 /* Discard the signal. */
1925 continue;
1926 }
1927
1928 /*
1929 * If traced, always stop, and stay stopped until released
1930 * by the debugger. If the our parent is our debugger waiting
1931 * for us and we vforked, don't hang as we could deadlock.
1932 */
1933 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1934 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1935 (p->p_pptr == p->p_opptr))) {
1936 /*
1937 * Take the signal, but don't remove it from the
1938 * siginfo queue, because the debugger can send
1939 * it later.
1940 */
1941 if (sp)
1942 sigdelset(&sp->sp_set, signo);
1943 p->p_xsig = signo;
1944
1945 /* Handling of signal trace */
1946 sigswitch(0, signo, false);
1947 mutex_enter(p->p_lock);
1948
1949 /* Check for a signal from the debugger. */
1950 if ((signo = sigchecktrace()) == 0)
1951 continue;
1952
1953 /* Signals from the debugger are "out of band". */
1954 sp = NULL;
1955 }
1956
1957 prop = sigprop[signo];
1958
1959 /*
1960 * Decide whether the signal should be returned.
1961 */
1962 switch ((long)SIGACTION(p, signo).sa_handler) {
1963 case (long)SIG_DFL:
1964 /*
1965 * Don't take default actions on system processes.
1966 */
1967 if (p->p_pid <= 1) {
1968 #ifdef DIAGNOSTIC
1969 /*
1970 * Are you sure you want to ignore SIGSEGV
1971 * in init? XXX
1972 */
1973 printf_nolog("Process (pid %d) got sig %d\n",
1974 p->p_pid, signo);
1975 #endif
1976 continue;
1977 }
1978
1979 /*
1980 * If there is a pending stop signal to process with
1981 * default action, stop here, then clear the signal.
1982 * However, if process is member of an orphaned
1983 * process group, ignore tty stop signals.
1984 */
1985 if (prop & SA_STOP) {
1986 /*
1987 * XXX Don't hold proc_lock for p_lflag,
1988 * but it's not a big deal.
1989 */
1990 if ((ISSET(p->p_slflag, PSL_TRACED) &&
1991 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1992 (p->p_pptr == p->p_opptr))) ||
1993 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1994 prop & SA_TTYSTOP)) {
1995 /* Ignore the signal. */
1996 continue;
1997 }
1998 /* Take the signal. */
1999 (void)sigget(sp, NULL, signo, NULL);
2000 p->p_xsig = signo;
2001 p->p_sflag &= ~PS_CONTINUED;
2002 signo = 0;
2003 sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2004 mutex_enter(p->p_lock);
2005 } else if (prop & SA_IGNORE) {
2006 /*
2007 * Except for SIGCONT, shouldn't get here.
2008 * Default action is to ignore; drop it.
2009 */
2010 continue;
2011 }
2012 break;
2013
2014 case (long)SIG_IGN:
2015 #ifdef DEBUG_ISSIGNAL
2016 /*
2017 * Masking above should prevent us ever trying
2018 * to take action on an ignored signal other
2019 * than SIGCONT, unless process is traced.
2020 */
2021 if ((prop & SA_CONT) == 0 &&
2022 (p->p_slflag & PSL_TRACED) == 0)
2023 printf_nolog("issignal\n");
2024 #endif
2025 continue;
2026
2027 default:
2028 /*
2029 * This signal has an action, let postsig() process
2030 * it.
2031 */
2032 break;
2033 }
2034
2035 break;
2036 }
2037
2038 l->l_sigpendset = sp;
2039 return signo;
2040 }
2041
2042 /*
2043 * Take the action for the specified signal
2044 * from the current set of pending signals.
2045 */
2046 void
2047 postsig(int signo)
2048 {
2049 struct lwp *l;
2050 struct proc *p;
2051 struct sigacts *ps;
2052 sig_t action;
2053 sigset_t *returnmask;
2054 ksiginfo_t ksi;
2055
2056 l = curlwp;
2057 p = l->l_proc;
2058 ps = p->p_sigacts;
2059
2060 KASSERT(mutex_owned(p->p_lock));
2061 KASSERT(signo > 0);
2062
2063 /*
2064 * Set the new mask value and also defer further occurrences of this
2065 * signal.
2066 *
2067 * Special case: user has done a sigsuspend. Here the current mask is
2068 * not of interest, but rather the mask from before the sigsuspend is
2069 * what we want restored after the signal processing is completed.
