Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.379
      1 /*	$NetBSD: kern_sig.c,v 1.379 2019/11/20 19:37:53 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.379 2019/11/20 19:37:53 pgoyette Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 #include <sys/compat_stub.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #define	SIGQUEUE_MAX	32
    112 static pool_cache_t	sigacts_cache	__read_mostly;
    113 static pool_cache_t	ksiginfo_cache	__read_mostly;
    114 static callout_t	proc_stop_ch	__cacheline_aligned;
    115 
    116 sigset_t		contsigmask	__cacheline_aligned;
    117 sigset_t		stopsigmask	__cacheline_aligned;
    118 static sigset_t		vforksigmask	__cacheline_aligned;
    119 sigset_t		sigcantmask	__cacheline_aligned;
    120 
    121 static void	ksiginfo_exechook(struct proc *, void *);
    122 static void	proc_stop(struct proc *, int);
    123 static void	proc_stop_done(struct proc *, int);
    124 static void	proc_stop_callout(void *);
    125 static int	sigchecktrace(void);
    126 static int	sigpost(struct lwp *, sig_t, int, int);
    127 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    128 static int	sigunwait(struct proc *, const ksiginfo_t *);
    129 static void	sigswitch(int, int, bool);
    130 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    131 
    132 static void	sigacts_poolpage_free(struct pool *, void *);
    133 static void	*sigacts_poolpage_alloc(struct pool *, int);
    134 
    135 /*
    136  * DTrace SDT provider definitions
    137  */
    138 SDT_PROVIDER_DECLARE(proc);
    139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    140     "struct lwp *", 	/* target thread */
    141     "struct proc *", 	/* target process */
    142     "int");		/* signal */
    143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    144     "struct lwp *",	/* target thread */
    145     "struct proc *",	/* target process */
    146     "int");  		/* signal */
    147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    148     "int", 		/* signal */
    149     "ksiginfo_t *", 	/* signal info */
    150     "void (*)(void)");	/* handler address */
    151 
    152 
    153 static struct pool_allocator sigactspool_allocator = {
    154 	.pa_alloc = sigacts_poolpage_alloc,
    155 	.pa_free = sigacts_poolpage_free
    156 };
    157 
    158 #ifdef DEBUG
    159 int	kern_logsigexit = 1;
    160 #else
    161 int	kern_logsigexit = 0;
    162 #endif
    163 
    164 static const char logcoredump[] =
    165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    166 static const char lognocoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    168 
    169 static kauth_listener_t signal_listener;
    170 
    171 static int
    172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    173     void *arg0, void *arg1, void *arg2, void *arg3)
    174 {
    175 	struct proc *p;
    176 	int result, signum;
    177 
    178 	result = KAUTH_RESULT_DEFER;
    179 	p = arg0;
    180 	signum = (int)(unsigned long)arg1;
    181 
    182 	if (action != KAUTH_PROCESS_SIGNAL)
    183 		return result;
    184 
    185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    187 		result = KAUTH_RESULT_ALLOW;
    188 
    189 	return result;
    190 }
    191 
    192 static int
    193 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    194 {
    195 	memset(obj, 0, sizeof(struct sigacts));
    196 	return 0;
    197 }
    198 
    199 /*
    200  * signal_init:
    201  *
    202  *	Initialize global signal-related data structures.
    203  */
    204 void
    205 signal_init(void)
    206 {
    207 
    208 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    209 
    210 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    211 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    212 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    213 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    214 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    215 
    216 	exechook_establish(ksiginfo_exechook, NULL);
    217 
    218 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    219 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    220 
    221 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    222 	    signal_listener_cb, NULL);
    223 }
    224 
    225 /*
    226  * sigacts_poolpage_alloc:
    227  *
    228  *	Allocate a page for the sigacts memory pool.
    229  */
    230 static void *
    231 sigacts_poolpage_alloc(struct pool *pp, int flags)
    232 {
    233 
    234 	return (void *)uvm_km_alloc(kernel_map,
    235 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    236 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    237 	    | UVM_KMF_WIRED);
    238 }
    239 
    240 /*
    241  * sigacts_poolpage_free:
    242  *
    243  *	Free a page on behalf of the sigacts memory pool.
    244  */
    245 static void
    246 sigacts_poolpage_free(struct pool *pp, void *v)
    247 {
    248 
    249 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    250 }
    251 
    252 /*
    253  * sigactsinit:
    254  *
    255  *	Create an initial sigacts structure, using the same signal state
    256  *	as of specified process.  If 'share' is set, share the sigacts by
    257  *	holding a reference, otherwise just copy it from parent.
    258  */
    259 struct sigacts *
    260 sigactsinit(struct proc *pp, int share)
    261 {
    262 	struct sigacts *ps = pp->p_sigacts, *ps2;
    263 
    264 	if (__predict_false(share)) {
    265 		atomic_inc_uint(&ps->sa_refcnt);
    266 		return ps;
    267 	}
    268 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    269 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    270 	ps2->sa_refcnt = 1;
    271 
    272 	mutex_enter(&ps->sa_mutex);
    273 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    274 	mutex_exit(&ps->sa_mutex);
    275 	return ps2;
    276 }
    277 
    278 /*
    279  * sigactsunshare:
    280  *
    281  *	Make this process not share its sigacts, maintaining all signal state.
    282  */
    283 void
    284 sigactsunshare(struct proc *p)
    285 {
    286 	struct sigacts *ps, *oldps = p->p_sigacts;
    287 
    288 	if (__predict_true(oldps->sa_refcnt == 1))
    289 		return;
    290 
    291 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    292 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    293 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    294 	ps->sa_refcnt = 1;
    295 
    296 	p->p_sigacts = ps;
    297 	sigactsfree(oldps);
    298 }
    299 
    300 /*
    301  * sigactsfree;
    302  *
    303  *	Release a sigacts structure.
    304  */
    305 void
    306 sigactsfree(struct sigacts *ps)
    307 {
    308 
    309 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    310 		mutex_destroy(&ps->sa_mutex);
    311 		pool_cache_put(sigacts_cache, ps);
    312 	}
    313 }
    314 
    315 /*
    316  * siginit:
    317  *
    318  *	Initialize signal state for process 0; set to ignore signals that
    319  *	are ignored by default and disable the signal stack.  Locking not
    320  *	required as the system is still cold.
    321  */
    322 void
    323 siginit(struct proc *p)
    324 {
    325 	struct lwp *l;
    326 	struct sigacts *ps;
    327 	int signo, prop;
    328 
    329 	ps = p->p_sigacts;
    330 	sigemptyset(&contsigmask);
    331 	sigemptyset(&stopsigmask);
    332 	sigemptyset(&vforksigmask);
    333 	sigemptyset(&sigcantmask);
    334 	for (signo = 1; signo < NSIG; signo++) {
    335 		prop = sigprop[signo];
    336 		if (prop & SA_CONT)
    337 			sigaddset(&contsigmask, signo);
    338 		if (prop & SA_STOP)
    339 			sigaddset(&stopsigmask, signo);
    340 		if (prop & SA_STOP && signo != SIGSTOP)
    341 			sigaddset(&vforksigmask, signo);
    342 		if (prop & SA_CANTMASK)
    343 			sigaddset(&sigcantmask, signo);
    344 		if (prop & SA_IGNORE && signo != SIGCONT)
    345 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    346 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    347 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    348 	}
    349 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    350 	p->p_sflag &= ~PS_NOCLDSTOP;
    351 
    352 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    353 	sigemptyset(&p->p_sigpend.sp_set);
    354 
    355 	/*
    356 	 * Reset per LWP state.
    357 	 */
    358 	l = LIST_FIRST(&p->p_lwps);
    359 	l->l_sigwaited = NULL;
    360 	l->l_sigstk = SS_INIT;
    361 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    362 	sigemptyset(&l->l_sigpend.sp_set);
    363 
    364 	/* One reference. */
    365 	ps->sa_refcnt = 1;
    366 }
    367 
    368 /*
    369  * execsigs:
    370  *
    371  *	Reset signals for an exec of the specified process.
    372  */
    373 void
    374 execsigs(struct proc *p)
    375 {
    376 	struct sigacts *ps;
    377 	struct lwp *l;
    378 	int signo, prop;
    379 	sigset_t tset;
    380 	ksiginfoq_t kq;
    381 
    382 	KASSERT(p->p_nlwps == 1);
    383 
    384 	sigactsunshare(p);
    385 	ps = p->p_sigacts;
    386 
    387 	/*
    388 	 * Reset caught signals.  Held signals remain held through
    389 	 * l->l_sigmask (unless they were caught, and are now ignored
    390 	 * by default).
    391 	 *
    392 	 * No need to lock yet, the process has only one LWP and
    393 	 * at this point the sigacts are private to the process.
    394 	 */
    395 	sigemptyset(&tset);
    396 	for (signo = 1; signo < NSIG; signo++) {
    397 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    398 			prop = sigprop[signo];
    399 			if (prop & SA_IGNORE) {
    400 				if ((prop & SA_CONT) == 0)
    401 					sigaddset(&p->p_sigctx.ps_sigignore,
    402 					    signo);
    403 				sigaddset(&tset, signo);
    404 			}
    405 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    406 		}
    407 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    408 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    409 	}
    410 	ksiginfo_queue_init(&kq);
    411 
    412 	mutex_enter(p->p_lock);
    413 	sigclearall(p, &tset, &kq);
    414 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    415 
    416 	/*
    417 	 * Reset no zombies if child dies flag as Solaris does.
    418 	 */
    419 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    420 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    421 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    422 
    423 	/*
    424 	 * Reset per-LWP state.
    425 	 */
    426 	l = LIST_FIRST(&p->p_lwps);
    427 	l->l_sigwaited = NULL;
    428 	l->l_sigstk = SS_INIT;
    429 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    430 	sigemptyset(&l->l_sigpend.sp_set);
    431 	mutex_exit(p->p_lock);
    432 
    433 	ksiginfo_queue_drain(&kq);
    434 }
    435 
    436 /*
    437  * ksiginfo_exechook:
    438  *
    439  *	Free all pending ksiginfo entries from a process on exec.
