kern_sig.c revision 1.390 1 /* $NetBSD: kern_sig.c,v 1.390 2020/05/23 23:42:43 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.390 2020/05/23 23:42:43 ad Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 #include <sys/compat_stub.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm_extern.h>
110
111 #define SIGQUEUE_MAX 32
112 static pool_cache_t sigacts_cache __read_mostly;
113 static pool_cache_t ksiginfo_cache __read_mostly;
114 static callout_t proc_stop_ch __cacheline_aligned;
115
116 sigset_t contsigmask __cacheline_aligned;
117 sigset_t stopsigmask __cacheline_aligned;
118 static sigset_t vforksigmask __cacheline_aligned;
119 sigset_t sigcantmask __cacheline_aligned;
120
121 static void ksiginfo_exechook(struct proc *, void *);
122 static void proc_stop(struct proc *, int);
123 static void proc_stop_done(struct proc *, int);
124 static void proc_stop_callout(void *);
125 static int sigchecktrace(void);
126 static int sigpost(struct lwp *, sig_t, int, int);
127 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
128 static int sigunwait(struct proc *, const ksiginfo_t *);
129 static void sigswitch(int, int, bool);
130 static void sigswitch_unlock_and_switch_away(struct lwp *);
131
132 static void sigacts_poolpage_free(struct pool *, void *);
133 static void *sigacts_poolpage_alloc(struct pool *, int);
134
135 /*
136 * DTrace SDT provider definitions
137 */
138 SDT_PROVIDER_DECLARE(proc);
139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
140 "struct lwp *", /* target thread */
141 "struct proc *", /* target process */
142 "int"); /* signal */
143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
144 "struct lwp *", /* target thread */
145 "struct proc *", /* target process */
146 "int"); /* signal */
147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
148 "int", /* signal */
149 "ksiginfo_t *", /* signal info */
150 "void (*)(void)"); /* handler address */
151
152
153 static struct pool_allocator sigactspool_allocator = {
154 .pa_alloc = sigacts_poolpage_alloc,
155 .pa_free = sigacts_poolpage_free
156 };
157
158 #ifdef DEBUG
159 int kern_logsigexit = 1;
160 #else
161 int kern_logsigexit = 0;
162 #endif
163
164 static const char logcoredump[] =
165 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
166 static const char lognocoredump[] =
167 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
168
169 static kauth_listener_t signal_listener;
170
171 static int
172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
173 void *arg0, void *arg1, void *arg2, void *arg3)
174 {
175 struct proc *p;
176 int result, signum;
177
178 result = KAUTH_RESULT_DEFER;
179 p = arg0;
180 signum = (int)(unsigned long)arg1;
181
182 if (action != KAUTH_PROCESS_SIGNAL)
183 return result;
184
185 if (kauth_cred_uidmatch(cred, p->p_cred) ||
186 (signum == SIGCONT && (curproc->p_session == p->p_session)))
187 result = KAUTH_RESULT_ALLOW;
188
189 return result;
190 }
191
192 static int
193 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
194 {
195 memset(obj, 0, sizeof(struct sigacts));
196 return 0;
197 }
198
199 /*
200 * signal_init:
201 *
202 * Initialize global signal-related data structures.
203 */
204 void
205 signal_init(void)
206 {
207
208 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
209
210 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
211 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
212 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
213 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
214 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
215
216 exechook_establish(ksiginfo_exechook, NULL);
217
218 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
219 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
220
221 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
222 signal_listener_cb, NULL);
223 }
224
225 /*
226 * sigacts_poolpage_alloc:
227 *
228 * Allocate a page for the sigacts memory pool.
229 */
230 static void *
231 sigacts_poolpage_alloc(struct pool *pp, int flags)
232 {
233
234 return (void *)uvm_km_alloc(kernel_map,
235 PAGE_SIZE * 2, PAGE_SIZE * 2,
236 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
237 | UVM_KMF_WIRED);
238 }
239
240 /*
241 * sigacts_poolpage_free:
242 *
243 * Free a page on behalf of the sigacts memory pool.
244 */
245 static void
246 sigacts_poolpage_free(struct pool *pp, void *v)
247 {
248
249 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
250 }
251
252 /*
253 * sigactsinit:
254 *
255 * Create an initial sigacts structure, using the same signal state
256 * as of specified process. If 'share' is set, share the sigacts by
257 * holding a reference, otherwise just copy it from parent.
258 */
259 struct sigacts *
260 sigactsinit(struct proc *pp, int share)
261 {
262 struct sigacts *ps = pp->p_sigacts, *ps2;
263
264 if (__predict_false(share)) {
265 atomic_inc_uint(&ps->sa_refcnt);
266 return ps;
267 }
268 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
269 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
270 ps2->sa_refcnt = 1;
271
272 mutex_enter(&ps->sa_mutex);
273 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
274 mutex_exit(&ps->sa_mutex);
275 return ps2;
276 }
277
278 /*
279 * sigactsunshare:
280 *
281 * Make this process not share its sigacts, maintaining all signal state.
282 */
283 void
284 sigactsunshare(struct proc *p)
285 {
286 struct sigacts *ps, *oldps = p->p_sigacts;
287
288 if (__predict_true(oldps->sa_refcnt == 1))
289 return;
290
291 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
292 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
293 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
294 ps->sa_refcnt = 1;
295
296 p->p_sigacts = ps;
297 sigactsfree(oldps);
298 }
299
300 /*
301 * sigactsfree;
302 *
303 * Release a sigacts structure.
304 */
305 void
306 sigactsfree(struct sigacts *ps)
307 {
308
309 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
310 mutex_destroy(&ps->sa_mutex);
311 pool_cache_put(sigacts_cache, ps);
312 }
313 }
314
315 /*
316 * siginit:
317 *
318 * Initialize signal state for process 0; set to ignore signals that
319 * are ignored by default and disable the signal stack. Locking not
320 * required as the system is still cold.
321 */
322 void
323 siginit(struct proc *p)
324 {
325 struct lwp *l;
326 struct sigacts *ps;
327 int signo, prop;
328
329 ps = p->p_sigacts;
330 sigemptyset(&contsigmask);
331 sigemptyset(&stopsigmask);
332 sigemptyset(&vforksigmask);
333 sigemptyset(&sigcantmask);
334 for (signo = 1; signo < NSIG; signo++) {
335 prop = sigprop[signo];
336 if (prop & SA_CONT)
337 sigaddset(&contsigmask, signo);
338 if (prop & SA_STOP)
339 sigaddset(&stopsigmask, signo);
340 if (prop & SA_STOP && signo != SIGSTOP)
341 sigaddset(&vforksigmask, signo);
342 if (prop & SA_CANTMASK)
343 sigaddset(&sigcantmask, signo);
344 if (prop & SA_IGNORE && signo != SIGCONT)
345 sigaddset(&p->p_sigctx.ps_sigignore, signo);
346 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
347 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
348 }
349 sigemptyset(&p->p_sigctx.ps_sigcatch);
350 p->p_sflag &= ~PS_NOCLDSTOP;
351
352 ksiginfo_queue_init(&p->p_sigpend.sp_info);
353 sigemptyset(&p->p_sigpend.sp_set);
354
355 /*
356 * Reset per LWP state.
357 */
358 l = LIST_FIRST(&p->p_lwps);
359 l->l_sigwaited = NULL;
360 l->l_sigstk = SS_INIT;
361 ksiginfo_queue_init(&l->l_sigpend.sp_info);
362 sigemptyset(&l->l_sigpend.sp_set);
363
364 /* One reference. */
365 ps->sa_refcnt = 1;
366 }
367
368 /*
369 * execsigs:
370 *
371 * Reset signals for an exec of the specified process.
372 */
373 void
374 execsigs(struct proc *p)
375 {
376 struct sigacts *ps;
377 struct lwp *l;
378 int signo, prop;
379 sigset_t tset;
380 ksiginfoq_t kq;
381
382 KASSERT(p->p_nlwps == 1);
383
384 sigactsunshare(p);
385 ps = p->p_sigacts;
386
387 /*
388 * Reset caught signals. Held signals remain held through
389 * l->l_sigmask (unless they were caught, and are now ignored
390 * by default).
391 *
392 * No need to lock yet, the process has only one LWP and
393 * at this point the sigacts are private to the process.
394 */
395 sigemptyset(&tset);
396 for (signo = 1; signo < NSIG; signo++) {
397 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
398 prop = sigprop[signo];
399 if (prop & SA_IGNORE) {
400 if ((prop & SA_CONT) == 0)
401 sigaddset(&p->p_sigctx.ps_sigignore,
402 signo);
403 sigaddset(&tset, signo);
404 }
405 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
406 }
407 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
408 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
409 }
410 ksiginfo_queue_init(&kq);
411
412 mutex_enter(p->p_lock);
413 sigclearall(p, &tset, &kq);
414 sigemptyset(&p->p_sigctx.ps_sigcatch);
415
416 /*
417 * Reset no zombies if child dies flag as Solaris does.
418 */
419 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
420 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
421 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
422
423 /*
424 * Reset per-LWP state.