2070 */
2071 if (l->l_sigrestore) {
2072 returnmask = &l->l_sigoldmask;
2073 l->l_sigrestore = 0;
2074 } else
2075 returnmask = &l->l_sigmask;
2076
2077 /*
2078 * Commit to taking the signal before releasing the mutex.
2079 */
2080 action = SIGACTION_PS(ps, signo).sa_handler;
2081 l->l_ru.ru_nsignals++;
2082 if (l->l_sigpendset == NULL) {
2083 /* From the debugger */
2084 if (p->p_sigctx.ps_faked &&
2085 signo == p->p_sigctx.ps_info._signo) {
2086 KSI_INIT(&ksi);
2087 ksi.ksi_info = p->p_sigctx.ps_info;
2088 ksi.ksi_lid = p->p_sigctx.ps_lwp;
2089 p->p_sigctx.ps_faked = false;
2090 } else {
2091 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2092 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
2093 }
2094 } else
2095 sigget(l->l_sigpendset, &ksi, signo, NULL);
2096
2097 if (ktrpoint(KTR_PSIG)) {
2098 mutex_exit(p->p_lock);
2099 if (p->p_emul->e_ktrpsig)
2100 p->p_emul->e_ktrpsig(signo, action,
2101 returnmask, &ksi);
2102 else
2103 ktrpsig(signo, action, returnmask, &ksi);
2104 mutex_enter(p->p_lock);
2105 }
2106
2107 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2108
2109 if (action == SIG_DFL) {
2110 /*
2111 * Default action, where the default is to kill
2112 * the process. (Other cases were ignored above.)
2113 */
2114 sigexit(l, signo);
2115 return;
2116 }
2117
2118 /*
2119 * If we get here, the signal must be caught.
2120 */
2121 #ifdef DIAGNOSTIC
2122 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2123 panic("postsig action");
2124 #endif
2125
2126 kpsendsig(l, &ksi, returnmask);
2127 }
2128
2129 /*
2130 * sendsig:
2131 *
2132 * Default signal delivery method for NetBSD.
2133 */
2134 void
2135 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2136 {
2137 struct sigacts *sa;
2138 int sig;
2139
2140 sig = ksi->ksi_signo;
2141 sa = curproc->p_sigacts;
2142
2143 switch (sa->sa_sigdesc[sig].sd_vers) {
2144 case 0:
2145 case 1:
2146 /* Compat for 1.6 and earlier. */
2147 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2148 break);
2149 return;
2150 case 2:
2151 case 3:
2152 sendsig_siginfo(ksi, mask);
2153 return;
2154 default:
2155 break;
2156 }
2157
2158 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2159 sigexit(curlwp, SIGILL);
2160 }
2161
2162 /*
2163 * sendsig_reset:
2164 *
2165 * Reset the signal action. Called from emulation specific sendsig()
2166 * before unlocking to deliver the signal.
2167 */
2168 void
2169 sendsig_reset(struct lwp *l, int signo)
2170 {
2171 struct proc *p = l->l_proc;
2172 struct sigacts *ps = p->p_sigacts;
2173
2174 KASSERT(mutex_owned(p->p_lock));
2175
2176 p->p_sigctx.ps_lwp = 0;
2177 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2178
2179 mutex_enter(&ps->sa_mutex);
2180 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2181 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2182 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2183 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2184 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2185 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2186 }
2187 mutex_exit(&ps->sa_mutex);
2188 }
2189
2190 /*
2191 * Kill the current process for stated reason.
2192 */
2193 void
2194 killproc(struct proc *p, const char *why)
2195 {
2196
2197 KASSERT(mutex_owned(proc_lock));
2198
2199 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2200 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2201 psignal(p, SIGKILL);
2202 }
2203
2204 /*
2205 * Force the current process to exit with the specified signal, dumping core
2206 * if appropriate. We bypass the normal tests for masked and caught
2207 * signals, allowing unrecoverable failures to terminate the process without
2208 * changing signal state. Mark the accounting record with the signal
2209 * termination. If dumping core, save the signal number for the debugger.
2210 * Calls exit and does not return.
2211 */
2212 void
2213 sigexit(struct lwp *l, int signo)
2214 {
2215 int exitsig, error, docore;
2216 struct proc *p;
2217 struct lwp *t;
2218
2219 p = l->l_proc;
2220
2221 KASSERT(mutex_owned(p->p_lock));
2222 KERNEL_UNLOCK_ALL(l, NULL);
2223
2224 /*
2225 * Don't permit coredump() multiple times in the same process.