    440  *	Additionally, drain any unused ksiginfo structures in the
    441  *	system back to the pool.
    442  *
    443  *	XXX This should not be a hook, every process has signals.
    444  */
    445 static void
    446 ksiginfo_exechook(struct proc *p, void *v)
    447 {
    448 	ksiginfoq_t kq;
    449 
    450 	ksiginfo_queue_init(&kq);
    451 
    452 	mutex_enter(p->p_lock);
    453 	sigclearall(p, NULL, &kq);
    454 	mutex_exit(p->p_lock);
    455 
    456 	ksiginfo_queue_drain(&kq);
    457 }
    458 
    459 /*
    460  * ksiginfo_alloc:
    461  *
    462  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    463  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    464  *	has not been queued somewhere, then just return it.  Additionally,
    465  *	if the existing ksiginfo_t does not contain any information beyond
    466  *	the signal number, then just return it.
    467  */
    468 ksiginfo_t *
    469 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    470 {
    471 	ksiginfo_t *kp;
    472 
    473 	if (ok != NULL) {
    474 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    475 		    KSI_FROMPOOL)
    476 			return ok;
    477 		if (KSI_EMPTY_P(ok))
    478 			return ok;
    479 	}
    480 
    481 	kp = pool_cache_get(ksiginfo_cache, flags);
    482 	if (kp == NULL) {
    483 #ifdef DIAGNOSTIC
    484 		printf("Out of memory allocating ksiginfo for pid %d\n",
    485 		    p->p_pid);
    486 #endif
    487 		return NULL;
    488 	}
    489 
    490 	if (ok != NULL) {
    491 		memcpy(kp, ok, sizeof(*kp));
    492 		kp->ksi_flags &= ~KSI_QUEUED;
    493 	} else
    494 		KSI_INIT_EMPTY(kp);
    495 
    496 	kp->ksi_flags |= KSI_FROMPOOL;
    497 
    498 	return kp;
    499 }
    500 
    501 /*
    502  * ksiginfo_free:
    503  *
    504  *	If the given ksiginfo_t is from the pool and has not been queued,
    505  *	then free it.
    506  */
    507 void
    508 ksiginfo_free(ksiginfo_t *kp)
    509 {
    510 
    511 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    512 		return;
    513 	pool_cache_put(ksiginfo_cache, kp);
    514 }
    515 
    516 /*
    517  * ksiginfo_queue_drain:
    518  *
    519  *	Drain a non-empty ksiginfo_t queue.
    520  */
    521 void
    522 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    523 {
    524 	ksiginfo_t *ksi;
    525 
    526 	KASSERT(!TAILQ_EMPTY(kq));
    527 
    528 	while (!TAILQ_EMPTY(kq)) {
    529 		ksi = TAILQ_FIRST(kq);
    530 		TAILQ_REMOVE(kq, ksi, ksi_list);
    531 		pool_cache_put(ksiginfo_cache, ksi);
    532 	}
    533 }
    534 
    535 static int
    536 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    537 {
    538 	ksiginfo_t *ksi, *nksi;
    539 
    540 	if (sp == NULL)
    541 		goto out;
    542 
    543 	/* Find siginfo and copy it out. */
    544 	int count = 0;
    545 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    546 		if (ksi->ksi_signo != signo)
    547 			continue;
    548 		if (count++ > 0) /* Only remove the first, count all of them */
    549 			continue;
    550 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    551 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    552 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    553 		ksi->ksi_flags &= ~KSI_QUEUED;
    554 		if (out != NULL) {
    555 			memcpy(out, ksi, sizeof(*out));
    556 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    557 		}
    558 		ksiginfo_free(ksi);
    559 	}
    560 	if (count)
    561 		return count;
    562 
    563 out:
    564 	/* If there is no siginfo, then manufacture it. */
    565 	if (out != NULL) {
    566 		KSI_INIT(out);
    567 		out->ksi_info._signo = signo;
    568 		out->ksi_info._code = SI_NOINFO;
    569 	}
    570 	return 0;
    571 }
    572 
    573 /*
    574  * sigget:
    575  *
    576  *	Fetch the first pending signal from a set.  Optionally, also fetch
    577  *	or manufacture a ksiginfo element.  Returns the number of the first
    578  *	pending signal, or zero.
    579  */
    580 int
    581 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    582 {
    583 	sigset_t tset;
    584 	int count;
    585 
    586 	/* If there's no pending set, the signal is from the debugger. */
    587 	if (sp == NULL)
    588 		goto out;
    589 
    590 	/* Construct mask from signo, and 'mask'. */
    591 	if (signo == 0) {
    592 		if (mask != NULL) {
    593 			tset = *mask;
    594 			__sigandset(&sp->sp_set, &tset);
    595 		} else
    596 			tset = sp->sp_set;
    597 
    598 		/* If there are no signals pending - return. */
    599 		if ((signo = firstsig(&tset)) == 0)
    600 			goto out;
    601 	} else {
    602 		KASSERT(sigismember(&sp->sp_set, signo));
    603 	}
    604 
    605 	sigdelset(&sp->sp_set, signo);
    606 out:
    607 	count = siggetinfo(sp, out, signo);
    608 	if (count > 1)
    609 		sigaddset(&sp->sp_set, signo);
    610 	return signo;
    611 }
    612 
    613 /*
    614  * sigput:
    615  *
    616  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    617  */
    618 static int
    619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    620 {
    621 	ksiginfo_t *kp;
    622 
    623 	KASSERT(mutex_owned(p->p_lock));
    624 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    625 
    626 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    627 
    628 	/*
    629 	 * If there is no siginfo, we are done.
    630 	 */
    631 	if (KSI_EMPTY_P(ksi))
    632 		return 0;
    633 
    634 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    635 
    636 	size_t count = 0;
    637 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    638 		count++;
    639 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    640 			continue;
    641 		if (kp->ksi_signo == ksi->ksi_signo) {
    642 			KSI_COPY(ksi, kp);
    643 			kp->ksi_flags |= KSI_QUEUED;
    644 			return 0;
    645 		}
    646 	}
    647 
    648 	if (count >= SIGQUEUE_MAX) {
    649 #ifdef DIAGNOSTIC
    650 		printf("%s(%d): Signal queue is full signal=%d\n",
    651 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    652 #endif
    653 		return EAGAIN;
    654 	}
    655 	ksi->ksi_flags |= KSI_QUEUED;
    656 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    657 
    658 	return 0;
    659 }
    660 
    661 /*
    662  * sigclear:
    663  *
    664  *	Clear all pending signals in the specified set.
    665  */
    666 void
    667 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    668 {
    669 	ksiginfo_t *ksi, *next;
    670 
    671 	if (mask == NULL)
    672 		sigemptyset(&sp->sp_set);
    673 	else
    674 		sigminusset(mask, &sp->sp_set);
    675 
    676 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    677 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    678 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    679 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    680 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    681 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    682 		}
    683 	}
    684 }
    685 
    686 /*
    687  * sigclearall:
    688  *
    689  *	Clear all pending signals in the specified set from a process and
    690  *	its LWPs.
    691  */
    692 void
    693 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    694 {
    695 	struct lwp *l;
    696 
    697 	KASSERT(mutex_owned(p->p_lock));
    698 
    699 	sigclear(&p->p_sigpend, mask, kq);
    700 
    701 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    702 		sigclear(&l->l_sigpend, mask, kq);
    703 	}
    704 }
    705 
    706 /*
    707  * sigispending:
    708  *
    709  *	Return the first signal number if there are pending signals for the
    710  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    711  *	and that the signal has been posted to the appopriate queue before
    712  *	LW_PENDSIG is set.
    713  */
    714 int
    715 sigispending(struct lwp *l, int signo)
    716 {
    717 	struct proc *p = l->l_proc;
    718 	sigset_t tset;
    719 
    720 	membar_consumer();
    721 
    722 	tset = l->l_sigpend.sp_set;
    723 	sigplusset(&p->p_sigpend.sp_set, &tset);
    724 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    725 	sigminusset(&l->l_sigmask, &tset);
    726 
    727 	if (signo == 0) {
    728 		return firstsig(&tset);
    729 	}
    730 	return sigismember(&tset, signo) ? signo : 0;
    731 }
    732 
    733 void
    734 getucontext(struct lwp *l, ucontext_t *ucp)
    735 {
    736 	struct proc *p = l->l_proc;
    737 
    738 	KASSERT(mutex_owned(p->p_lock));
    739 
    740 	ucp->uc_flags = 0;
    741 	ucp->uc_link = l->l_ctxlink;
    742 	ucp->uc_sigmask = l->l_sigmask;
    743 	ucp->uc_flags |= _UC_SIGMASK;
    744 
    745 	/*
    746 	 * The (unsupplied) definition of the `current execution stack'
    747 	 * in the System V Interface Definition appears to allow returning
    748 	 * the main context stack.
    749 	 */
    750 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    751 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    752 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    753 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    754 	} else {
    755 		/* Simply copy alternate signal execution stack. */
    756 		ucp->uc_stack = l->l_sigstk;
    757 	}
    758 	ucp->uc_flags |= _UC_STACK;
    759 	mutex_exit(p->p_lock);
    760 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    761 	mutex_enter(p->p_lock);
    762 }
    763 
    764 int
    765 setucontext(struct lwp *l, const ucontext_t *ucp)
    766 {
    767 	struct proc *p = l->l_proc;
    768 	int error;
    769 
    770 	KASSERT(mutex_owned(p->p_lock));
    771 
    772 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    773 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    774 		if (error != 0)
    775 			return error;
    776 	}
    777 
    778 	mutex_exit(p->p_lock);
    779 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    780 	mutex_enter(p->p_lock);
    781 	if (error != 0)
    782 		return (error);
    783 
    784 	l->l_ctxlink = ucp->uc_link;
    785 
    786 	/*
    787 	 * If there was stack information, update whether or not we are
    788 	 * still running on an alternate signal stack.