425 */
426 l = LIST_FIRST(&p->p_lwps);
427 l->l_sigwaited = NULL;
428 l->l_sigstk = SS_INIT;
429 ksiginfo_queue_init(&l->l_sigpend.sp_info);
430 sigemptyset(&l->l_sigpend.sp_set);
431 mutex_exit(p->p_lock);
432
433 ksiginfo_queue_drain(&kq);
434 }
435
436 /*
437 * ksiginfo_exechook:
438 *
439 * Free all pending ksiginfo entries from a process on exec.
440 * Additionally, drain any unused ksiginfo structures in the
441 * system back to the pool.
442 *
443 * XXX This should not be a hook, every process has signals.
444 */
445 static void
446 ksiginfo_exechook(struct proc *p, void *v)
447 {
448 ksiginfoq_t kq;
449
450 ksiginfo_queue_init(&kq);
451
452 mutex_enter(p->p_lock);
453 sigclearall(p, NULL, &kq);
454 mutex_exit(p->p_lock);
455
456 ksiginfo_queue_drain(&kq);
457 }
458
459 /*
460 * ksiginfo_alloc:
461 *
462 * Allocate a new ksiginfo structure from the pool, and optionally copy
463 * an existing one. If the existing ksiginfo_t is from the pool, and
464 * has not been queued somewhere, then just return it. Additionally,
465 * if the existing ksiginfo_t does not contain any information beyond
466 * the signal number, then just return it.
467 */
468 ksiginfo_t *
469 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
470 {
471 ksiginfo_t *kp;
472
473 if (ok != NULL) {
474 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
475 KSI_FROMPOOL)
476 return ok;
477 if (KSI_EMPTY_P(ok))
478 return ok;
479 }
480
481 kp = pool_cache_get(ksiginfo_cache, flags);
482 if (kp == NULL) {
483 #ifdef DIAGNOSTIC
484 printf("Out of memory allocating ksiginfo for pid %d\n",
485 p->p_pid);
486 #endif
487 return NULL;
488 }
489
490 if (ok != NULL) {
491 memcpy(kp, ok, sizeof(*kp));
492 kp->ksi_flags &= ~KSI_QUEUED;
493 } else
494 KSI_INIT_EMPTY(kp);
495
496 kp->ksi_flags |= KSI_FROMPOOL;
497
498 return kp;
499 }
500
501 /*
502 * ksiginfo_free:
503 *
504 * If the given ksiginfo_t is from the pool and has not been queued,
505 * then free it.
506 */
507 void
508 ksiginfo_free(ksiginfo_t *kp)
509 {
510
511 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
512 return;
513 pool_cache_put(ksiginfo_cache, kp);
514 }
515
516 /*
517 * ksiginfo_queue_drain:
518 *
519 * Drain a non-empty ksiginfo_t queue.
520 */
521 void
522 ksiginfo_queue_drain0(ksiginfoq_t *kq)
523 {
524 ksiginfo_t *ksi;
525
526 KASSERT(!TAILQ_EMPTY(kq));
527
528 while (!TAILQ_EMPTY(kq)) {
529 ksi = TAILQ_FIRST(kq);
530 TAILQ_REMOVE(kq, ksi, ksi_list);
531 pool_cache_put(ksiginfo_cache, ksi);
532 }
533 }
534
535 static int
536 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
537 {
538 ksiginfo_t *ksi, *nksi;
539
540 if (sp == NULL)
541 goto out;
542
543 /* Find siginfo and copy it out. */
544 int count = 0;
545 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
546 if (ksi->ksi_signo != signo)
547 continue;
548 if (count++ > 0) /* Only remove the first, count all of them */
549 continue;
550 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
551 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
552 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
553 ksi->ksi_flags &= ~KSI_QUEUED;
554 if (out != NULL) {
555 memcpy(out, ksi, sizeof(*out));
556 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
557 }
558 ksiginfo_free(ksi);
559 }
560 if (count)
561 return count;
562
563 out:
564 /* If there is no siginfo, then manufacture it. */
565 if (out != NULL) {
566 KSI_INIT(out);
567 out->ksi_info._signo = signo;
568 out->ksi_info._code = SI_NOINFO;
569 }
570 return 0;
571 }
572
573 /*
574 * sigget:
575 *
576 * Fetch the first pending signal from a set. Optionally, also fetch
577 * or manufacture a ksiginfo element. Returns the number of the first
578 * pending signal, or zero.
579 */
580 int
581 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
582 {
583 sigset_t tset;
584 int count;
585
586 /* If there's no pending set, the signal is from the debugger. */
587 if (sp == NULL)
588 goto out;
589
590 /* Construct mask from signo, and 'mask'. */
591 if (signo == 0) {
592 if (mask != NULL) {
593 tset = *mask;
594 __sigandset(&sp->sp_set, &tset);
595 } else
596 tset = sp->sp_set;
597
598 /* If there are no signals pending - return. */
599 if ((signo = firstsig(&tset)) == 0)
600 goto out;
601 } else {
602 KASSERT(sigismember(&sp->sp_set, signo));
603 }
604
605 sigdelset(&sp->sp_set, signo);
606 out:
607 count = siggetinfo(sp, out, signo);
608 if (count > 1)
609 sigaddset(&sp->sp_set, signo);
610 return signo;
611 }
612
613 /*
614 * sigput:
615 *
616 * Append a new ksiginfo element to the list of pending ksiginfo's.
617 */
618 static int
619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
620 {
621 ksiginfo_t *kp;
622
623 KASSERT(mutex_owned(p->p_lock));
624 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
625
626 sigaddset(&sp->sp_set, ksi->ksi_signo);
627
628 /*
629 * If there is no siginfo, we are done.
630 */
631 if (KSI_EMPTY_P(ksi))
632 return 0;
633
634 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
635
636 size_t count = 0;
637 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
638 count++;
639 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
640 continue;
641 if (kp->ksi_signo == ksi->ksi_signo) {
642 KSI_COPY(ksi, kp);
643 kp->ksi_flags |= KSI_QUEUED;
644 return 0;
645 }
646 }
647
648 if (count >= SIGQUEUE_MAX) {
649 #ifdef DIAGNOSTIC
650 printf("%s(%d): Signal queue is full signal=%d\n",
651 p->p_comm, p->p_pid, ksi->ksi_signo);
652 #endif
653 return EAGAIN;
654 }
655 ksi->ksi_flags |= KSI_QUEUED;
656 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
657
658 return 0;
659 }
660
661 /*
662 * sigclear:
663 *
664 * Clear all pending signals in the specified set.
665 */
666 void
667 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
668 {
669 ksiginfo_t *ksi, *next;
670
671 if (mask == NULL)
672 sigemptyset(&sp->sp_set);
673 else
674 sigminusset(mask, &sp->sp_set);
675
676 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
677 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
678 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
679 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
680 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
681 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
682 }
683 }
684 }
685
686 /*
687 * sigclearall:
688 *
689 * Clear all pending signals in the specified set from a process and
690 * its LWPs.
691 */
692 void
693 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
694 {
695 struct lwp *l;
696
697 KASSERT(mutex_owned(p->p_lock));
698
699 sigclear(&p->p_sigpend, mask, kq);
700
701 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
702 sigclear(&l->l_sigpend, mask, kq);
703 }
704 }
705
706 /*
707 * sigispending:
708 *
709 * Return the first signal number if there are pending signals for the
710 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
711 * and that the signal has been posted to the appopriate queue before
712 * LW_PENDSIG is set.
713 *
714 * This should only ever be called with (l == curlwp), unless the
715 * result does not matter (procfs, sysctl).
716 */
717 int
718 sigispending(struct lwp *l, int signo)
719 {
720 struct proc *p = l->l_proc;
721 sigset_t tset;
722
723 membar_consumer();
724
725 tset = l->l_sigpend.sp_set;
726 sigplusset(&p->p_sigpend.sp_set, &tset);
727 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
728 sigminusset(&l->l_sigmask, &tset);
729
730 if (signo == 0) {
731 return firstsig(&tset);
732 }
733 return sigismember(&tset, signo) ? signo : 0;
734 }
735
736 void
737 getucontext(struct lwp *l, ucontext_t *ucp)
738 {
739 struct proc *p = l->l_proc;
740
741 KASSERT(mutex_owned(p->p_lock));
742
743 ucp->uc_flags = 0;
744 ucp->uc_link = l->l_ctxlink;
745 ucp->uc_sigmask = l->l_sigmask;
746 ucp->uc_flags |= _UC_SIGMASK;
747
748 /*
749 * The (unsupplied) definition of the `current execution stack'
750 * in the System V Interface Definition appears to allow returning
751 * the main context stack.
752 */
753 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
754 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
755 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
756 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
757 } else {
758 /* Simply copy alternate signal execution stack. */
759 ucp->uc_stack = l->l_sigstk;
760 }
761 ucp->uc_flags |= _UC_STACK;
762 mutex_exit(p->p_lock);
763 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
764 mutex_enter(p->p_lock);
765 }
766
767 int
768 setucontext(struct lwp *l, const ucontext_t *ucp)
769 {
770 struct proc *p = l->l_proc;
771 int error;
772
773 KASSERT(mutex_owned(p->p_lock));
774
775 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
776 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
777 if (error != 0)
778 return error;
779 }
780
781 mutex_exit(p->p_lock);
782 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
783 mutex_enter(p->p_lock);
784 if (error != 0)
785 return (error);
786
787 l->l_ctxlink = ucp->uc_link;
788
789 /*
790 * If there was stack information, update whether or not we are
791 * still running on an alternate signal stack.