2226 * Call back into sigexit, where we will be suspended until
2227 * the deed is done. Note that this is a recursive call, but
2228 * LW_WCORE will prevent us from coming back this way.
2229 */
2230 if ((p->p_sflag & PS_WCORE) != 0) {
2231 lwp_lock(l);
2232 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2233 lwp_unlock(l);
2234 mutex_exit(p->p_lock);
2235 lwp_userret(l);
2236 panic("sigexit 1");
2237 /* NOTREACHED */
2238 }
2239
2240 /* If process is already on the way out, then bail now. */
2241 if ((p->p_sflag & PS_WEXIT) != 0) {
2242 mutex_exit(p->p_lock);
2243 lwp_exit(l);
2244 panic("sigexit 2");
2245 /* NOTREACHED */
2246 }
2247
2248 /*
2249 * Prepare all other LWPs for exit. If dumping core, suspend them
2250 * so that their registers are available long enough to be dumped.
2251 */
2252 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2253 p->p_sflag |= PS_WCORE;
2254 for (;;) {
2255 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2256 lwp_lock(t);
2257 if (t == l) {
2258 t->l_flag &=
2259 ~(LW_WSUSPEND | LW_DBGSUSPEND);
2260 lwp_unlock(t);
2261 continue;
2262 }
2263 t->l_flag |= (LW_WCORE | LW_WEXIT);
2264 lwp_suspend(l, t);
2265 }
2266
2267 if (p->p_nrlwps == 1)
2268 break;
2269
2270 /*
2271 * Kick any LWPs sitting in lwp_wait1(), and wait
2272 * for everyone else to stop before proceeding.
2273 */
2274 p->p_nlwpwait++;
2275 cv_broadcast(&p->p_lwpcv);
2276 cv_wait(&p->p_lwpcv, p->p_lock);
2277 p->p_nlwpwait--;
2278 }
2279 }
2280
2281 exitsig = signo;
2282 p->p_acflag |= AXSIG;
2283 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2284 p->p_sigctx.ps_info._signo = signo;
2285 p->p_sigctx.ps_info._code = SI_NOINFO;
2286
2287 if (docore) {
2288 mutex_exit(p->p_lock);
2289 MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2290
2291 if (kern_logsigexit) {
2292 int uid = l->l_cred ?
2293 (int)kauth_cred_geteuid(l->l_cred) : -1;
2294
2295 if (error)
2296 log(LOG_INFO, lognocoredump, p->p_pid,
2297 p->p_comm, uid, signo, error);
2298 else
2299 log(LOG_INFO, logcoredump, p->p_pid,
2300 p->p_comm, uid, signo);
2301 }
2302
2303 #ifdef PAX_SEGVGUARD
2304 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2305 #endif /* PAX_SEGVGUARD */
2306 /* Acquire the sched state mutex. exit1() will release it. */
2307 mutex_enter(p->p_lock);
2308 if (error == 0)
2309 p->p_sflag |= PS_COREDUMP;
2310 }
2311
2312 /* No longer dumping core. */
2313 p->p_sflag &= ~PS_WCORE;
2314
2315 exit1(l, 0, exitsig);
2316 /* NOTREACHED */
2317 }
2318
2319 /*
2320 * Many emulations have a common coredump_netbsd() established as their
2321 * dump routine. Since the "real" code may (or may not) be present in
2322 * loadable module, we provide a routine here which calls the module
2323 * hook.
2324 */
2325
2326 int
2327 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2328 {
2329 int retval;
2330
2331 MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2332 return retval;
2333 }
2334
2335 /*
2336 * Put process 'p' into the stopped state and optionally, notify the parent.
2337 */
2338 void
2339 proc_stop(struct proc *p, int signo)
2340 {
2341 struct lwp *l;
2342
2343 KASSERT(mutex_owned(p->p_lock));
2344
2345 /*
2346 * First off, set the stopping indicator and bring all sleeping
2347 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2348 * unlock between here and the p->p_nrlwps check below.
2349 */
2350 p->p_sflag |= PS_STOPPING;
2351 membar_producer();
2352
2353 proc_stop_lwps(p);
2354
2355 /*
2356 * If there are no LWPs available to take the signal, then we
2357 * signal the parent process immediately. Otherwise, the last
2358 * LWP to stop will take care of it.