    789 	 */
    790 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    791 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    792 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    793 		else
    794 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    795 	}
    796 
    797 	return 0;
    798 }
    799 
    800 /*
    801  * killpg1: common code for kill process group/broadcast kill.
    802  */
    803 int
    804 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    805 {
    806 	struct proc	*p, *cp;
    807 	kauth_cred_t	pc;
    808 	struct pgrp	*pgrp;
    809 	int		nfound;
    810 	int		signo = ksi->ksi_signo;
    811 
    812 	cp = l->l_proc;
    813 	pc = l->l_cred;
    814 	nfound = 0;
    815 
    816 	mutex_enter(proc_lock);
    817 	if (all) {
    818 		/*
    819 		 * Broadcast.
    820 		 */
    821 		PROCLIST_FOREACH(p, &allproc) {
    822 			if (p->p_pid <= 1 || p == cp ||
    823 			    (p->p_flag & PK_SYSTEM) != 0)
    824 				continue;
    825 			mutex_enter(p->p_lock);
    826 			if (kauth_authorize_process(pc,
    827 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    828 			    NULL) == 0) {
    829 				nfound++;
    830 				if (signo)
    831 					kpsignal2(p, ksi);
    832 			}
    833 			mutex_exit(p->p_lock);
    834 		}
    835 	} else {
    836 		if (pgid == 0)
    837 			/* Zero pgid means send to my process group. */
    838 			pgrp = cp->p_pgrp;
    839 		else {
    840 			pgrp = pgrp_find(pgid);
    841 			if (pgrp == NULL)
    842 				goto out;
    843 		}
    844 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    845 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    846 				continue;
    847 			mutex_enter(p->p_lock);
    848 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    849 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    850 				nfound++;
    851 				if (signo && P_ZOMBIE(p) == 0)
    852 					kpsignal2(p, ksi);
    853 			}
    854 			mutex_exit(p->p_lock);
    855 		}
    856 	}
    857 out:
    858 	mutex_exit(proc_lock);
    859 	return nfound ? 0 : ESRCH;
    860 }
    861 
    862 /*
    863  * Send a signal to a process group.  If checktty is set, limit to members
    864  * which have a controlling terminal.
    865  */
    866 void
    867 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    868 {
    869 	ksiginfo_t ksi;
    870 
    871 	KASSERT(!cpu_intr_p());
    872 	KASSERT(mutex_owned(proc_lock));
    873 
    874 	KSI_INIT_EMPTY(&ksi);
    875 	ksi.ksi_signo = sig;
    876 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    877 }
    878 
    879 void
    880 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    881 {
    882 	struct proc *p;
    883 
    884 	KASSERT(!cpu_intr_p());
    885 	KASSERT(mutex_owned(proc_lock));
    886 	KASSERT(pgrp != NULL);
    887 
    888 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    889 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    890 			kpsignal(p, ksi, data);
    891 }
    892 
    893 /*
    894  * Send a signal caused by a trap to the current LWP.  If it will be caught
    895  * immediately, deliver it with correct code.  Otherwise, post it normally.
    896  */
    897 void
    898 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    899 {
    900 	struct proc	*p;
    901 	struct sigacts	*ps;
    902 	int signo = ksi->ksi_signo;
    903 	sigset_t *mask;
    904 	sig_t action;
    905 
    906 	KASSERT(KSI_TRAP_P(ksi));
    907 
    908 	ksi->ksi_lid = l->l_lid;
    909 	p = l->l_proc;
    910 
    911 	KASSERT(!cpu_intr_p());
    912 	mutex_enter(proc_lock);
    913 	mutex_enter(p->p_lock);
    914 
    915 repeat:
    916 	/*
    917 	 * If we are exiting, demise now.
    918 	 *
    919 	 * This avoids notifying tracer and deadlocking.
    920 	 */
    921 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    922 		mutex_exit(p->p_lock);
    923 		mutex_exit(proc_lock);
    924 		lwp_exit(l);
    925 		panic("trapsignal");
    926 		/* NOTREACHED */
    927 	}
    928 
    929 	/*
    930 	 * The process is already stopping.
    931 	 */
    932 	if ((p->p_sflag & PS_STOPPING) != 0) {
    933 		mutex_exit(proc_lock);
    934 		sigswitch_unlock_and_switch_away(l);
    935 		mutex_enter(proc_lock);
    936 		mutex_enter(p->p_lock);
    937 		goto repeat;
    938 	}
    939 
    940 	mask = &l->l_sigmask;
    941 	ps = p->p_sigacts;
    942 	action = SIGACTION_PS(ps, signo).sa_handler;
    943 
    944 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    945 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    946 	    p->p_xsig != SIGKILL &&
    947 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    948 		p->p_xsig = signo;
    949 		p->p_sigctx.ps_faked = true;
    950 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    951 		p->p_sigctx.ps_info = ksi->ksi_info;
    952 		sigswitch(0, signo, true);
    953 
    954 		if (ktrpoint(KTR_PSIG)) {
    955 			if (p->p_emul->e_ktrpsig)
    956 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    957 			else
    958 				ktrpsig(signo, action, mask, ksi);
    959 		}
    960 		return;
    961 	}
    962 
    963 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    964 	const bool masked = sigismember(mask, signo);
    965 	if (caught && !masked) {
    966 		mutex_exit(proc_lock);
    967 		l->l_ru.ru_nsignals++;
    968 		kpsendsig(l, ksi, mask);
    969 		mutex_exit(p->p_lock);
    970 
    971 		if (ktrpoint(KTR_PSIG)) {
    972 			if (p->p_emul->e_ktrpsig)
    973 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    974 			else
    975 				ktrpsig(signo, action, mask, ksi);
    976 		}
    977 		return;
    978 	}
    979 
    980 	/*
    981 	 * If the signal is masked or ignored, then unmask it and
    982 	 * reset it to the default action so that the process or
    983 	 * its tracer will be notified.
    984 	 */
    985 	const bool ignored = action == SIG_IGN;
    986 	if (masked || ignored) {
    987 		mutex_enter(&ps->sa_mutex);
    988 		sigdelset(mask, signo);
    989 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    990 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    991 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    992 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    993 		mutex_exit(&ps->sa_mutex);
    994 	}
    995 
    996 	kpsignal2(p, ksi);
    997 	mutex_exit(p->p_lock);
    998 	mutex_exit(proc_lock);
    999 }
   1000 
   1001 /*
   1002  * Fill in signal information and signal the parent for a child status change.
   1003  */
   1004 void
   1005 child_psignal(struct proc *p, int mask)
   1006 {
   1007 	ksiginfo_t ksi;
   1008 	struct proc *q;
   1009 	int xsig;
   1010 
   1011 	KASSERT(mutex_owned(proc_lock));
   1012 	KASSERT(mutex_owned(p->p_lock));
   1013 
   1014 	xsig = p->p_xsig;
   1015 
   1016 	KSI_INIT(&ksi);
   1017 	ksi.ksi_signo = SIGCHLD;
   1018 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1019 	ksi.ksi_pid = p->p_pid;
   1020 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1021 	ksi.ksi_status = xsig;
   1022 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1023 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1024 
   1025 	q = p->p_pptr;
   1026 
   1027 	mutex_exit(p->p_lock);
   1028 	mutex_enter(q->p_lock);
   1029 
   1030 	if ((q->p_sflag & mask) == 0)
   1031 		kpsignal2(q, &ksi);
   1032 
   1033 	mutex_exit(q->p_lock);
   1034 	mutex_enter(p->p_lock);
   1035 }
   1036 
   1037 void
   1038 psignal(struct proc *p, int signo)
   1039 {
   1040 	ksiginfo_t ksi;
   1041 
   1042 	KASSERT(!cpu_intr_p());
   1043 	KASSERT(mutex_owned(proc_lock));
   1044 
   1045 	KSI_INIT_EMPTY(&ksi);
   1046 	ksi.ksi_signo = signo;
   1047 	mutex_enter(p->p_lock);
   1048 	kpsignal2(p, &ksi);
   1049 	mutex_exit(p->p_lock);
   1050 }
   1051 
   1052 void
   1053 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1054 {
   1055 	fdfile_t *ff;
   1056 	file_t *fp;
   1057 	fdtab_t *dt;
   1058 
   1059 	KASSERT(!cpu_intr_p());
   1060 	KASSERT(mutex_owned(proc_lock));
   1061 
   1062 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1063 		size_t fd;
   1064 		filedesc_t *fdp = p->p_fd;
   1065 
   1066 		/* XXXSMP locking */
   1067 		ksi->ksi_fd = -1;
   1068 		dt = fdp->fd_dt;
   1069 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1070 			if ((ff = dt->dt_ff[fd]) == NULL)
   1071 				continue;
   1072 			if ((fp = ff->ff_file) == NULL)
   1073 				continue;
   1074 			if (fp->f_data == data) {
   1075 				ksi->ksi_fd = fd;
   1076 				break;
   1077 			}
   1078 		}
   1079 	}
   1080 	mutex_enter(p->p_lock);
   1081 	kpsignal2(p, ksi);
   1082 	mutex_exit(p->p_lock);
   1083 }
   1084 
   1085 /*
   1086  * sigismasked:
   1087  *
   1088  *	Returns true if signal is ignored or masked for the specified LWP.
   1089  */
   1090 int
   1091 sigismasked(struct lwp *l, int sig)
   1092 {
   1093 	struct proc *p = l->l_proc;
   1094 
   1095 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1096 	    sigismember(&l->l_sigmask, sig);
   1097 }
   1098 
   1099 /*
   1100  * sigpost:
   1101  *
   1102  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1103  *	be able to take the signal.
   1104  */
   1105 static int
   1106 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1107 {
   1108 	int rv, masked;
   1109 	struct proc *p = l->l_proc;
   1110 
   1111 	KASSERT(mutex_owned(p->p_lock));
   1112 
   1113 	/*
   1114 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1115 	 * pending signals.  Don't give it more.