792 */
793 if ((ucp->uc_flags & _UC_STACK) != 0) {
794 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
795 l->l_sigstk.ss_flags |= SS_ONSTACK;
796 else
797 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
798 }
799
800 return 0;
801 }
802
803 /*
804 * killpg1: common code for kill process group/broadcast kill.
805 */
806 int
807 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
808 {
809 struct proc *p, *cp;
810 kauth_cred_t pc;
811 struct pgrp *pgrp;
812 int nfound;
813 int signo = ksi->ksi_signo;
814
815 cp = l->l_proc;
816 pc = l->l_cred;
817 nfound = 0;
818
819 mutex_enter(&proc_lock);
820 if (all) {
821 /*
822 * Broadcast.
823 */
824 PROCLIST_FOREACH(p, &allproc) {
825 if (p->p_pid <= 1 || p == cp ||
826 (p->p_flag & PK_SYSTEM) != 0)
827 continue;
828 mutex_enter(p->p_lock);
829 if (kauth_authorize_process(pc,
830 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
831 NULL) == 0) {
832 nfound++;
833 if (signo)
834 kpsignal2(p, ksi);
835 }
836 mutex_exit(p->p_lock);
837 }
838 } else {
839 if (pgid == 0)
840 /* Zero pgid means send to my process group. */
841 pgrp = cp->p_pgrp;
842 else {
843 pgrp = pgrp_find(pgid);
844 if (pgrp == NULL)
845 goto out;
846 }
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
848 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
849 continue;
850 mutex_enter(p->p_lock);
851 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
852 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
853 nfound++;
854 if (signo && P_ZOMBIE(p) == 0)
855 kpsignal2(p, ksi);
856 }
857 mutex_exit(p->p_lock);
858 }
859 }
860 out:
861 mutex_exit(&proc_lock);
862 return nfound ? 0 : ESRCH;
863 }
864
865 /*
866 * Send a signal to a process group. If checktty is set, limit to members
867 * which have a controlling terminal.
868 */
869 void
870 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
871 {
872 ksiginfo_t ksi;
873
874 KASSERT(!cpu_intr_p());
875 KASSERT(mutex_owned(&proc_lock));
876
877 KSI_INIT_EMPTY(&ksi);
878 ksi.ksi_signo = sig;
879 kpgsignal(pgrp, &ksi, NULL, checkctty);
880 }
881
882 void
883 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
884 {
885 struct proc *p;
886
887 KASSERT(!cpu_intr_p());
888 KASSERT(mutex_owned(&proc_lock));
889 KASSERT(pgrp != NULL);
890
891 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
892 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
893 kpsignal(p, ksi, data);
894 }
895
896 /*
897 * Send a signal caused by a trap to the current LWP. If it will be caught
898 * immediately, deliver it with correct code. Otherwise, post it normally.
899 */
900 void
901 trapsignal(struct lwp *l, ksiginfo_t *ksi)
902 {
903 struct proc *p;
904 struct sigacts *ps;
905 int signo = ksi->ksi_signo;
906 sigset_t *mask;
907 sig_t action;
908
909 KASSERT(KSI_TRAP_P(ksi));
910
911 ksi->ksi_lid = l->l_lid;
912 p = l->l_proc;
913
914 KASSERT(!cpu_intr_p());
915 mutex_enter(&proc_lock);
916 mutex_enter(p->p_lock);
917
918 repeat:
919 /*
920 * If we are exiting, demise now.
921 *
922 * This avoids notifying tracer and deadlocking.
923 */
924 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
925 mutex_exit(p->p_lock);
926 mutex_exit(&proc_lock);
927 lwp_exit(l);
928 panic("trapsignal");
929 /* NOTREACHED */
930 }
931
932 /*
933 * The process is already stopping.
934 */
935 if ((p->p_sflag & PS_STOPPING) != 0) {
936 mutex_exit(&proc_lock);
937 sigswitch_unlock_and_switch_away(l);
938 mutex_enter(&proc_lock);
939 mutex_enter(p->p_lock);
940 goto repeat;
941 }
942
943 mask = &l->l_sigmask;
944 ps = p->p_sigacts;
945 action = SIGACTION_PS(ps, signo).sa_handler;
946
947 if (ISSET(p->p_slflag, PSL_TRACED) &&
948 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
949 p->p_xsig != SIGKILL &&
950 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
951 p->p_xsig = signo;
952 p->p_sigctx.ps_faked = true;
953 p->p_sigctx.ps_lwp = ksi->ksi_lid;
954 p->p_sigctx.ps_info = ksi->ksi_info;
955 sigswitch(0, signo, true);
956
957 if (ktrpoint(KTR_PSIG)) {
958 if (p->p_emul->e_ktrpsig)
959 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
960 else
961 ktrpsig(signo, action, mask, ksi);
962 }
963 return;
964 }
965
966 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
967 const bool masked = sigismember(mask, signo);
968 if (caught && !masked) {
969 mutex_exit(&proc_lock);
970 l->l_ru.ru_nsignals++;
971 kpsendsig(l, ksi, mask);
972 mutex_exit(p->p_lock);
973
974 if (ktrpoint(KTR_PSIG)) {
975 if (p->p_emul->e_ktrpsig)
976 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
977 else
978 ktrpsig(signo, action, mask, ksi);
979 }
980 return;
981 }
982
983 /*
984 * If the signal is masked or ignored, then unmask it and
985 * reset it to the default action so that the process or
986 * its tracer will be notified.
987 */
988 const bool ignored = action == SIG_IGN;
989 if (masked || ignored) {
990 mutex_enter(&ps->sa_mutex);
991 sigdelset(mask, signo);
992 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
993 sigdelset(&p->p_sigctx.ps_sigignore, signo);
994 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
995 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
996 mutex_exit(&ps->sa_mutex);
997 }
998
999 kpsignal2(p, ksi);
1000 mutex_exit(p->p_lock);
1001 mutex_exit(&proc_lock);
1002 }
1003
1004 /*
1005 * Fill in signal information and signal the parent for a child status change.
1006 */
1007 void
1008 child_psignal(struct proc *p, int mask)
1009 {
1010 ksiginfo_t ksi;
1011 struct proc *q;
1012 int xsig;
1013
1014 KASSERT(mutex_owned(&proc_lock));
1015 KASSERT(mutex_owned(p->p_lock));
1016
1017 xsig = p->p_xsig;
1018
1019 KSI_INIT(&ksi);
1020 ksi.ksi_signo = SIGCHLD;
1021 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1022 ksi.ksi_pid = p->p_pid;
1023 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1024 ksi.ksi_status = xsig;
1025 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1026 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1027
1028 q = p->p_pptr;
1029
1030 mutex_exit(p->p_lock);
1031 mutex_enter(q->p_lock);
1032
1033 if ((q->p_sflag & mask) == 0)
1034 kpsignal2(q, &ksi);
1035
1036 mutex_exit(q->p_lock);
1037 mutex_enter(p->p_lock);
1038 }
1039
1040 void
1041 psignal(struct proc *p, int signo)
1042 {
1043 ksiginfo_t ksi;
1044
1045 KASSERT(!cpu_intr_p());
1046 KASSERT(mutex_owned(&proc_lock));
1047
1048 KSI_INIT_EMPTY(&ksi);
1049 ksi.ksi_signo = signo;
1050 mutex_enter(p->p_lock);
1051 kpsignal2(p, &ksi);
1052 mutex_exit(p->p_lock);
1053 }
1054
1055 void
1056 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1057 {
1058 fdfile_t *ff;
1059 file_t *fp;
1060 fdtab_t *dt;
1061
1062 KASSERT(!cpu_intr_p());
1063 KASSERT(mutex_owned(&proc_lock));
1064
1065 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1066 size_t fd;
1067 filedesc_t *fdp = p->p_fd;
1068
1069 /* XXXSMP locking */
1070 ksi->ksi_fd = -1;
1071 dt = atomic_load_consume(&fdp->fd_dt);
1072 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1073 if ((ff = dt->dt_ff[fd]) == NULL)
1074 continue;
1075 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
1076 continue;
1077 if (fp->f_data == data) {
1078 ksi->ksi_fd = fd;
1079 break;
1080 }
1081 }
1082 }
1083 mutex_enter(p->p_lock);
1084 kpsignal2(p, ksi);
1085 mutex_exit(p->p_lock);
1086 }
1087
1088 /*
1089 * sigismasked:
1090 *
1091 * Returns true if signal is ignored or masked for the specified LWP.
1092 */
1093 int
1094 sigismasked(struct lwp *l, int sig)
1095 {
1096 struct proc *p = l->l_proc;
1097
1098 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1099 sigismember(&l->l_sigmask, sig);
1100 }
1101
1102 /*
1103 * sigpost:
1104 *
1105 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1106 * be able to take the signal.
1107 */
1108 static int
1109 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1110 {
1111 int rv, masked;
1112 struct proc *p = l->l_proc;
1113
1114 KASSERT(mutex_owned(p->p_lock));
1115
1116 /*
1117 * If the LWP is on the way out, sigclear() will be busy draining all
1118 * pending signals. Don't give it more.