2359 */
2360
2361 if (p->p_nrlwps == 0) {
2362 proc_stop_done(p, PS_NOCLDSTOP);
2363 } else {
2364 /*
2365 * Have the remaining LWPs come to a halt, and trigger
2366 * proc_stop_callout() to ensure that they do.
2367 */
2368 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2369 sigpost(l, SIG_DFL, SA_STOP, signo);
2370 }
2371 callout_schedule(&proc_stop_ch, 1);
2372 }
2373 }
2374
2375 /*
2376 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2377 * but wait for them to come to a halt at the kernel-user boundary. This is
2378 * to allow LWPs to release any locks that they may hold before stopping.
2379 *
2380 * Non-interruptable sleeps can be long, and there is the potential for an
2381 * LWP to begin sleeping interruptably soon after the process has been set
2382 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2383 * stopping, and so complete halt of the process and the return of status
2384 * information to the parent could be delayed indefinitely.
2385 *
2386 * To handle this race, proc_stop_callout() runs once per tick while there
2387 * are stopping processes in the system. It sets LWPs that are sleeping
2388 * interruptably into the LSSTOP state.
2389 *
2390 * Note that we are not concerned about keeping all LWPs stopped while the
2391 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2392 * What we do need to ensure is that all LWPs in a stopping process have
2393 * stopped at least once, so that notification can be sent to the parent
2394 * process.
2395 */
2396 static void
2397 proc_stop_callout(void *cookie)
2398 {
2399 bool more, restart;
2400 struct proc *p;
2401
2402 (void)cookie;
2403
2404 do {
2405 restart = false;
2406 more = false;
2407
2408 mutex_enter(proc_lock);
2409 PROCLIST_FOREACH(p, &allproc) {
2410 mutex_enter(p->p_lock);
2411
2412 if ((p->p_sflag & PS_STOPPING) == 0) {
2413 mutex_exit(p->p_lock);
2414 continue;
2415 }
2416
2417 /* Stop any LWPs sleeping interruptably. */
2418 proc_stop_lwps(p);
2419 if (p->p_nrlwps == 0) {
2420 /*
2421 * We brought the process to a halt.
2422 * Mark it as stopped and notify the
2423 * parent.
2424 *
2425 * Note that proc_stop_done() will
2426 * drop p->p_lock briefly.
2427 * Arrange to restart and check
2428 * all processes again.
2429 */
2430 restart = true;
2431 proc_stop_done(p, PS_NOCLDSTOP);
2432 } else
2433 more = true;
2434
2435 mutex_exit(p->p_lock);
2436 if (restart)
2437 break;
2438 }
2439 mutex_exit(proc_lock);
2440 } while (restart);
2441
2442 /*
2443 * If we noted processes that are stopping but still have
2444 * running LWPs, then arrange to check again in 1 tick.
2445 */
2446 if (more)
2447 callout_schedule(&proc_stop_ch, 1);
2448 }
2449
2450 /*
2451 * Given a process in state SSTOP, set the state back to SACTIVE and
2452 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2453 */
2454 void
2455 proc_unstop(struct proc *p)
2456 {
2457 struct lwp *l;
2458 int sig;
2459
2460 KASSERT(mutex_owned(proc_lock));
2461 KASSERT(mutex_owned(p->p_lock));
2462
2463 p->p_stat = SACTIVE;
2464 p->p_sflag &= ~PS_STOPPING;
2465 sig = p->p_xsig;
2466
2467 if (!p->p_waited)
2468 p->p_pptr->p_nstopchild--;
2469
2470 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2471 lwp_lock(l);
2472 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2473 lwp_unlock(l);
2474 continue;
2475 }
2476 if (l->l_wchan == NULL) {
2477 setrunnable(l);
2478 continue;
2479 }
2480 if (sig && (l->l_flag & LW_SINTR) != 0) {
2481 setrunnable(l);
2482 sig = 0;
2483 } else {
2484 l->l_stat = LSSLEEP;
2485 p->p_nrlwps++;
2486 lwp_unlock(l);
2487 }
2488 }
2489 }
2490
2491 void
2492 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2493 const register_t *ret, int error)
2494 {
2495 struct lwp *l = curlwp;
2496 struct proc *p = l->l_proc;
2497 struct sigacts *ps;
2498 sigset_t *mask;
2499 sig_t action;
2500 ksiginfo_t ksi;
2501 size_t i, sy_narg;
2502 const int signo = SIGTRAP;
2503
2504 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2505 KASSERT(p->p_pptr != initproc);
2506 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2507 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2508
2509 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2510
2511 KSI_INIT_TRAP(&ksi);
2512 ksi.ksi_lid = l->l_lid;
2513 ksi.ksi_signo = signo;
2514 ksi.ksi_code = trapno;
2515
2516 ksi.ksi_sysnum = sysnum;
2517 if (trapno == TRAP_SCE) {
2518 ksi.ksi_retval[0] = 0;
2519 ksi.ksi_retval[1] = 0;
2520 ksi.ksi_error = 0;
2521 } else {
2522 ksi.ksi_retval[0] = ret[0];
2523 ksi.ksi_retval[1] = ret[1];
2524 ksi.ksi_error = error;
2525 }
2526
2527 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2528
2529 for (i = 0; i < sy_narg; i++)
2530 ksi.ksi_args[i] = args[i];
2531
2532 mutex_enter(p->p_lock);
2533
2534 repeat:
2535 /*
2536 * If we are exiting, demise now.