   1116 	 */
   1117 	if (l->l_refcnt == 0)
   1118 		return 0;
   1119 
   1120 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1121 
   1122 	lwp_lock(l);
   1123 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1124 		if ((prop & SA_KILL) != 0)
   1125 			l->l_flag &= ~LW_DBGSUSPEND;
   1126 		else {
   1127 			lwp_unlock(l);
   1128 			return 0;
   1129 		}
   1130 	}
   1131 
   1132 	/*
   1133 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1134 	 * is found to take the signal immediately, it should be taken soon.
   1135 	 */
   1136 	l->l_flag |= LW_PENDSIG;
   1137 
   1138 	/*
   1139 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1140 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1141 	 */
   1142 	masked = sigismember(&l->l_sigmask, sig);
   1143 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1144 		lwp_unlock(l);
   1145 		return 0;
   1146 	}
   1147 
   1148 	/*
   1149 	 * If killing the process, make it run fast.
   1150 	 */
   1151 	if (__predict_false((prop & SA_KILL) != 0) &&
   1152 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1153 		KASSERT(l->l_class == SCHED_OTHER);
   1154 		lwp_changepri(l, MAXPRI_USER);
   1155 	}
   1156 
   1157 	/*
   1158 	 * If the LWP is running or on a run queue, then we win.  If it's
   1159 	 * sleeping interruptably, wake it and make it take the signal.  If
   1160 	 * the sleep isn't interruptable, then the chances are it will get
   1161 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1162 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1163 	 * for later; otherwise punt.
   1164 	 */
   1165 	rv = 0;
   1166 
   1167 	switch (l->l_stat) {
   1168 	case LSRUN:
   1169 	case LSONPROC:
   1170 		lwp_need_userret(l);
   1171 		rv = 1;
   1172 		break;
   1173 
   1174 	case LSSLEEP:
   1175 		if ((l->l_flag & LW_SINTR) != 0) {
   1176 			/* setrunnable() will release the lock. */
   1177 			setrunnable(l);
   1178 			return 1;
   1179 		}
   1180 		break;
   1181 
   1182 	case LSSUSPENDED:
   1183 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1184 			/* lwp_continue() will release the lock. */
   1185 			lwp_continue(l);
   1186 			return 1;
   1187 		}
   1188 		break;
   1189 
   1190 	case LSSTOP:
   1191 		if ((prop & SA_STOP) != 0)
   1192 			break;
   1193 
   1194 		/*
   1195 		 * If the LWP is stopped and we are sending a continue
   1196 		 * signal, then start it again.
   1197 		 */
   1198 		if ((prop & SA_CONT) != 0) {
   1199 			if (l->l_wchan != NULL) {
   1200 				l->l_stat = LSSLEEP;
   1201 				p->p_nrlwps++;
   1202 				rv = 1;
   1203 				break;
   1204 			}
   1205 			/* setrunnable() will release the lock. */
   1206 			setrunnable(l);
   1207 			return 1;
   1208 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1209 			/* setrunnable() will release the lock. */
   1210 			setrunnable(l);
   1211 			return 1;
   1212 		}
   1213 		break;
   1214 
   1215 	default:
   1216 		break;
   1217 	}
   1218 
   1219 	lwp_unlock(l);
   1220 	return rv;
   1221 }
   1222 
   1223 /*
   1224  * Notify an LWP that it has a pending signal.
   1225  */
   1226 void
   1227 signotify(struct lwp *l)
   1228 {
   1229 	KASSERT(lwp_locked(l, NULL));
   1230 
   1231 	l->l_flag |= LW_PENDSIG;
   1232 	lwp_need_userret(l);
   1233 }
   1234 
   1235 /*
   1236  * Find an LWP within process p that is waiting on signal ksi, and hand
   1237  * it on.
   1238  */
   1239 static int
   1240 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1241 {
   1242 	struct lwp *l;
   1243 	int signo;
   1244 
   1245 	KASSERT(mutex_owned(p->p_lock));
   1246 
   1247 	signo = ksi->ksi_signo;
   1248 
   1249 	if (ksi->ksi_lid != 0) {
   1250 		/*
   1251 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1252 		 * it's interested.
   1253 		 */
   1254 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1255 			return 0;
   1256 		if (l->l_sigwaited == NULL ||
   1257 		    !sigismember(&l->l_sigwaitset, signo))
   1258 			return 0;
   1259 	} else {
   1260 		/*
   1261 		 * Look for any LWP that may be interested.
   1262 		 */
   1263 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1264 			KASSERT(l->l_sigwaited != NULL);
   1265 			if (sigismember(&l->l_sigwaitset, signo))
   1266 				break;
   1267 		}
   1268 	}
   1269 
   1270 	if (l != NULL) {
   1271 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1272 		l->l_sigwaited = NULL;
   1273 		LIST_REMOVE(l, l_sigwaiter);
   1274 		cv_signal(&l->l_sigcv);
   1275 		return 1;
   1276 	}
   1277 
   1278 	return 0;
   1279 }
   1280 
   1281 /*
   1282  * Send the signal to the process.  If the signal has an action, the action
   1283  * is usually performed by the target process rather than the caller; we add
   1284  * the signal to the set of pending signals for the process.
   1285  *
   1286  * Exceptions:
   1287  *   o When a stop signal is sent to a sleeping process that takes the
   1288  *     default action, the process is stopped without awakening it.
   1289  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1290  *     regardless of the signal action (eg, blocked or ignored).
   1291  *
   1292  * Other ignored signals are discarded immediately.
   1293  */
   1294 int
   1295 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1296 {
   1297 	int prop, signo = ksi->ksi_signo;
   1298 	struct lwp *l = NULL;
   1299 	ksiginfo_t *kp;
   1300 	lwpid_t lid;
   1301 	sig_t action;
   1302 	bool toall;
   1303 	int error = 0;
   1304 
   1305 	KASSERT(!cpu_intr_p());
   1306 	KASSERT(mutex_owned(proc_lock));
   1307 	KASSERT(mutex_owned(p->p_lock));
   1308 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1309 	KASSERT(signo > 0 && signo < NSIG);
   1310 
   1311 	/*
   1312 	 * If the process is being created by fork, is a zombie or is
   1313 	 * exiting, then just drop the signal here and bail out.
   1314 	 */
   1315 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1316 		return 0;
   1317 
   1318 	/*
   1319 	 * Notify any interested parties of the signal.
   1320 	 */
   1321 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1322 
   1323 	/*
   1324 	 * Some signals including SIGKILL must act on the entire process.
   1325 	 */
   1326 	kp = NULL;
   1327 	prop = sigprop[signo];
   1328 	toall = ((prop & SA_TOALL) != 0);
   1329 	lid = toall ? 0 : ksi->ksi_lid;
   1330 
   1331 	/*
   1332 	 * If proc is traced, always give parent a chance.
   1333 	 */
   1334 	if (p->p_slflag & PSL_TRACED) {
   1335 		action = SIG_DFL;
   1336 
   1337 		if (lid == 0) {
   1338 			/*
   1339 			 * If the process is being traced and the signal
   1340 			 * is being caught, make sure to save any ksiginfo.
   1341 			 */
   1342 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1343 				goto discard;
   1344 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1345 				goto out;
   1346 		}
   1347 	} else {
   1348 
   1349 		/*
   1350 		 * If the signal is being ignored, then drop it.  Note: we
   1351 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1352 		 * SIG_IGN, action will be SIG_DFL here.
   1353 		 */
   1354 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1355 			goto discard;
   1356 
   1357 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1358 			action = SIG_CATCH;
   1359 		else {
   1360 			action = SIG_DFL;
   1361 
   1362 			/*
   1363 			 * If sending a tty stop signal to a member of an
   1364 			 * orphaned process group, discard the signal here if
   1365 			 * the action is default; don't stop the process below
   1366 			 * if sleeping, and don't clear any pending SIGCONT.
   1367 			 */
   1368 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1369 				goto discard;
   1370 
   1371 			if (prop & SA_KILL && p->p_nice > NZERO)
   1372 				p->p_nice = NZERO;
   1373 		}
   1374 	}
   1375 
   1376 	/*
   1377 	 * If stopping or continuing a process, discard any pending
   1378 	 * signals that would do the inverse.
   1379 	 */
   1380 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1381 		ksiginfoq_t kq;
   1382 
   1383 		ksiginfo_queue_init(&kq);
   1384 		if ((prop & SA_CONT) != 0)
   1385 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1386 		if ((prop & SA_STOP) != 0)
   1387 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1388 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1389 	}
   1390 
   1391 	/*
   1392 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1393 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1394 	 * the signal info.  The signal won't be processed further here.
   1395 	 */
   1396 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1397 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1398 	    sigunwait(p, ksi))
   1399 		goto discard;
   1400 
   1401 	/*
   1402 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1403 	 * here.
   1404 	 */
   1405 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1406 		goto discard;
   1407 
   1408 	/*
   1409 	 * LWP private signals are easy - just find the LWP and post
   1410 	 * the signal to it.
   1411 	 */
   1412 	if (lid != 0) {
   1413 		l = lwp_find(p, lid);
   1414 		if (l != NULL) {
   1415 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1416 				goto out;
   1417 			membar_producer();
   1418 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1419 				signo = -1;
   1420 		}
   1421 		goto out;
   1422 	}
   1423 
   1424 	/*
   1425 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1426 	 * or for an SA process.
   1427 	 */
   1428 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1429 		if ((p->p_slflag & PSL_TRACED) != 0)
   1430 			goto deliver;
   1431 
   1432 		/*
   1433 		 * If SIGCONT is default (or ignored) and process is
   1434 		 * asleep, we are finished; the process should not
   1435 		 * be awakened.
   1436 		 */
   1437 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1438 			goto out;
   1439 	} else {
   1440 		/*
   1441 		 * Process is stopped or stopping.