1119 */
1120 if (l->l_stat == LSZOMB)
1121 return 0;
1122
1123 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1124
1125 lwp_lock(l);
1126 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1127 if ((prop & SA_KILL) != 0)
1128 l->l_flag &= ~LW_DBGSUSPEND;
1129 else {
1130 lwp_unlock(l);
1131 return 0;
1132 }
1133 }
1134
1135 /*
1136 * Have the LWP check for signals. This ensures that even if no LWP
1137 * is found to take the signal immediately, it should be taken soon.
1138 */
1139 signotify(l);
1140
1141 /*
1142 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1143 * Note: SIGKILL and SIGSTOP cannot be masked.
1144 */
1145 masked = sigismember(&l->l_sigmask, sig);
1146 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1147 lwp_unlock(l);
1148 return 0;
1149 }
1150
1151 /*
1152 * If killing the process, make it run fast.
1153 */
1154 if (__predict_false((prop & SA_KILL) != 0) &&
1155 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1156 KASSERT(l->l_class == SCHED_OTHER);
1157 lwp_changepri(l, MAXPRI_USER);
1158 }
1159
1160 /*
1161 * If the LWP is running or on a run queue, then we win. If it's
1162 * sleeping interruptably, wake it and make it take the signal. If
1163 * the sleep isn't interruptable, then the chances are it will get
1164 * to see the signal soon anyhow. If suspended, it can't take the
1165 * signal right now. If it's LWP private or for all LWPs, save it
1166 * for later; otherwise punt.
1167 */
1168 rv = 0;
1169
1170 switch (l->l_stat) {
1171 case LSRUN:
1172 case LSONPROC:
1173 rv = 1;
1174 break;
1175
1176 case LSSLEEP:
1177 if ((l->l_flag & LW_SINTR) != 0) {
1178 /* setrunnable() will release the lock. */
1179 setrunnable(l);
1180 return 1;
1181 }
1182 break;
1183
1184 case LSSUSPENDED:
1185 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1186 /* lwp_continue() will release the lock. */
1187 lwp_continue(l);
1188 return 1;
1189 }
1190 break;
1191
1192 case LSSTOP:
1193 if ((prop & SA_STOP) != 0)
1194 break;
1195
1196 /*
1197 * If the LWP is stopped and we are sending a continue
1198 * signal, then start it again.
1199 */
1200 if ((prop & SA_CONT) != 0) {
1201 if (l->l_wchan != NULL) {
1202 l->l_stat = LSSLEEP;
1203 p->p_nrlwps++;
1204 rv = 1;
1205 break;
1206 }
1207 /* setrunnable() will release the lock. */
1208 setrunnable(l);
1209 return 1;
1210 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1211 /* setrunnable() will release the lock. */
1212 setrunnable(l);
1213 return 1;
1214 }
1215 break;
1216
1217 default:
1218 break;
1219 }
1220
1221 lwp_unlock(l);
1222 return rv;
1223 }
1224
1225 /*
1226 * Notify an LWP that it has a pending signal.
1227 */
1228 void
1229 signotify(struct lwp *l)
1230 {
1231 KASSERT(lwp_locked(l, NULL));
1232
1233 l->l_flag |= LW_PENDSIG;
1234 lwp_need_userret(l);
1235 }
1236
1237 /*
1238 * Find an LWP within process p that is waiting on signal ksi, and hand
1239 * it on.
1240 */
1241 static int
1242 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1243 {
1244 struct lwp *l;
1245 int signo;
1246
1247 KASSERT(mutex_owned(p->p_lock));
1248
1249 signo = ksi->ksi_signo;
1250
1251 if (ksi->ksi_lid != 0) {
1252 /*
1253 * Signal came via _lwp_kill(). Find the LWP and see if
1254 * it's interested.
1255 */
1256 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1257 return 0;
1258 if (l->l_sigwaited == NULL ||
1259 !sigismember(&l->l_sigwaitset, signo))
1260 return 0;
1261 } else {
1262 /*
1263 * Look for any LWP that may be interested.
1264 */
1265 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1266 KASSERT(l->l_sigwaited != NULL);
1267 if (sigismember(&l->l_sigwaitset, signo))
1268 break;
1269 }
1270 }
1271
1272 if (l != NULL) {
1273 l->l_sigwaited->ksi_info = ksi->ksi_info;
1274 l->l_sigwaited = NULL;
1275 LIST_REMOVE(l, l_sigwaiter);
1276 cv_signal(&l->l_sigcv);
1277 return 1;
1278 }
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * Send the signal to the process. If the signal has an action, the action
1285 * is usually performed by the target process rather than the caller; we add
1286 * the signal to the set of pending signals for the process.
1287 *
1288 * Exceptions:
1289 * o When a stop signal is sent to a sleeping process that takes the
1290 * default action, the process is stopped without awakening it.
1291 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1292 * regardless of the signal action (eg, blocked or ignored).
1293 *
1294 * Other ignored signals are discarded immediately.
1295 */
1296 int
1297 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1298 {
1299 int prop, signo = ksi->ksi_signo;
1300 struct lwp *l = NULL;
1301 ksiginfo_t *kp;
1302 lwpid_t lid;
1303 sig_t action;
1304 bool toall;
1305 bool traced;
1306 int error = 0;
1307
1308 KASSERT(!cpu_intr_p());
1309 KASSERT(mutex_owned(&proc_lock));
1310 KASSERT(mutex_owned(p->p_lock));
1311 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1312 KASSERT(signo > 0 && signo < NSIG);
1313
1314 /*
1315 * If the process is being created by fork, is a zombie or is
1316 * exiting, then just drop the signal here and bail out.
1317 */
1318 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1319 return 0;
1320
1321 /*
1322 * Notify any interested parties of the signal.
1323 */
1324 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1325
1326 /*
1327 * Some signals including SIGKILL must act on the entire process.
1328 */
1329 kp = NULL;
1330 prop = sigprop[signo];
1331 toall = ((prop & SA_TOALL) != 0);
1332 lid = toall ? 0 : ksi->ksi_lid;
1333 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1334 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1335
1336 /*
1337 * If proc is traced, always give parent a chance.
1338 */
1339 if (traced) {
1340 action = SIG_DFL;
1341
1342 if (lid == 0) {
1343 /*
1344 * If the process is being traced and the signal
1345 * is being caught, make sure to save any ksiginfo.
1346 */
1347 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1348 goto discard;
1349 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1350 goto out;
1351 }
1352 } else {
1353
1354 /*
1355 * If the signal is being ignored, then drop it. Note: we
1356 * don't set SIGCONT in ps_sigignore, and if it is set to
1357 * SIG_IGN, action will be SIG_DFL here.
1358 */
1359 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1360 goto discard;
1361
1362 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1363 action = SIG_CATCH;
1364 else {
1365 action = SIG_DFL;
1366
1367 /*
1368 * If sending a tty stop signal to a member of an
1369 * orphaned process group, discard the signal here if
1370 * the action is default; don't stop the process below
1371 * if sleeping, and don't clear any pending SIGCONT.
1372 */
1373 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1374 goto discard;
1375
1376 if (prop & SA_KILL && p->p_nice > NZERO)
1377 p->p_nice = NZERO;
1378 }
1379 }
1380
1381 /*
1382 * If stopping or continuing a process, discard any pending
1383 * signals that would do the inverse.
1384 */
1385 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1386 ksiginfoq_t kq;
1387
1388 ksiginfo_queue_init(&kq);
1389 if ((prop & SA_CONT) != 0)
1390 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1391 if ((prop & SA_STOP) != 0)
1392 sigclear(&p->p_sigpend, &contsigmask, &kq);
1393 ksiginfo_queue_drain(&kq); /* XXXSMP */
1394 }
1395
1396 /*
1397 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1398 * please!), check if any LWPs are waiting on it. If yes, pass on
1399 * the signal info. The signal won't be processed further here.
1400 */
1401 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1402 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1403 sigunwait(p, ksi))
1404 goto discard;
1405
1406 /*
1407 * XXXSMP Should be allocated by the caller, we're holding locks
1408 * here.
1409 */
1410 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1411 goto discard;
1412
1413 /*
1414 * LWP private signals are easy - just find the LWP and post
1415 * the signal to it.
1416 */
1417 if (lid != 0) {
1418 l = lwp_find(p, lid);
1419 if (l != NULL) {
1420 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1421 goto out;
1422 membar_producer();
1423 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1424 signo = -1;
1425 }
1426 goto out;
1427 }
1428
1429 /*
1430 * Some signals go to all LWPs, even if posted with _lwp_kill()
1431 * or for an SA process.
1432 */
1433 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1434 if (traced)
1435 goto deliver;
1436
1437 /*
1438 * If SIGCONT is default (or ignored) and process is
1439 * asleep, we are finished; the process should not
1440 * be awakened.
1441 */
1442 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1443 goto out;
1444 } else {
1445 /*
1446 * Process is stopped or stopping.
1447 * - If traced, then no action is needed, unless killing.
1448 * - Run the process only if sending SIGCONT or SIGKILL.