2537 *
2538 * This avoids notifying tracer and deadlocking.
2539 */
2540 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2541 mutex_exit(p->p_lock);
2542 lwp_exit(l);
2543 panic("proc_stoptrace");
2544 /* NOTREACHED */
2545 }
2546
2547 /*
2548 * If there's a pending SIGKILL process it immediately.
2549 */
2550 if (p->p_xsig == SIGKILL ||
2551 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2552 mutex_exit(p->p_lock);
2553 return;
2554 }
2555
2556 /*
2557 * If we are no longer traced, abandon this event signal.
2558 *
2559 * This avoids killing a process after detaching the debugger.
2560 */
2561 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2562 mutex_exit(p->p_lock);
2563 return;
2564 }
2565
2566 /*
2567 * The process is already stopping.
2568 */
2569 if ((p->p_sflag & PS_STOPPING) != 0) {
2570 sigswitch_unlock_and_switch_away(l);
2571 mutex_enter(p->p_lock);
2572 goto repeat;
2573 }
2574
2575 /* Needed for ktrace */
2576 ps = p->p_sigacts;
2577 action = SIGACTION_PS(ps, signo).sa_handler;
2578 mask = &l->l_sigmask;
2579
2580 p->p_xsig = signo;
2581 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2582 p->p_sigctx.ps_info = ksi.ksi_info;
2583 sigswitch(0, signo, false);
2584
2585 if (ktrpoint(KTR_PSIG)) {
2586 if (p->p_emul->e_ktrpsig)
2587 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2588 else
2589 ktrpsig(signo, action, mask, &ksi);
2590 }
2591 }
2592
2593 static int
2594 filt_sigattach(struct knote *kn)
2595 {
2596 struct proc *p = curproc;
2597
2598 kn->kn_obj = p;
2599 kn->kn_flags |= EV_CLEAR; /* automatically set */
2600
2601 mutex_enter(p->p_lock);
2602 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2603 mutex_exit(p->p_lock);
2604
2605 return 0;
2606 }
2607
2608 static void
2609 filt_sigdetach(struct knote *kn)
2610 {
2611 struct proc *p = kn->kn_obj;
2612
2613 mutex_enter(p->p_lock);
2614 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2615 mutex_exit(p->p_lock);
2616 }
2617
2618 /*
2619 * Signal knotes are shared with proc knotes, so we apply a mask to
2620 * the hint in order to differentiate them from process hints. This
2621 * could be avoided by using a signal-specific knote list, but probably
2622 * isn't worth the trouble.
2623 */
2624 static int
2625 filt_signal(struct knote *kn, long hint)
2626 {
2627
2628 if (hint & NOTE_SIGNAL) {
2629 hint &= ~NOTE_SIGNAL;
2630
2631 if (kn->kn_id == hint)
2632 kn->kn_data++;
2633 }
2634 return (kn->kn_data != 0);
2635 }
2636
2637 const struct filterops sig_filtops = {
2638 .f_isfd = 0,
2639 .f_attach = filt_sigattach,
2640 .f_detach = filt_sigdetach,
2641 .f_event = filt_signal,
2642 };
2643