   1442 		 * - If traced, then no action is needed, unless killing.
   1443 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1444 		 */
   1445 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1446 			goto out;
   1447 		}
   1448 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1449 			/*
   1450 			 * Re-adjust p_nstopchild if the process was
   1451 			 * stopped but not yet collected by its parent.
   1452 			 */
   1453 			if (p->p_stat == SSTOP && !p->p_waited)
   1454 				p->p_pptr->p_nstopchild--;
   1455 			p->p_stat = SACTIVE;
   1456 			p->p_sflag &= ~PS_STOPPING;
   1457 			if (p->p_slflag & PSL_TRACED) {
   1458 				KASSERT(signo == SIGKILL);
   1459 				goto deliver;
   1460 			}
   1461 			/*
   1462 			 * Do not make signal pending if SIGCONT is default.
   1463 			 *
   1464 			 * If the process catches SIGCONT, let it handle the
   1465 			 * signal itself (if waiting on event - process runs,
   1466 			 * otherwise continues sleeping).
   1467 			 */
   1468 			if ((prop & SA_CONT) != 0) {
   1469 				p->p_xsig = SIGCONT;
   1470 				p->p_sflag |= PS_CONTINUED;
   1471 				child_psignal(p, 0);
   1472 				if (action == SIG_DFL) {
   1473 					KASSERT(signo != SIGKILL);
   1474 					goto deliver;
   1475 				}
   1476 			}
   1477 		} else if ((prop & SA_STOP) != 0) {
   1478 			/*
   1479 			 * Already stopped, don't need to stop again.
   1480 			 * (If we did the shell could get confused.)
   1481 			 */
   1482 			goto out;
   1483 		}
   1484 	}
   1485 	/*
   1486 	 * Make signal pending.
   1487 	 */
   1488 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1489 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1490 		goto out;
   1491 deliver:
   1492 	/*
   1493 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1494 	 * visible on the per process list (for sigispending()).  This
   1495 	 * is unlikely to be needed in practice, but...
   1496 	 */
   1497 	membar_producer();
   1498 
   1499 	/*
   1500 	 * Try to find an LWP that can take the signal.
   1501 	 */
   1502 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1503 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1504 			break;
   1505 	}
   1506 	signo = -1;
   1507 out:
   1508 	/*
   1509 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1510 	 * with locks held.  The caller should take care of this.
   1511 	 */
   1512 	ksiginfo_free(kp);
   1513 	if (signo == -1)
   1514 		return error;
   1515 discard:
   1516 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1517 	return error;
   1518 }
   1519 
   1520 void
   1521 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1522 {
   1523 	struct proc *p = l->l_proc;
   1524 
   1525 	KASSERT(mutex_owned(p->p_lock));
   1526 	(*p->p_emul->e_sendsig)(ksi, mask);
   1527 }
   1528 
   1529 /*
   1530  * Stop any LWPs sleeping interruptably.
   1531  */
   1532 static void
   1533 proc_stop_lwps(struct proc *p)
   1534 {
   1535 	struct lwp *l;
   1536 
   1537 	KASSERT(mutex_owned(p->p_lock));
   1538 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1539 
   1540 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1541 		lwp_lock(l);
   1542 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1543 			l->l_stat = LSSTOP;
   1544 			p->p_nrlwps--;
   1545 		}
   1546 		lwp_unlock(l);
   1547 	}
   1548 }
   1549 
   1550 /*
   1551  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1552  *
   1553  * Drop p_lock briefly if ppsig is true.
   1554  */
   1555 static void
   1556 proc_stop_done(struct proc *p, int ppmask)
   1557 {
   1558 
   1559 	KASSERT(mutex_owned(proc_lock));
   1560 	KASSERT(mutex_owned(p->p_lock));
   1561 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1562 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1563 
   1564 	p->p_sflag &= ~PS_STOPPING;
   1565 	p->p_stat = SSTOP;
   1566 	p->p_waited = 0;
   1567 	p->p_pptr->p_nstopchild++;
   1568 
   1569 	/* child_psignal drops p_lock briefly. */
   1570 	child_psignal(p, ppmask);
   1571 	cv_broadcast(&p->p_pptr->p_waitcv);
   1572 }
   1573 
   1574 /*
   1575  * Stop the current process and switch away to the debugger notifying
   1576  * an event specific to a traced process only.
   1577  */
   1578 void
   1579 eventswitch(int code, int pe_report_event, int entity)
   1580 {
   1581 	struct lwp *l = curlwp;
   1582 	struct proc *p = l->l_proc;
   1583 	struct sigacts *ps;
   1584 	sigset_t *mask;
   1585 	sig_t action;
   1586 	ksiginfo_t ksi;
   1587 	const int signo = SIGTRAP;
   1588 
   1589 	KASSERT(mutex_owned(proc_lock));
   1590 	KASSERT(mutex_owned(p->p_lock));
   1591 	KASSERT(p->p_pptr != initproc);
   1592 	KASSERT(l->l_stat == LSONPROC);
   1593 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1594 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1595 	KASSERT(p->p_nrlwps > 0);
   1596 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1597 	        (code == TRAP_EXEC));
   1598 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1599 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1600 
   1601 repeat:
   1602 	/*
   1603 	 * If we are exiting, demise now.
   1604 	 *
   1605 	 * This avoids notifying tracer and deadlocking.
   1606 	 */
   1607 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1608 		mutex_exit(p->p_lock);
   1609 		mutex_exit(proc_lock);
   1610 
   1611 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1612 			/* Avoid double lwp_exit() and panic. */
   1613 			return;
   1614 		}
   1615 
   1616 		lwp_exit(l);
   1617 		panic("eventswitch");
   1618 		/* NOTREACHED */
   1619 	}
   1620 
   1621 	/*
   1622 	 * If we are no longer traced, abandon this event signal.
   1623 	 *
   1624 	 * This avoids killing a process after detaching the debugger.
   1625 	 */
   1626 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1627 		mutex_exit(p->p_lock);
   1628 		mutex_exit(proc_lock);
   1629 		return;
   1630 	}
   1631 
   1632 	/*
   1633 	 * If there's a pending SIGKILL process it immediately.
   1634 	 */
   1635 	if (p->p_xsig == SIGKILL ||
   1636 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1637 		mutex_exit(p->p_lock);
   1638 		mutex_exit(proc_lock);
   1639 		return;
   1640 	}
   1641 
   1642 	/*
   1643 	 * The process is already stopping.
   1644 	 */
   1645 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1646 		mutex_exit(proc_lock);
   1647 		sigswitch_unlock_and_switch_away(l);
   1648 		mutex_enter(proc_lock);
   1649 		mutex_enter(p->p_lock);
   1650 		goto repeat;
   1651 	}
   1652 
   1653 	KSI_INIT_TRAP(&ksi);
   1654 	ksi.ksi_lid = l->l_lid;
   1655 	ksi.ksi_signo = signo;
   1656 	ksi.ksi_code = code;
   1657 	ksi.ksi_pe_report_event = pe_report_event;
   1658 
   1659 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1660 	ksi.ksi_pe_other_pid = entity;
   1661 
   1662 	/* Needed for ktrace */
   1663 	ps = p->p_sigacts;
   1664 	action = SIGACTION_PS(ps, signo).sa_handler;
   1665 	mask = &l->l_sigmask;
   1666 
   1667 	p->p_xsig = signo;
   1668 	p->p_sigctx.ps_faked = true;
   1669 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1670 	p->p_sigctx.ps_info = ksi.ksi_info;
   1671 
   1672 	sigswitch(0, signo, true);
   1673 
   1674 	if (code == TRAP_CHLD) {
   1675 		mutex_enter(proc_lock);
   1676 		while (l->l_vforkwaiting)
   1677 			cv_wait(&l->l_waitcv, proc_lock);
   1678 		mutex_exit(proc_lock);
   1679 	}
   1680 
   1681 	if (ktrpoint(KTR_PSIG)) {
   1682 		if (p->p_emul->e_ktrpsig)
   1683 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1684 		else
   1685 			ktrpsig(signo, action, mask, &ksi);
   1686 	}
   1687 }
   1688 
   1689 /*
   1690  * Stop the current process and switch away when being stopped or traced.
   1691  */
   1692 static void
   1693 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1694 {
   1695 	struct lwp *l = curlwp;
   1696 	struct proc *p = l->l_proc;
   1697 
   1698 	KASSERT(mutex_owned(p->p_lock));
   1699 	KASSERT(l->l_stat == LSONPROC);
   1700 	KASSERT(p->p_nrlwps > 0);
   1701 
   1702 	if (proc_lock_held) {
   1703 		KASSERT(mutex_owned(proc_lock));
   1704 	} else {
   1705 		KASSERT(!mutex_owned(proc_lock));
   1706 	}
   1707 
   1708 	/*
   1709 	 * On entry we know that the process needs to stop.  If it's
   1710 	 * the result of a 'sideways' stop signal that has been sourced
   1711 	 * through issignal(), then stop other LWPs in the process too.
   1712 	 */
   1713 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1714 		KASSERT(signo != 0);
   1715 		proc_stop(p, signo);
   1716 		KASSERT(p->p_nrlwps > 0);
   1717 	}
   1718 
   1719 	/*
   1720 	 * If we are the last live LWP, and the stop was a result of
   1721 	 * a new signal, then signal the parent.
   1722 	 */
   1723 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1724 		if (!proc_lock_held && !mutex_tryenter(proc_lock)) {
   1725 			mutex_exit(p->p_lock);
   1726 			mutex_enter(proc_lock);
   1727 			mutex_enter(p->p_lock);
   1728 		}
   1729 
   1730 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1731 			/*
   1732 			 * Note that proc_stop_done() can drop
   1733 			 * p->p_lock briefly.
   1734 			 */
   1735 			proc_stop_done(p, ppmask);
   1736 		}
   1737 
   1738 		mutex_exit(proc_lock);
   1739 	}
   1740 
   1741 	sigswitch_unlock_and_switch_away(l);
   1742 }
   1743 
   1744 /*
   1745  * Unlock and switch away.