1449 */
1450 if (traced && signo != SIGKILL) {
1451 goto out;
1452 }
1453 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1454 /*
1455 * Re-adjust p_nstopchild if the process was
1456 * stopped but not yet collected by its parent.
1457 */
1458 if (p->p_stat == SSTOP && !p->p_waited)
1459 p->p_pptr->p_nstopchild--;
1460 p->p_stat = SACTIVE;
1461 p->p_sflag &= ~PS_STOPPING;
1462 if (traced) {
1463 KASSERT(signo == SIGKILL);
1464 goto deliver;
1465 }
1466 /*
1467 * Do not make signal pending if SIGCONT is default.
1468 *
1469 * If the process catches SIGCONT, let it handle the
1470 * signal itself (if waiting on event - process runs,
1471 * otherwise continues sleeping).
1472 */
1473 if ((prop & SA_CONT) != 0) {
1474 p->p_xsig = SIGCONT;
1475 p->p_sflag |= PS_CONTINUED;
1476 child_psignal(p, 0);
1477 if (action == SIG_DFL) {
1478 KASSERT(signo != SIGKILL);
1479 goto deliver;
1480 }
1481 }
1482 } else if ((prop & SA_STOP) != 0) {
1483 /*
1484 * Already stopped, don't need to stop again.
1485 * (If we did the shell could get confused.)
1486 */
1487 goto out;
1488 }
1489 }
1490 /*
1491 * Make signal pending.
1492 */
1493 KASSERT(!traced);
1494 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1495 goto out;
1496 deliver:
1497 /*
1498 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1499 * visible on the per process list (for sigispending()). This
1500 * is unlikely to be needed in practice, but...
1501 */
1502 membar_producer();
1503
1504 /*
1505 * Try to find an LWP that can take the signal.
1506 */
1507 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1508 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1509 break;
1510 }
1511 signo = -1;
1512 out:
1513 /*
1514 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1515 * with locks held. The caller should take care of this.
1516 */
1517 ksiginfo_free(kp);
1518 if (signo == -1)
1519 return error;
1520 discard:
1521 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1522 return error;
1523 }
1524
1525 void
1526 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1527 {
1528 struct proc *p = l->l_proc;
1529
1530 KASSERT(mutex_owned(p->p_lock));
1531 (*p->p_emul->e_sendsig)(ksi, mask);
1532 }
1533
1534 /*
1535 * Stop any LWPs sleeping interruptably.
1536 */
1537 static void
1538 proc_stop_lwps(struct proc *p)
1539 {
1540 struct lwp *l;
1541
1542 KASSERT(mutex_owned(p->p_lock));
1543 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1544
1545 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1546 lwp_lock(l);
1547 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1548 l->l_stat = LSSTOP;
1549 p->p_nrlwps--;
1550 }
1551 lwp_unlock(l);
1552 }
1553 }
1554
1555 /*
1556 * Finish stopping of a process. Mark it stopped and notify the parent.
1557 *
1558 * Drop p_lock briefly if ppsig is true.
1559 */
1560 static void
1561 proc_stop_done(struct proc *p, int ppmask)
1562 {
1563
1564 KASSERT(mutex_owned(&proc_lock));
1565 KASSERT(mutex_owned(p->p_lock));
1566 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1567 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1568
1569 p->p_sflag &= ~PS_STOPPING;
1570 p->p_stat = SSTOP;
1571 p->p_waited = 0;
1572 p->p_pptr->p_nstopchild++;
1573
1574 /* child_psignal drops p_lock briefly. */
1575 child_psignal(p, ppmask);
1576 cv_broadcast(&p->p_pptr->p_waitcv);
1577 }
1578
1579 /*
1580 * Stop the current process and switch away to the debugger notifying
1581 * an event specific to a traced process only.
1582 */
1583 void
1584 eventswitch(int code, int pe_report_event, int entity)
1585 {
1586 struct lwp *l = curlwp;
1587 struct proc *p = l->l_proc;
1588 struct sigacts *ps;
1589 sigset_t *mask;
1590 sig_t action;
1591 ksiginfo_t ksi;
1592 const int signo = SIGTRAP;
1593
1594 KASSERT(mutex_owned(&proc_lock));
1595 KASSERT(mutex_owned(p->p_lock));
1596 KASSERT(p->p_pptr != initproc);
1597 KASSERT(l->l_stat == LSONPROC);
1598 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1599 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1600 KASSERT(p->p_nrlwps > 0);
1601 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1602 (code == TRAP_EXEC));
1603 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1604 KASSERT((code != TRAP_LWP) || (entity > 0));
1605
1606 repeat:
1607 /*
1608 * If we are exiting, demise now.
1609 *
1610 * This avoids notifying tracer and deadlocking.
1611 */
1612 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1613 mutex_exit(p->p_lock);
1614 mutex_exit(&proc_lock);
1615
1616 if (pe_report_event == PTRACE_LWP_EXIT) {
1617 /* Avoid double lwp_exit() and panic. */
1618 return;
1619 }
1620
1621 lwp_exit(l);
1622 panic("eventswitch");
1623 /* NOTREACHED */
1624 }
1625
1626 /*
1627 * If we are no longer traced, abandon this event signal.
1628 *
1629 * This avoids killing a process after detaching the debugger.
1630 */
1631 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1632 mutex_exit(p->p_lock);
1633 mutex_exit(&proc_lock);
1634 return;
1635 }
1636
1637 /*
1638 * If there's a pending SIGKILL process it immediately.
1639 */
1640 if (p->p_xsig == SIGKILL ||
1641 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1642 mutex_exit(p->p_lock);
1643 mutex_exit(&proc_lock);
1644 return;
1645 }
1646
1647 /*
1648 * The process is already stopping.
1649 */
1650 if ((p->p_sflag & PS_STOPPING) != 0) {
1651 mutex_exit(&proc_lock);
1652 sigswitch_unlock_and_switch_away(l);
1653 mutex_enter(&proc_lock);
1654 mutex_enter(p->p_lock);
1655 goto repeat;
1656 }
1657
1658 KSI_INIT_TRAP(&ksi);
1659 ksi.ksi_lid = l->l_lid;
1660 ksi.ksi_signo = signo;
1661 ksi.ksi_code = code;
1662 ksi.ksi_pe_report_event = pe_report_event;
1663
1664 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1665 ksi.ksi_pe_other_pid = entity;
1666
1667 /* Needed for ktrace */
1668 ps = p->p_sigacts;
1669 action = SIGACTION_PS(ps, signo).sa_handler;
1670 mask = &l->l_sigmask;
1671
1672 p->p_xsig = signo;
1673 p->p_sigctx.ps_faked = true;
1674 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1675 p->p_sigctx.ps_info = ksi.ksi_info;
1676
1677 sigswitch(0, signo, true);
1678
1679 if (code == TRAP_CHLD) {
1680 mutex_enter(&proc_lock);
1681 while (l->l_vforkwaiting)
1682 cv_wait(&l->l_waitcv, &proc_lock);
1683 mutex_exit(&proc_lock);
1684 }
1685
1686 if (ktrpoint(KTR_PSIG)) {
1687 if (p->p_emul->e_ktrpsig)
1688 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1689 else
1690 ktrpsig(signo, action, mask, &ksi);
1691 }
1692 }
1693
1694 void
1695 eventswitchchild(struct proc *p, int code, int pe_report_event)
1696 {
1697 mutex_enter(&proc_lock);
1698 mutex_enter(p->p_lock);
1699 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
1700 (PSL_TRACED|PSL_TRACEDCHILD)) {
1701 mutex_exit(p->p_lock);
1702 mutex_exit(&proc_lock);
1703 return;
1704 }
1705 eventswitch(code, pe_report_event, p->p_oppid);
1706 }
1707
1708 /*
1709 * Stop the current process and switch away when being stopped or traced.
1710 */
1711 static void
1712 sigswitch(int ppmask, int signo, bool proc_lock_held)
1713 {
1714 struct lwp *l = curlwp;
1715 struct proc *p = l->l_proc;
1716
1717 KASSERT(mutex_owned(p->p_lock));
1718 KASSERT(l->l_stat == LSONPROC);
1719 KASSERT(p->p_nrlwps > 0);
1720
1721 if (proc_lock_held) {
1722 KASSERT(mutex_owned(&proc_lock));
1723 } else {
1724 KASSERT(!mutex_owned(&proc_lock));
1725 }
1726
1727 /*
1728 * On entry we know that the process needs to stop. If it's
1729 * the result of a 'sideways' stop signal that has been sourced
1730 * through issignal(), then stop other LWPs in the process too.
1731 */
1732 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1733 KASSERT(signo != 0);
1734 proc_stop(p, signo);
1735 KASSERT(p->p_nrlwps > 0);
1736 }
1737
1738 /*
1739 * If we are the last live LWP, and the stop was a result of
1740 * a new signal, then signal the parent.
1741 */
1742 if ((p->p_sflag & PS_STOPPING) != 0) {
1743 if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
1744 mutex_exit(p->p_lock);
1745 mutex_enter(&proc_lock);
1746 mutex_enter(p->p_lock);
1747 }
1748
1749 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1750 /*
1751 * Note that proc_stop_done() can drop
1752 * p->p_lock briefly.
1753 */
1754 proc_stop_done(p, ppmask);
1755 }
1756
1757 mutex_exit(&proc_lock);
1758 }
1759
1760 sigswitch_unlock_and_switch_away(l);
1761 }
1762
1763 /*
1764 * Unlock and switch away.
1765 */
1766 static void
1767 sigswitch_unlock_and_switch_away(struct lwp *l)
1768 {
1769 struct proc *p;
1770 int biglocks;
1771
1772 p = l->l_proc;
1773
1774 KASSERT(mutex_owned(p->p_lock));
1775 KASSERT(!mutex_owned(&proc_lock));
1776
1777 KASSERT(l->l_stat == LSONPROC);
1778 KASSERT(p->p_nrlwps > 0);
1779
1780 KERNEL_UNLOCK_ALL(l, &biglocks);
1781 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1782 p->p_nrlwps--;
1783 lwp_lock(l);
1784 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1785 l->l_stat = LSSTOP;
1786 lwp_unlock(l);
1787 }
1788
1789 mutex_exit(p->p_lock);
1790 lwp_lock(l);
1791 spc_lock(l->l_cpu);
1792 mi_switch(l);
1793 KERNEL_LOCK(biglocks, l);
1794 }
1795
1796 /*
1797 * Check for a signal from the debugger.
1798 */
1799 static int
1800 sigchecktrace(void)
1801 {
1802 struct lwp *l = curlwp;
1803 struct proc *p = l->l_proc;
1804 int signo;
1805
1806 KASSERT(mutex_owned(p->p_lock));
1807
1808 /* If there's a pending SIGKILL, process it immediately. */
1809 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1810 return 0;
1811
1812 /*
1813 * If we are no longer being traced, or the parent didn't
1814 * give us a signal, or we're stopping, look for more signals.
1815 */
1816 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1817 (p->p_sflag & PS_STOPPING) != 0)
1818 return 0;
1819
1820 /*
1821 * If the new signal is being masked, look for other signals.
1822 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1823 */
1824 signo = p->p_xsig;
1825 p->p_xsig = 0;
1826 if (sigismember(&l->l_sigmask, signo)) {
1827 signo = 0;
1828 }
1829 return signo;
1830 }
1831
1832 /*
1833 * If the current process has received a signal (should be caught or cause
1834 * termination, should interrupt current syscall), return the signal number.
1835 *
1836 * Stop signals with default action are processed immediately, then cleared;
1837 * they aren't returned. This is checked after each entry to the system for
1838 * a syscall or trap.
1839 *
1840 * We will also return -1 if the process is exiting and the current LWP must
1841 * follow suit.
1842 */
1843 int
1844 issignal(struct lwp *l)
1845 {
1846 struct proc *p;
1847 int siglwp, signo, prop;
1848 sigpend_t *sp;
1849 sigset_t ss;
1850 bool traced;
1851
1852 p = l->l_proc;
1853 sp = NULL;
1854 signo = 0;
1855
1856 KASSERT(p == curproc);
1857 KASSERT(mutex_owned(p->p_lock));
1858
1859 for (;;) {
1860 /* Discard any signals that we have decided not to take. */
1861 if (signo != 0) {
1862 (void)sigget(sp, NULL, signo, NULL);
1863 }
1864
1865 /*
1866 * If the process is stopped/stopping, then stop ourselves
1867 * now that we're on the kernel/userspace boundary. When
1868 * we awaken, check for a signal from the debugger.
1869 */
1870 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1871 sigswitch_unlock_and_switch_away(l);
1872 mutex_enter(p->p_lock);
1873 continue;
1874 } else if (p->p_stat == SACTIVE)
1875 signo = sigchecktrace();
1876 else
1877 signo = 0;
1878
1879 /* Signals from the debugger are "out of band". */
1880 sp = NULL;
1881
1882 /*
1883 * If the debugger didn't provide a signal, find a pending
1884 * signal from our set. Check per-LWP signals first, and
1885 * then per-process.
1886 */
1887 if (signo == 0) {
1888 sp = &l->l_sigpend;
1889 ss = sp->sp_set;
1890 siglwp = l->l_lid;
1891 if ((p->p_lflag & PL_PPWAIT) != 0)
1892 sigminusset(&vforksigmask, &ss);
1893 sigminusset(&l->l_sigmask, &ss);
1894
1895 if ((signo = firstsig(&ss)) == 0) {
1896 sp = &p->p_sigpend;
1897 ss = sp->sp_set;
1898 siglwp = 0;
1899 if ((p->p_lflag & PL_PPWAIT) != 0)
1900 sigminusset(&vforksigmask, &ss);
1901 sigminusset(&l->l_sigmask, &ss);
1902
1903 if ((signo = firstsig(&ss)) == 0) {
1904 /*
1905 * No signal pending - clear the
1906 * indicator and bail out.
1907 */
1908 lwp_lock(l);
1909 l->l_flag &= ~LW_PENDSIG;
1910 lwp_unlock(l);
1911 sp = NULL;
1912 break;
1913 }
1914 }
1915 }
1916
1917 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1918 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1919
1920 if (sp) {
1921 /* Overwrite process' signal context to correspond
1922 * to the currently reported LWP. This is necessary
1923 * for PT_GET_SIGINFO to report the correct signal when
1924 * multiple LWPs have pending signals. We do this only
1925 * when the signal comes from the queue, for signals
1926 * created by the debugger we assume it set correct
1927 * siginfo.
1928 */
1929 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1930 if (ksi) {
1931 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1932 p->p_sigctx.ps_info = ksi->ksi_info;
1933 } else {
1934 p->p_sigctx.ps_lwp = siglwp;
1935 memset(&p->p_sigctx.ps_info, 0,
1936 sizeof(p->p_sigctx.ps_info));
1937 p->p_sigctx.ps_info._signo = signo;
1938 p->p_sigctx.ps_info._code = SI_NOINFO;
1939 }
1940 }
1941
1942 /*
1943 * We should see pending but ignored signals only if
1944 * we are being traced.
1945 */
1946 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1947 !traced) {
1948 /* Discard the signal. */
1949 continue;
1950 }
1951
1952 /*
1953 * If traced, always stop, and stay stopped until released
1954 * by the debugger. If the our parent is our debugger waiting
1955 * for us and we vforked, don't hang as we could deadlock.
1956 */
1957 if (traced && signo != SIGKILL &&
1958 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1959 (p->p_pptr == p->p_opptr))) {
1960 /*
1961 * Take the signal, but don't remove it from the
1962 * siginfo queue, because the debugger can send
1963 * it later.
1964 */
1965 if (sp)
1966 sigdelset(&sp->sp_set, signo);
1967 p->p_xsig = signo;
1968
1969 /* Handling of signal trace */
1970 sigswitch(0, signo, false);
1971 mutex_enter(p->p_lock);
1972
1973 /* Check for a signal from the debugger. */
1974 if ((signo = sigchecktrace()) == 0)
1975 continue;
1976
1977 /* Signals from the debugger are "out of band". */
1978 sp = NULL;
1979 }
1980
1981 prop = sigprop[signo];
1982
1983 /*
1984 * Decide whether the signal should be returned.
1985 */
1986 switch ((long)SIGACTION(p, signo).sa_handler) {
1987 case (long)SIG_DFL:
1988 /*
1989 * Don't take default actions on system processes.
1990 */
1991 if (p->p_pid <= 1) {
1992 #ifdef DIAGNOSTIC
1993 /*
1994 * Are you sure you want to ignore SIGSEGV
1995 * in init? XXX
1996 */
1997 printf_nolog("Process (pid %d) got sig %d\n",
1998 p->p_pid, signo);
1999 #endif
2000 continue;
2001 }
2002
2003 /*
2004 * If there is a pending stop signal to process with
2005 * default action, stop here, then clear the signal.
2006 * However, if process is member of an orphaned
2007 * process group, ignore tty stop signals.
2008 */
2009 if (prop & SA_STOP) {
2010 /*
2011 * XXX Don't hold proc_lock for p_lflag,
2012 * but it's not a big deal.
2013 */
2014 if ((traced &&
2015 !(ISSET(p->p_lflag, PL_PPWAIT) &&
2016 (p->p_pptr == p->p_opptr))) ||
2017 ((p->p_lflag & PL_ORPHANPG) != 0 &&
2018 prop & SA_TTYSTOP)) {
2019 /* Ignore the signal. */
2020 continue;
2021 }
2022 /* Take the signal. */
2023 (void)sigget(sp, NULL, signo, NULL);
2024 p->p_xsig = signo;
2025 p->p_sflag &= ~PS_CONTINUED;
2026 signo = 0;
2027 sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2028 mutex_enter(p->p_lock);
2029 } else if (prop & SA_IGNORE) {
2030 /*
2031 * Except for SIGCONT, shouldn't get here.
2032 * Default action is to ignore; drop it.
2033 */
2034 continue;
2035 }
2036 break;
2037
2038 case (long)SIG_IGN:
2039 #ifdef DEBUG_ISSIGNAL
2040 /*
2041 * Masking above should prevent us ever trying
2042 * to take action on an ignored signal other
2043 * than SIGCONT, unless process is traced.