   1746  */
   1747 static void
   1748 sigswitch_unlock_and_switch_away(struct lwp *l)
   1749 {
   1750 	struct proc *p;
   1751 	int biglocks;
   1752 
   1753 	p = l->l_proc;
   1754 
   1755 	KASSERT(mutex_owned(p->p_lock));
   1756 	KASSERT(!mutex_owned(proc_lock));
   1757 
   1758 	KASSERT(l->l_stat == LSONPROC);
   1759 	KASSERT(p->p_nrlwps > 0);
   1760 
   1761 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1762 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1763 		p->p_nrlwps--;
   1764 		lwp_lock(l);
   1765 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1766 		l->l_stat = LSSTOP;
   1767 		lwp_unlock(l);
   1768 	}
   1769 
   1770 	mutex_exit(p->p_lock);
   1771 	lwp_lock(l);
   1772 	mi_switch(l);
   1773 	KERNEL_LOCK(biglocks, l);
   1774 }
   1775 
   1776 /*
   1777  * Check for a signal from the debugger.
   1778  */
   1779 static int
   1780 sigchecktrace(void)
   1781 {
   1782 	struct lwp *l = curlwp;
   1783 	struct proc *p = l->l_proc;
   1784 	int signo;
   1785 
   1786 	KASSERT(mutex_owned(p->p_lock));
   1787 
   1788 	/* If there's a pending SIGKILL, process it immediately. */
   1789 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1790 		return 0;
   1791 
   1792 	/*
   1793 	 * If we are no longer being traced, or the parent didn't
   1794 	 * give us a signal, or we're stopping, look for more signals.
   1795 	 */
   1796 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1797 	    (p->p_sflag & PS_STOPPING) != 0)
   1798 		return 0;
   1799 
   1800 	/*
   1801 	 * If the new signal is being masked, look for other signals.
   1802 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1803 	 */
   1804 	signo = p->p_xsig;
   1805 	p->p_xsig = 0;
   1806 	if (sigismember(&l->l_sigmask, signo)) {
   1807 		signo = 0;
   1808 	}
   1809 	return signo;
   1810 }
   1811 
   1812 /*
   1813  * If the current process has received a signal (should be caught or cause
   1814  * termination, should interrupt current syscall), return the signal number.
   1815  *
   1816  * Stop signals with default action are processed immediately, then cleared;
   1817  * they aren't returned.  This is checked after each entry to the system for
   1818  * a syscall or trap.
   1819  *
   1820  * We will also return -1 if the process is exiting and the current LWP must
   1821  * follow suit.
   1822  */
   1823 int
   1824 issignal(struct lwp *l)
   1825 {
   1826 	struct proc *p;
   1827 	int siglwp, signo, prop;
   1828 	sigpend_t *sp;
   1829 	sigset_t ss;
   1830 
   1831 	p = l->l_proc;
   1832 	sp = NULL;
   1833 	signo = 0;
   1834 
   1835 	KASSERT(p == curproc);
   1836 	KASSERT(mutex_owned(p->p_lock));
   1837 
   1838 	for (;;) {
   1839 		/* Discard any signals that we have decided not to take. */
   1840 		if (signo != 0) {
   1841 			(void)sigget(sp, NULL, signo, NULL);
   1842 		}
   1843 
   1844 		/*
   1845 		 * If the process is stopped/stopping, then stop ourselves
   1846 		 * now that we're on the kernel/userspace boundary.  When
   1847 		 * we awaken, check for a signal from the debugger.
   1848 		 */
   1849 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1850 			sigswitch_unlock_and_switch_away(l);
   1851 			mutex_enter(p->p_lock);
   1852 			continue;
   1853 		} else if (p->p_stat == SACTIVE)
   1854 			signo = sigchecktrace();
   1855 		else
   1856 			signo = 0;
   1857 
   1858 		/* Signals from the debugger are "out of band". */
   1859 		sp = NULL;
   1860 
   1861 		/*
   1862 		 * If the debugger didn't provide a signal, find a pending
   1863 		 * signal from our set.  Check per-LWP signals first, and
   1864 		 * then per-process.
   1865 		 */
   1866 		if (signo == 0) {
   1867 			sp = &l->l_sigpend;
   1868 			ss = sp->sp_set;
   1869 			siglwp = l->l_lid;
   1870 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1871 				sigminusset(&vforksigmask, &ss);
   1872 			sigminusset(&l->l_sigmask, &ss);
   1873 
   1874 			if ((signo = firstsig(&ss)) == 0) {
   1875 				sp = &p->p_sigpend;
   1876 				ss = sp->sp_set;
   1877 				siglwp = 0;
   1878 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1879 					sigminusset(&vforksigmask, &ss);
   1880 				sigminusset(&l->l_sigmask, &ss);
   1881 
   1882 				if ((signo = firstsig(&ss)) == 0) {
   1883 					/*
   1884 					 * No signal pending - clear the
   1885 					 * indicator and bail out.
   1886 					 */
   1887 					lwp_lock(l);
   1888 					l->l_flag &= ~LW_PENDSIG;
   1889 					lwp_unlock(l);
   1890 					sp = NULL;
   1891 					break;
   1892 				}
   1893 			}
   1894 		}
   1895 
   1896 		if (sp) {
   1897 			/* Overwrite process' signal context to correspond
   1898 			 * to the currently reported LWP.  This is necessary
   1899 			 * for PT_GET_SIGINFO to report the correct signal when
   1900 			 * multiple LWPs have pending signals.  We do this only
   1901 			 * when the signal comes from the queue, for signals
   1902 			 * created by the debugger we assume it set correct
   1903 			 * siginfo.
   1904 			 */
   1905 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1906 			if (ksi) {
   1907 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1908 				p->p_sigctx.ps_info = ksi->ksi_info;
   1909 			} else {
   1910 				p->p_sigctx.ps_lwp = siglwp;
   1911 				memset(&p->p_sigctx.ps_info, 0,
   1912 				    sizeof(p->p_sigctx.ps_info));
   1913 				p->p_sigctx.ps_info._signo = signo;
   1914 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1915 			}
   1916 		}
   1917 
   1918 		/*
   1919 		 * We should see pending but ignored signals only if
   1920 		 * we are being traced.
   1921 		 */
   1922 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1923 		    (p->p_slflag & PSL_TRACED) == 0) {
   1924 			/* Discard the signal. */
   1925 			continue;
   1926 		}
   1927 
   1928 		/*
   1929 		 * If traced, always stop, and stay stopped until released
   1930 		 * by the debugger.  If the our parent is our debugger waiting
   1931 		 * for us and we vforked, don't hang as we could deadlock.
   1932 		 */
   1933 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
   1934 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1935 		     (p->p_pptr == p->p_opptr))) {
   1936 			/*
   1937 			 * Take the signal, but don't remove it from the
   1938 			 * siginfo queue, because the debugger can send
   1939 			 * it later.
   1940 			 */
   1941 			if (sp)
   1942 				sigdelset(&sp->sp_set, signo);
   1943 			p->p_xsig = signo;
   1944 
   1945 			/* Handling of signal trace */
   1946 			sigswitch(0, signo, false);
   1947 			mutex_enter(p->p_lock);
   1948 
   1949 			/* Check for a signal from the debugger. */
   1950 			if ((signo = sigchecktrace()) == 0)
   1951 				continue;
   1952 
   1953 			/* Signals from the debugger are "out of band". */
   1954 			sp = NULL;
   1955 		}
   1956 
   1957 		prop = sigprop[signo];
   1958 
   1959 		/*
   1960 		 * Decide whether the signal should be returned.
   1961 		 */
   1962 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1963 		case (long)SIG_DFL:
   1964 			/*
   1965 			 * Don't take default actions on system processes.
   1966 			 */
   1967 			if (p->p_pid <= 1) {
   1968 #ifdef DIAGNOSTIC
   1969 				/*
   1970 				 * Are you sure you want to ignore SIGSEGV
   1971 				 * in init? XXX
   1972 				 */
   1973 				printf_nolog("Process (pid %d) got sig %d\n",
   1974 				    p->p_pid, signo);
   1975 #endif
   1976 				continue;
   1977 			}
   1978 
   1979 			/*
   1980 			 * If there is a pending stop signal to process with
   1981 			 * default action, stop here, then clear the signal.
   1982 			 * However, if process is member of an orphaned
   1983 			 * process group, ignore tty stop signals.
   1984 			 */
   1985 			if (prop & SA_STOP) {
   1986 				/*
   1987 				 * XXX Don't hold proc_lock for p_lflag,
   1988 				 * but it's not a big deal.
   1989 				 */
   1990 				if ((ISSET(p->p_slflag, PSL_TRACED) &&
   1991 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1992 				     (p->p_pptr == p->p_opptr))) ||
   1993 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1994 				    prop & SA_TTYSTOP)) {
   1995 					/* Ignore the signal. */
   1996 					continue;
   1997 				}
   1998 				/* Take the signal. */
   1999 				(void)sigget(sp, NULL, signo, NULL);
   2000 				p->p_xsig = signo;
   2001 				p->p_sflag &= ~PS_CONTINUED;
   2002 				signo = 0;
   2003 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2004 				mutex_enter(p->p_lock);
   2005 			} else if (prop & SA_IGNORE) {
   2006 				/*
   2007 				 * Except for SIGCONT, shouldn't get here.
   2008 				 * Default action is to ignore; drop it.
   2009 				 */
   2010 				continue;
   2011 			}
   2012 			break;
   2013 
   2014 		case (long)SIG_IGN:
   2015 #ifdef DEBUG_ISSIGNAL
   2016 			/*
   2017 			 * Masking above should prevent us ever trying
   2018 			 * to take action on an ignored signal other
   2019 			 * than SIGCONT, unless process is traced.