2044 */
2045 if ((prop & SA_CONT) == 0 && !traced)
2046 printf_nolog("issignal\n");
2047 #endif
2048 continue;
2049
2050 default:
2051 /*
2052 * This signal has an action, let postsig() process
2053 * it.
2054 */
2055 break;
2056 }
2057
2058 break;
2059 }
2060
2061 l->l_sigpendset = sp;
2062 return signo;
2063 }
2064
2065 /*
2066 * Take the action for the specified signal
2067 * from the current set of pending signals.
2068 */
2069 void
2070 postsig(int signo)
2071 {
2072 struct lwp *l;
2073 struct proc *p;
2074 struct sigacts *ps;
2075 sig_t action;
2076 sigset_t *returnmask;
2077 ksiginfo_t ksi;
2078
2079 l = curlwp;
2080 p = l->l_proc;
2081 ps = p->p_sigacts;
2082
2083 KASSERT(mutex_owned(p->p_lock));
2084 KASSERT(signo > 0);
2085
2086 /*
2087 * Set the new mask value and also defer further occurrences of this
2088 * signal.
2089 *
2090 * Special case: user has done a sigsuspend. Here the current mask is
2091 * not of interest, but rather the mask from before the sigsuspend is
2092 * what we want restored after the signal processing is completed.
2093 */
2094 if (l->l_sigrestore) {
2095 returnmask = &l->l_sigoldmask;
2096 l->l_sigrestore = 0;
2097 } else
2098 returnmask = &l->l_sigmask;
2099
2100 /*
2101 * Commit to taking the signal before releasing the mutex.
2102 */
2103 action = SIGACTION_PS(ps, signo).sa_handler;
2104 l->l_ru.ru_nsignals++;
2105 if (l->l_sigpendset == NULL) {
2106 /* From the debugger */
2107 if (p->p_sigctx.ps_faked &&
2108 signo == p->p_sigctx.ps_info._signo) {
2109 KSI_INIT(&ksi);
2110 ksi.ksi_info = p->p_sigctx.ps_info;
2111 ksi.ksi_lid = p->p_sigctx.ps_lwp;
2112 p->p_sigctx.ps_faked = false;
2113 } else {
2114 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2115 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
2116 }
2117 } else
2118 sigget(l->l_sigpendset, &ksi, signo, NULL);
2119
2120 if (ktrpoint(KTR_PSIG)) {
2121 mutex_exit(p->p_lock);
2122 if (p->p_emul->e_ktrpsig)
2123 p->p_emul->e_ktrpsig(signo, action,
2124 returnmask, &ksi);
2125 else
2126 ktrpsig(signo, action, returnmask, &ksi);
2127 mutex_enter(p->p_lock);
2128 }
2129
2130 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2131
2132 if (action == SIG_DFL) {
2133 /*
2134 * Default action, where the default is to kill
2135 * the process. (Other cases were ignored above.)
2136 */
2137 sigexit(l, signo);
2138 return;
2139 }
2140
2141 /*
2142 * If we get here, the signal must be caught.
2143 */
2144 #ifdef DIAGNOSTIC
2145 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2146 panic("postsig action");
2147 #endif
2148
2149 kpsendsig(l, &ksi, returnmask);
2150 }
2151
2152 /*
2153 * sendsig:
2154 *
2155 * Default signal delivery method for NetBSD.
2156 */
2157 void
2158 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2159 {
2160 struct sigacts *sa;
2161 int sig;
2162
2163 sig = ksi->ksi_signo;
2164 sa = curproc->p_sigacts;
2165
2166 switch (sa->sa_sigdesc[sig].sd_vers) {
2167 case 0:
2168 case 1:
2169 /* Compat for 1.6 and earlier. */
2170 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2171 break);
2172 return;
2173 case 2:
2174 case 3:
2175 sendsig_siginfo(ksi, mask);
2176 return;
2177 default:
2178 break;
2179 }
2180
2181 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2182 sigexit(curlwp, SIGILL);
2183 }
2184
2185 /*
2186 * sendsig_reset:
2187 *
2188 * Reset the signal action. Called from emulation specific sendsig()
2189 * before unlocking to deliver the signal.
2190 */
2191 void
2192 sendsig_reset(struct lwp *l, int signo)
2193 {
2194 struct proc *p = l->l_proc;
2195 struct sigacts *ps = p->p_sigacts;
2196
2197 KASSERT(mutex_owned(p->p_lock));
2198
2199 p->p_sigctx.ps_lwp = 0;
2200 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2201
2202 mutex_enter(&ps->sa_mutex);
2203 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2204 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2205 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2206 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2207 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2208 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2209 }
2210 mutex_exit(&ps->sa_mutex);
2211 }
2212
2213 /*
2214 * Kill the current process for stated reason.
2215 */
2216 void
2217 killproc(struct proc *p, const char *why)
2218 {
2219
2220 KASSERT(mutex_owned(&proc_lock));
2221
2222 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2223 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2224 psignal(p, SIGKILL);
2225 }
2226
2227 /*
2228 * Force the current process to exit with the specified signal, dumping core
2229 * if appropriate. We bypass the normal tests for masked and caught
2230 * signals, allowing unrecoverable failures to terminate the process without
2231 * changing signal state. Mark the accounting record with the signal
2232 * termination. If dumping core, save the signal number for the debugger.
2233 * Calls exit and does not return.
2234 */
2235 void
2236 sigexit(struct lwp *l, int signo)
2237 {
2238 int exitsig, error, docore;
2239 struct proc *p;
2240 struct lwp *t;
2241
2242 p = l->l_proc;
2243
2244 KASSERT(mutex_owned(p->p_lock));
2245 KERNEL_UNLOCK_ALL(l, NULL);
2246
2247 /*
2248 * Don't permit coredump() multiple times in the same process.
2249 * Call back into sigexit, where we will be suspended until
2250 * the deed is done. Note that this is a recursive call, but
2251 * LW_WCORE will prevent us from coming back this way.
2252 */
2253 if ((p->p_sflag & PS_WCORE) != 0) {
2254 lwp_lock(l);
2255 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2256 lwp_unlock(l);
2257 mutex_exit(p->p_lock);
2258 lwp_userret(l);
2259 panic("sigexit 1");
2260 /* NOTREACHED */
2261 }
2262
2263 /* If process is already on the way out, then bail now. */
2264 if ((p->p_sflag & PS_WEXIT) != 0) {
2265 mutex_exit(p->p_lock);
2266 lwp_exit(l);
2267 panic("sigexit 2");
2268 /* NOTREACHED */
2269 }
2270
2271 /*
2272 * Prepare all other LWPs for exit. If dumping core, suspend them
2273 * so that their registers are available long enough to be dumped.
2274 */
2275 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2276 p->p_sflag |= PS_WCORE;
2277 for (;;) {
2278 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2279 lwp_lock(t);
2280 if (t == l) {
2281 t->l_flag &=
2282 ~(LW_WSUSPEND | LW_DBGSUSPEND);
2283 lwp_unlock(t);
2284 continue;
2285 }
2286 t->l_flag |= (LW_WCORE | LW_WEXIT);
2287 lwp_suspend(l, t);
2288 }
2289
2290 if (p->p_nrlwps == 1)
2291 break;
2292
2293 /*
2294 * Kick any LWPs sitting in lwp_wait1(), and wait
2295 * for everyone else to stop before proceeding.
2296 */
2297 p->p_nlwpwait++;
2298 cv_broadcast(&p->p_lwpcv);
2299 cv_wait(&p->p_lwpcv, p->p_lock);
2300 p->p_nlwpwait--;
2301 }
2302 }
2303
2304 exitsig = signo;
2305 p->p_acflag |= AXSIG;
2306 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2307 p->p_sigctx.ps_info._signo = signo;
2308 p->p_sigctx.ps_info._code = SI_NOINFO;
2309
2310 if (docore) {
2311 mutex_exit(p->p_lock);
2312 MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2313
2314 if (kern_logsigexit) {
2315 int uid = l->l_cred ?
2316 (int)kauth_cred_geteuid(l->l_cred) : -1;
2317
2318 if (error)
2319 log(LOG_INFO, lognocoredump, p->p_pid,
2320 p->p_comm, uid, signo, error);
2321 else
2322 log(LOG_INFO, logcoredump, p->p_pid,
2323 p->p_comm, uid, signo);
2324 }
2325
2326 #ifdef PAX_SEGVGUARD
2327 rw_enter(&exec_lock, RW_WRITER);
2328 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2329 rw_exit(&exec_lock);
2330 #endif /* PAX_SEGVGUARD */
2331
2332 /* Acquire the sched state mutex. exit1() will release it. */
2333 mutex_enter(p->p_lock);
2334 if (error == 0)
2335 p->p_sflag |= PS_COREDUMP;
2336 }
2337
2338 /* No longer dumping core. */
2339 p->p_sflag &= ~PS_WCORE;
2340
2341 exit1(l, 0, exitsig);
2342 /* NOTREACHED */
2343 }
2344
2345 /*
2346 * Many emulations have a common coredump_netbsd() established as their
2347 * dump routine. Since the "real" code may (or may not) be present in
2348 * loadable module, we provide a routine here which calls the module
2349 * hook.
2350 */
2351
2352 int
2353 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2354 {
2355 int retval;
2356
2357 MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2358 return retval;
2359 }
2360
2361 /*
2362 * Put process 'p' into the stopped state and optionally, notify the parent.