   2020 			 */
   2021 			if ((prop & SA_CONT) == 0 &&
   2022 			    (p->p_slflag & PSL_TRACED) == 0)
   2023 				printf_nolog("issignal\n");
   2024 #endif
   2025 			continue;
   2026 
   2027 		default:
   2028 			/*
   2029 			 * This signal has an action, let postsig() process
   2030 			 * it.
   2031 			 */
   2032 			break;
   2033 		}
   2034 
   2035 		break;
   2036 	}
   2037 
   2038 	l->l_sigpendset = sp;
   2039 	return signo;
   2040 }
   2041 
   2042 /*
   2043  * Take the action for the specified signal
   2044  * from the current set of pending signals.
   2045  */
   2046 void
   2047 postsig(int signo)
   2048 {
   2049 	struct lwp	*l;
   2050 	struct proc	*p;
   2051 	struct sigacts	*ps;
   2052 	sig_t		action;
   2053 	sigset_t	*returnmask;
   2054 	ksiginfo_t	ksi;
   2055 
   2056 	l = curlwp;
   2057 	p = l->l_proc;
   2058 	ps = p->p_sigacts;
   2059 
   2060 	KASSERT(mutex_owned(p->p_lock));
   2061 	KASSERT(signo > 0);
   2062 
   2063 	/*
   2064 	 * Set the new mask value and also defer further occurrences of this
   2065 	 * signal.
   2066 	 *
   2067 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2068 	 * not of interest, but rather the mask from before the sigsuspend is
   2069 	 * what we want restored after the signal processing is completed.
   2070 	 */
   2071 	if (l->l_sigrestore) {
   2072 		returnmask = &l->l_sigoldmask;
   2073 		l->l_sigrestore = 0;
   2074 	} else
   2075 		returnmask = &l->l_sigmask;
   2076 
   2077 	/*
   2078 	 * Commit to taking the signal before releasing the mutex.
   2079 	 */
   2080 	action = SIGACTION_PS(ps, signo).sa_handler;
   2081 	l->l_ru.ru_nsignals++;
   2082 	if (l->l_sigpendset == NULL) {
   2083 		/* From the debugger */
   2084 		if (p->p_sigctx.ps_faked &&
   2085 		    signo == p->p_sigctx.ps_info._signo) {
   2086 			KSI_INIT(&ksi);
   2087 			ksi.ksi_info = p->p_sigctx.ps_info;
   2088 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2089 			p->p_sigctx.ps_faked = false;
   2090 		} else {
   2091 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2092 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2093 		}
   2094 	} else
   2095 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2096 
   2097 	if (ktrpoint(KTR_PSIG)) {
   2098 		mutex_exit(p->p_lock);
   2099 		if (p->p_emul->e_ktrpsig)
   2100 			p->p_emul->e_ktrpsig(signo, action,
   2101 			    returnmask, &ksi);
   2102 		else
   2103 			ktrpsig(signo, action, returnmask, &ksi);
   2104 		mutex_enter(p->p_lock);
   2105 	}
   2106 
   2107 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2108 
   2109 	if (action == SIG_DFL) {
   2110 		/*
   2111 		 * Default action, where the default is to kill
   2112 		 * the process.  (Other cases were ignored above.)
   2113 		 */
   2114 		sigexit(l, signo);
   2115 		return;
   2116 	}
   2117 
   2118 	/*
   2119 	 * If we get here, the signal must be caught.
   2120 	 */
   2121 #ifdef DIAGNOSTIC
   2122 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2123 		panic("postsig action");
   2124 #endif
   2125 
   2126 	kpsendsig(l, &ksi, returnmask);
   2127 }
   2128 
   2129 /*
   2130  * sendsig:
   2131  *
   2132  *	Default signal delivery method for NetBSD.
   2133  */
   2134 void
   2135 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2136 {
   2137 	struct sigacts *sa;
   2138 	int sig;
   2139 
   2140 	sig = ksi->ksi_signo;
   2141 	sa = curproc->p_sigacts;
   2142 
   2143 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2144 	case 0:
   2145 	case 1:
   2146 		/* Compat for 1.6 and earlier. */
   2147 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2148 		    break);
   2149 		return;
   2150 	case 2:
   2151 	case 3:
   2152 		sendsig_siginfo(ksi, mask);
   2153 		return;
   2154 	default:
   2155 		break;
   2156 	}
   2157 
   2158 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2159 	sigexit(curlwp, SIGILL);
   2160 }
   2161 
   2162 /*
   2163  * sendsig_reset:
   2164  *
   2165  *	Reset the signal action.  Called from emulation specific sendsig()
   2166  *	before unlocking to deliver the signal.
   2167  */
   2168 void
   2169 sendsig_reset(struct lwp *l, int signo)
   2170 {
   2171 	struct proc *p = l->l_proc;
   2172 	struct sigacts *ps = p->p_sigacts;
   2173 
   2174 	KASSERT(mutex_owned(p->p_lock));
   2175 
   2176 	p->p_sigctx.ps_lwp = 0;
   2177 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2178 
   2179 	mutex_enter(&ps->sa_mutex);
   2180 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2181 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2182 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2183 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2184 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2185 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2186 	}
   2187 	mutex_exit(&ps->sa_mutex);
   2188 }
   2189 
   2190 /*
   2191  * Kill the current process for stated reason.
   2192  */
   2193 void
   2194 killproc(struct proc *p, const char *why)
   2195 {
   2196 
   2197 	KASSERT(mutex_owned(proc_lock));
   2198 
   2199 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2200 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2201 	psignal(p, SIGKILL);
   2202 }
   2203 
   2204 /*
   2205  * Force the current process to exit with the specified signal, dumping core
   2206  * if appropriate.  We bypass the normal tests for masked and caught
   2207  * signals, allowing unrecoverable failures to terminate the process without
   2208  * changing signal state.  Mark the accounting record with the signal
   2209  * termination.  If dumping core, save the signal number for the debugger.
   2210  * Calls exit and does not return.
   2211  */
   2212 void
   2213 sigexit(struct lwp *l, int signo)
   2214 {
   2215 	int exitsig, error, docore;
   2216 	struct proc *p;
   2217 	struct lwp *t;
   2218 
   2219 	p = l->l_proc;
   2220 
   2221 	KASSERT(mutex_owned(p->p_lock));
   2222 	KERNEL_UNLOCK_ALL(l, NULL);
   2223 
   2224 	/*
   2225 	 * Don't permit coredump() multiple times in the same process.
   2226 	 * Call back into sigexit, where we will be suspended until
   2227 	 * the deed is done.  Note that this is a recursive call, but
   2228 	 * LW_WCORE will prevent us from coming back this way.
   2229 	 */
   2230 	if ((p->p_sflag & PS_WCORE) != 0) {
   2231 		lwp_lock(l);
   2232 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2233 		lwp_unlock(l);
   2234 		mutex_exit(p->p_lock);
   2235 		lwp_userret(l);
   2236 		panic("sigexit 1");
   2237 		/* NOTREACHED */
   2238 	}
   2239 
   2240 	/* If process is already on the way out, then bail now. */
   2241 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2242 		mutex_exit(p->p_lock);
   2243 		lwp_exit(l);
   2244 		panic("sigexit 2");
   2245 		/* NOTREACHED */
   2246 	}
   2247 
   2248 	/*
   2249 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2250 	 * so that their registers are available long enough to be dumped.
   2251  	 */
   2252 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2253 		p->p_sflag |= PS_WCORE;
   2254 		for (;;) {
   2255 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2256 				lwp_lock(t);
   2257 				if (t == l) {
   2258 					t->l_flag &=
   2259 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2260 					lwp_unlock(t);
   2261 					continue;
   2262 				}
   2263 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2264 				lwp_suspend(l, t);
   2265 			}
   2266 
   2267 			if (p->p_nrlwps == 1)
   2268 				break;
   2269 
   2270 			/*
   2271 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2272 			 * for everyone else to stop before proceeding.
   2273 			 */
   2274 			p->p_nlwpwait++;
   2275 			cv_broadcast(&p->p_lwpcv);
   2276 			cv_wait(&p->p_lwpcv, p->p_lock);
   2277 			p->p_nlwpwait--;
   2278 		}
   2279 	}
   2280 
   2281 	exitsig = signo;
   2282 	p->p_acflag |= AXSIG;
   2283 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2284 	p->p_sigctx.ps_info._signo = signo;
   2285 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2286 
   2287 	if (docore) {
   2288 		mutex_exit(p->p_lock);
   2289 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2290 
   2291 		if (kern_logsigexit) {
   2292 			int uid = l->l_cred ?
   2293 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2294 
   2295 			if (error)
   2296 				log(LOG_INFO, lognocoredump, p->p_pid,
   2297 				    p->p_comm, uid, signo, error);
   2298 			else
   2299 				log(LOG_INFO, logcoredump, p->p_pid,
   2300 				    p->p_comm, uid, signo);
   2301 		}
   2302 
   2303 #ifdef PAX_SEGVGUARD
   2304 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2305 #endif /* PAX_SEGVGUARD */
   2306 		/* Acquire the sched state mutex.  exit1() will release it. */
   2307 		mutex_enter(p->p_lock);
   2308 		if (error == 0)
   2309 			p->p_sflag |= PS_COREDUMP;
   2310 	}
   2311 
   2312 	/* No longer dumping core. */
   2313 	p->p_sflag &= ~PS_WCORE;
   2314 
   2315 	exit1(l, 0, exitsig);
   2316 	/* NOTREACHED */
   2317 }
   2318 
   2319 /*
   2320  * Many emulations have a common coredump_netbsd() established as their
   2321  * dump routine.  Since the "real" code may (or may not) be present in
   2322  * loadable module, we provide a routine here which calls the module
   2323  * hook.
   2324  */
   2325 
   2326 int
   2327 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2328 {
   2329 	int retval;
   2330 
   2331 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
   2332 	return retval;
   2333 }
   2334 
   2335 /*
   2336  * Put process 'p' into the stopped state and optionally, notify the parent.
   2337  */
   2338 void
   2339 proc_stop(struct proc *p, int signo)
   2340 {
   2341 	struct lwp *l;
   2342 
   2343 	KASSERT(mutex_owned(p->p_lock));
   2344 
   2345 	/*
   2346 	 * First off, set the stopping indicator and bring all sleeping
   2347 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2348 	 * unlock between here and the p->p_nrlwps check below.
   2349 	 */
   2350 	p->p_sflag |= PS_STOPPING;
   2351 	membar_producer();
   2352 
   2353 	proc_stop_lwps(p);
   2354 
   2355 	/*
   2356 	 * If there are no LWPs available to take the signal, then we
   2357 	 * signal the parent process immediately.  Otherwise, the last
   2358 	 * LWP to stop will take care of it.
   2359 	 */
   2360 
   2361 	if (p->p_nrlwps == 0) {
   2362 		proc_stop_done(p, PS_NOCLDSTOP);
   2363 	} else {
   2364 		/*
   2365 		 * Have the remaining LWPs come to a halt, and trigger
   2366 		 * proc_stop_callout() to ensure that they do.
   2367 		 */
   2368 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2369 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2370 		}
   2371 		callout_schedule(&proc_stop_ch, 1);
   2372 	}
   2373 }
   2374 
   2375 /*
   2376  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2377  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2378  * to allow LWPs to release any locks that they may hold before stopping.
   2379  *
   2380  * Non-interruptable sleeps can be long, and there is the potential for an
   2381  * LWP to begin sleeping interruptably soon after the process has been set
   2382  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2383  * stopping, and so complete halt of the process and the return of status
   2384  * information to the parent could be delayed indefinitely.
   2385  *
   2386  * To handle this race, proc_stop_callout() runs once per tick while there
   2387  * are stopping processes in the system.  It sets LWPs that are sleeping
   2388  * interruptably into the LSSTOP state.
   2389  *
   2390  * Note that we are not concerned about keeping all LWPs stopped while the
   2391  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2392  * What we do need to ensure is that all LWPs in a stopping process have
   2393  * stopped at least once, so that notification can be sent to the parent
   2394  * process.
   2395  */
   2396 static void
   2397 proc_stop_callout(void *cookie)
   2398 {
   2399 	bool more, restart;
   2400 	struct proc *p;
   2401 
   2402 	(void)cookie;
   2403 
   2404 	do {
   2405 		restart = false;
   2406 		more = false;
   2407 
   2408 		mutex_enter(proc_lock);
   2409 		PROCLIST_FOREACH(p, &allproc) {
   2410 			mutex_enter(p->p_lock);
   2411 
   2412 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2413 				mutex_exit(p->p_lock);
   2414 				continue;
   2415 			}
   2416 
   2417 			/* Stop any LWPs sleeping interruptably. */
   2418 			proc_stop_lwps(p);
   2419 			if (p->p_nrlwps == 0) {
   2420 				/*
   2421 				 * We brought the process to a halt.
   2422 				 * Mark it as stopped and notify the
   2423 				 * parent.
   2424 				 *
   2425 				 * Note that proc_stop_done() will
   2426 				 * drop p->p_lock briefly.
   2427 				 * Arrange to restart and check
   2428 				 * all processes again.
   2429 				 */
   2430 				restart = true;
   2431 				proc_stop_done(p, PS_NOCLDSTOP);
   2432 			} else
   2433 				more = true;
   2434 
   2435 			mutex_exit(p->p_lock);
   2436 			if (restart)
   2437 				break;
   2438 		}
   2439 		mutex_exit(proc_lock);
   2440 	} while (restart);
   2441 
   2442 	/*
   2443 	 * If we noted processes that are stopping but still have
   2444 	 * running LWPs, then arrange to check again in 1 tick.
   2445 	 */
   2446 	if (more)
   2447 		callout_schedule(&proc_stop_ch, 1);
   2448 }
   2449 
   2450 /*
   2451  * Given a process in state SSTOP, set the state back to SACTIVE and
   2452  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2453  */
   2454 void
   2455 proc_unstop(struct proc *p)
   2456 {
   2457 	struct lwp *l;
   2458 	int sig;
   2459 
   2460 	KASSERT(mutex_owned(proc_lock));
   2461 	KASSERT(mutex_owned(p->p_lock));
   2462 
   2463 	p->p_stat = SACTIVE;
   2464 	p->p_sflag &= ~PS_STOPPING;
   2465 	sig = p->p_xsig;
   2466 
   2467 	if (!p->p_waited)
   2468 		p->p_pptr->p_nstopchild--;
   2469 
   2470 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2471 		lwp_lock(l);
   2472 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2473 			lwp_unlock(l);
   2474 			continue;
   2475 		}
   2476 		if (l->l_wchan == NULL) {
   2477 			setrunnable(l);
   2478 			continue;
   2479 		}
   2480 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2481 			setrunnable(l);
   2482 			sig = 0;
   2483 		} else {
   2484 			l->l_stat = LSSLEEP;
   2485 			p->p_nrlwps++;
   2486 			lwp_unlock(l);
   2487 		}
   2488 	}
   2489 }
   2490 
   2491 void
   2492 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2493                const register_t *ret, int error)
   2494 {
   2495 	struct lwp *l = curlwp;
   2496 	struct proc *p = l->l_proc;
   2497 	struct sigacts *ps;
   2498 	sigset_t *mask;
   2499 	sig_t action;
   2500 	ksiginfo_t ksi;
   2501 	size_t i, sy_narg;
   2502 	const int signo = SIGTRAP;
   2503 
   2504 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2505 	KASSERT(p->p_pptr != initproc);
   2506 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2507 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2508 
   2509 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2510 
   2511 	KSI_INIT_TRAP(&ksi);
   2512 	ksi.ksi_lid = l->l_lid;
   2513 	ksi.ksi_signo = signo;
   2514 	ksi.ksi_code = trapno;
   2515 
   2516 	ksi.ksi_sysnum = sysnum;
   2517 	if (trapno == TRAP_SCE) {
   2518 		ksi.ksi_retval[0] = 0;
   2519 		ksi.ksi_retval[1] = 0;
   2520 		ksi.ksi_error = 0;
   2521 	} else {
   2522 		ksi.ksi_retval[0] = ret[0];
   2523 		ksi.ksi_retval[1] = ret[1];
   2524 		ksi.ksi_error = error;
   2525 	}
   2526 
   2527 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2528 
   2529 	for (i = 0; i < sy_narg; i++)
   2530 		ksi.ksi_args[i] = args[i];
   2531 
   2532 	mutex_enter(p->p_lock);
   2533 
   2534 repeat:
   2535 	/*
   2536 	 * If we are exiting, demise now.
   2537 	 *
   2538 	 * This avoids notifying tracer and deadlocking.
   2539 	 */
   2540 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2541 		mutex_exit(p->p_lock);
   2542 		lwp_exit(l);
   2543 		panic("proc_stoptrace");
   2544 		/* NOTREACHED */
   2545 	}
   2546 
   2547 	/*
   2548 	 * If there's a pending SIGKILL process it immediately.
   2549 	 */
   2550 	if (p->p_xsig == SIGKILL ||
   2551 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2552 		mutex_exit(p->p_lock);
   2553 		return;
   2554 	}
   2555 
   2556 	/*
   2557 	 * If we are no longer traced, abandon this event signal.
   2558 	 *
   2559 	 * This avoids killing a process after detaching the debugger.
   2560 	 */
   2561 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2562 		mutex_exit(p->p_lock);
   2563 		return;
   2564 	}
   2565 
   2566 	/*
   2567 	 * The process is already stopping.
   2568 	 */
   2569 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2570 		sigswitch_unlock_and_switch_away(l);
   2571 		mutex_enter(p->p_lock);
   2572 		goto repeat;
   2573 	}
   2574 
   2575 	/* Needed for ktrace */
   2576 	ps = p->p_sigacts;
   2577 	action = SIGACTION_PS(ps, signo).sa_handler;
   2578 	mask = &l->l_sigmask;
   2579 
   2580 	p->p_xsig = signo;
   2581 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2582 	p->p_sigctx.ps_info = ksi.ksi_info;
   2583 	sigswitch(0, signo, false);
   2584 
   2585 	if (ktrpoint(KTR_PSIG)) {
   2586 		if (p->p_emul->e_ktrpsig)
   2587 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2588 		else
   2589 			ktrpsig(signo, action, mask, &ksi);
   2590 	}
   2591 }
   2592 
   2593 static int
   2594 filt_sigattach(struct knote *kn)
   2595 {
   2596 	struct proc *p = curproc;
   2597 
   2598 	kn->kn_obj = p;
   2599 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2600 
   2601 	mutex_enter(p->p_lock);
   2602 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2603 	mutex_exit(p->p_lock);
   2604 
   2605 	return 0;
   2606 }
   2607 
   2608 static void
   2609 filt_sigdetach(struct knote *kn)
   2610 {
   2611 	struct proc *p = kn->kn_obj;
   2612 
   2613 	mutex_enter(p->p_lock);
   2614 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2615 	mutex_exit(p->p_lock);
   2616 }
   2617 
   2618 /*
   2619  * Signal knotes are shared with proc knotes, so we apply a mask to
   2620  * the hint in order to differentiate them from process hints.  This
   2621  * could be avoided by using a signal-specific knote list, but probably
   2622  * isn't worth the trouble.
   2623  */
   2624 static int
   2625 filt_signal(struct knote *kn, long hint)
   2626 {
   2627 
   2628 	if (hint & NOTE_SIGNAL) {
   2629 		hint &= ~NOTE_SIGNAL;
   2630 
   2631 		if (kn->kn_id == hint)
   2632 			kn->kn_data++;
   2633 	}
   2634 	return (kn->kn_data != 0);
   2635 }
   2636 
   2637 const struct filterops sig_filtops = {
   2638 		.f_isfd = 0,
   2639 		.f_attach = filt_sigattach,
   2640 		.f_detach = filt_sigdetach,
   2641 		.f_event = filt_signal,
   2642 };
   2643