2363 */
2364 void
2365 proc_stop(struct proc *p, int signo)
2366 {
2367 struct lwp *l;
2368
2369 KASSERT(mutex_owned(p->p_lock));
2370
2371 /*
2372 * First off, set the stopping indicator and bring all sleeping
2373 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2374 * unlock between here and the p->p_nrlwps check below.
2375 */
2376 p->p_sflag |= PS_STOPPING;
2377 membar_producer();
2378
2379 proc_stop_lwps(p);
2380
2381 /*
2382 * If there are no LWPs available to take the signal, then we
2383 * signal the parent process immediately. Otherwise, the last
2384 * LWP to stop will take care of it.
2385 */
2386
2387 if (p->p_nrlwps == 0) {
2388 proc_stop_done(p, PS_NOCLDSTOP);
2389 } else {
2390 /*
2391 * Have the remaining LWPs come to a halt, and trigger
2392 * proc_stop_callout() to ensure that they do.
2393 */
2394 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2395 sigpost(l, SIG_DFL, SA_STOP, signo);
2396 }
2397 callout_schedule(&proc_stop_ch, 1);
2398 }
2399 }
2400
2401 /*
2402 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2403 * but wait for them to come to a halt at the kernel-user boundary. This is
2404 * to allow LWPs to release any locks that they may hold before stopping.
2405 *
2406 * Non-interruptable sleeps can be long, and there is the potential for an
2407 * LWP to begin sleeping interruptably soon after the process has been set
2408 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2409 * stopping, and so complete halt of the process and the return of status
2410 * information to the parent could be delayed indefinitely.
2411 *
2412 * To handle this race, proc_stop_callout() runs once per tick while there
2413 * are stopping processes in the system. It sets LWPs that are sleeping
2414 * interruptably into the LSSTOP state.
2415 *
2416 * Note that we are not concerned about keeping all LWPs stopped while the
2417 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2418 * What we do need to ensure is that all LWPs in a stopping process have
2419 * stopped at least once, so that notification can be sent to the parent
2420 * process.
2421 */
2422 static void
2423 proc_stop_callout(void *cookie)
2424 {
2425 bool more, restart;
2426 struct proc *p;
2427
2428 (void)cookie;
2429
2430 do {
2431 restart = false;
2432 more = false;
2433
2434 mutex_enter(&proc_lock);
2435 PROCLIST_FOREACH(p, &allproc) {
2436 mutex_enter(p->p_lock);
2437
2438 if ((p->p_sflag & PS_STOPPING) == 0) {
2439 mutex_exit(p->p_lock);
2440 continue;
2441 }
2442
2443 /* Stop any LWPs sleeping interruptably. */
2444 proc_stop_lwps(p);
2445 if (p->p_nrlwps == 0) {
2446 /*
2447 * We brought the process to a halt.
2448 * Mark it as stopped and notify the
2449 * parent.
2450 *
2451 * Note that proc_stop_done() will
2452 * drop p->p_lock briefly.
2453 * Arrange to restart and check
2454 * all processes again.
2455 */
2456 restart = true;
2457 proc_stop_done(p, PS_NOCLDSTOP);
2458 } else
2459 more = true;
2460
2461 mutex_exit(p->p_lock);
2462 if (restart)
2463 break;
2464 }
2465 mutex_exit(&proc_lock);
2466 } while (restart);
2467
2468 /*
2469 * If we noted processes that are stopping but still have
2470 * running LWPs, then arrange to check again in 1 tick.
2471 */
2472 if (more)
2473 callout_schedule(&proc_stop_ch, 1);
2474 }
2475
2476 /*
2477 * Given a process in state SSTOP, set the state back to SACTIVE and
2478 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2479 */
2480 void
2481 proc_unstop(struct proc *p)
2482 {
2483 struct lwp *l;
2484 int sig;
2485
2486 KASSERT(mutex_owned(&proc_lock));
2487 KASSERT(mutex_owned(p->p_lock));
2488
2489 p->p_stat = SACTIVE;
2490 p->p_sflag &= ~PS_STOPPING;
2491 sig = p->p_xsig;
2492
2493 if (!p->p_waited)
2494 p->p_pptr->p_nstopchild--;
2495
2496 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2497 lwp_lock(l);
2498 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2499 lwp_unlock(l);
2500 continue;
2501 }
2502 if (l->l_wchan == NULL) {
2503 setrunnable(l);
2504 continue;
2505 }
2506 if (sig && (l->l_flag & LW_SINTR) != 0) {
2507 setrunnable(l);
2508 sig = 0;
2509 } else {
2510 l->l_stat = LSSLEEP;
2511 p->p_nrlwps++;
2512 lwp_unlock(l);
2513 }
2514 }
2515 }
2516
2517 void
2518 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2519 const register_t *ret, int error)
2520 {
2521 struct lwp *l = curlwp;
2522 struct proc *p = l->l_proc;
2523 struct sigacts *ps;
2524 sigset_t *mask;
2525 sig_t action;
2526 ksiginfo_t ksi;
2527 size_t i, sy_narg;
2528 const int signo = SIGTRAP;
2529
2530 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2531 KASSERT(p->p_pptr != initproc);
2532 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2533 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2534
2535 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2536
2537 KSI_INIT_TRAP(&ksi);
2538 ksi.ksi_lid = l->l_lid;
2539 ksi.ksi_signo = signo;
2540 ksi.ksi_code = trapno;
2541
2542 ksi.ksi_sysnum = sysnum;
2543 if (trapno == TRAP_SCE) {
2544 ksi.ksi_retval[0] = 0;
2545 ksi.ksi_retval[1] = 0;
2546 ksi.ksi_error = 0;
2547 } else {
2548 ksi.ksi_retval[0] = ret[0];
2549 ksi.ksi_retval[1] = ret[1];
2550 ksi.ksi_error = error;
2551 }
2552
2553 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2554
2555 for (i = 0; i < sy_narg; i++)
2556 ksi.ksi_args[i] = args[i];
2557
2558 mutex_enter(p->p_lock);
2559
2560 repeat:
2561 /*
2562 * If we are exiting, demise now.
2563 *
2564 * This avoids notifying tracer and deadlocking.
2565 */
2566 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2567 mutex_exit(p->p_lock);
2568 lwp_exit(l);
2569 panic("proc_stoptrace");
2570 /* NOTREACHED */
2571 }
2572
2573 /*
2574 * If there's a pending SIGKILL process it immediately.
2575 */
2576 if (p->p_xsig == SIGKILL ||
2577 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2578 mutex_exit(p->p_lock);
2579 return;
2580 }
2581
2582 /*
2583 * If we are no longer traced, abandon this event signal.
2584 *
2585 * This avoids killing a process after detaching the debugger.
2586 */
2587 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2588 mutex_exit(p->p_lock);
2589 return;
2590 }
2591
2592 /*
2593 * The process is already stopping.
2594 */
2595 if ((p->p_sflag & PS_STOPPING) != 0) {
2596 sigswitch_unlock_and_switch_away(l);
2597 mutex_enter(p->p_lock);
2598 goto repeat;
2599 }
2600
2601 /* Needed for ktrace */
2602 ps = p->p_sigacts;
2603 action = SIGACTION_PS(ps, signo).sa_handler;
2604 mask = &l->l_sigmask;
2605
2606 p->p_xsig = signo;
2607 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2608 p->p_sigctx.ps_info = ksi.ksi_info;
2609 sigswitch(0, signo, false);
2610
2611 if (ktrpoint(KTR_PSIG)) {
2612 if (p->p_emul->e_ktrpsig)
2613 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2614 else
2615 ktrpsig(signo, action, mask, &ksi);
2616 }
2617 }
2618
2619 static int
2620 filt_sigattach(struct knote *kn)
2621 {
2622 struct proc *p = curproc;
2623
2624 kn->kn_obj = p;
2625 kn->kn_flags |= EV_CLEAR; /* automatically set */
2626
2627 mutex_enter(p->p_lock);
2628 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2629 mutex_exit(p->p_lock);
2630
2631 return 0;
2632 }
2633
2634 static void
2635 filt_sigdetach(struct knote *kn)
2636 {
2637 struct proc *p = kn->kn_obj;
2638
2639 mutex_enter(p->p_lock);
2640 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2641 mutex_exit(p->p_lock);
2642 }
2643
2644 /*
2645 * Signal knotes are shared with proc knotes, so we apply a mask to
2646 * the hint in order to differentiate them from process hints. This
2647 * could be avoided by using a signal-specific knote list, but probably
2648 * isn't worth the trouble.
2649 */
2650 static int
2651 filt_signal(struct knote *kn, long hint)
2652 {
2653
2654 if (hint & NOTE_SIGNAL) {
2655 hint &= ~NOTE_SIGNAL;
2656
2657 if (kn->kn_id == hint)
2658 kn->kn_data++;
2659 }
2660 return (kn->kn_data != 0);
2661 }
2662
2663 const struct filterops sig_filtops = {
2664 .f_isfd = 0,
2665 .f_attach = filt_sigattach,
2666 .f_detach = filt_sigdetach,
2667 .f_event = filt_signal,
2668 };
2669