Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.391
      1 /*	$NetBSD: kern_sig.c,v 1.391 2020/10/19 19:33:02 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.391 2020/10/19 19:33:02 christos Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/ptrace.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/syslog.h>
     91 #include <sys/filedesc.h>
     92 #include <sys/file.h>
     93 #include <sys/pool.h>
     94 #include <sys/ucontext.h>
     95 #include <sys/exec.h>
     96 #include <sys/kauth.h>
     97 #include <sys/acct.h>
     98 #include <sys/callout.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 #include <sys/module.h>
    102 #include <sys/sdt.h>
    103 #include <sys/exec_elf.h>
    104 #include <sys/compat_stub.h>
    105 
    106 #ifdef PAX_SEGVGUARD
    107 #include <sys/pax.h>
    108 #endif /* PAX_SEGVGUARD */
    109 
    110 #include <uvm/uvm_extern.h>
    111 
    112 #define	SIGQUEUE_MAX	32
    113 static pool_cache_t	sigacts_cache	__read_mostly;
    114 static pool_cache_t	ksiginfo_cache	__read_mostly;
    115 static callout_t	proc_stop_ch	__cacheline_aligned;
    116 
    117 sigset_t		contsigmask	__cacheline_aligned;
    118 sigset_t		stopsigmask	__cacheline_aligned;
    119 static sigset_t		vforksigmask	__cacheline_aligned;
    120 sigset_t		sigcantmask	__cacheline_aligned;
    121 
    122 static void	ksiginfo_exechook(struct proc *, void *);
    123 static void	proc_stop(struct proc *, int);
    124 static void	proc_stop_done(struct proc *, int);
    125 static void	proc_stop_callout(void *);
    126 static int	sigchecktrace(void);
    127 static int	sigpost(struct lwp *, sig_t, int, int);
    128 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    129 static int	sigunwait(struct proc *, const ksiginfo_t *);
    130 static void	sigswitch(int, int, bool);
    131 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    132 
    133 static void	sigacts_poolpage_free(struct pool *, void *);
    134 static void	*sigacts_poolpage_alloc(struct pool *, int);
    135 
    136 /*
    137  * DTrace SDT provider definitions
    138  */
    139 SDT_PROVIDER_DECLARE(proc);
    140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    141     "struct lwp *", 	/* target thread */
    142     "struct proc *", 	/* target process */
    143     "int");		/* signal */
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    145     "struct lwp *",	/* target thread */
    146     "struct proc *",	/* target process */
    147     "int");  		/* signal */
    148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    149     "int", 		/* signal */
    150     "ksiginfo_t *", 	/* signal info */
    151     "void (*)(void)");	/* handler address */
    152 
    153 
    154 static struct pool_allocator sigactspool_allocator = {
    155 	.pa_alloc = sigacts_poolpage_alloc,
    156 	.pa_free = sigacts_poolpage_free
    157 };
    158 
    159 #ifdef DEBUG
    160 int	kern_logsigexit = 1;
    161 #else
    162 int	kern_logsigexit = 0;
    163 #endif
    164 
    165 static const char logcoredump[] =
    166     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    167 static const char lognocoredump[] =
    168     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    169 
    170 static kauth_listener_t signal_listener;
    171 
    172 static int
    173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    174     void *arg0, void *arg1, void *arg2, void *arg3)
    175 {
    176 	struct proc *p;
    177 	int result, signum;
    178 
    179 	result = KAUTH_RESULT_DEFER;
    180 	p = arg0;
    181 	signum = (int)(unsigned long)arg1;
    182 
    183 	if (action != KAUTH_PROCESS_SIGNAL)
    184 		return result;
    185 
    186 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    187 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    188 		result = KAUTH_RESULT_ALLOW;
    189 
    190 	return result;
    191 }
    192 
    193 static int
    194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    195 {
    196 	memset(obj, 0, sizeof(struct sigacts));
    197 	return 0;
    198 }
    199 
    200 /*
    201  * signal_init:
    202  *
    203  *	Initialize global signal-related data structures.
    204  */
    205 void
    206 signal_init(void)
    207 {
    208 
    209 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    210 
    211 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    212 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    213 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    214 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    215 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    216 
    217 	exechook_establish(ksiginfo_exechook, NULL);
    218 
    219 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    220 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    221 
    222 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    223 	    signal_listener_cb, NULL);
    224 }
    225 
    226 /*
    227  * sigacts_poolpage_alloc:
    228  *
    229  *	Allocate a page for the sigacts memory pool.
    230  */
    231 static void *
    232 sigacts_poolpage_alloc(struct pool *pp, int flags)
    233 {
    234 
    235 	return (void *)uvm_km_alloc(kernel_map,
    236 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    238 	    | UVM_KMF_WIRED);
    239 }
    240 
    241 /*
    242  * sigacts_poolpage_free:
    243  *
    244  *	Free a page on behalf of the sigacts memory pool.
    245  */
    246 static void
    247 sigacts_poolpage_free(struct pool *pp, void *v)
    248 {
    249 
    250 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    251 }
    252 
    253 /*
    254  * sigactsinit:
    255  *
    256  *	Create an initial sigacts structure, using the same signal state
    257  *	as of specified process.  If 'share' is set, share the sigacts by
    258  *	holding a reference, otherwise just copy it from parent.
    259  */
    260 struct sigacts *
    261 sigactsinit(struct proc *pp, int share)
    262 {
    263 	struct sigacts *ps = pp->p_sigacts, *ps2;
    264 
    265 	if (__predict_false(share)) {
    266 		atomic_inc_uint(&ps->sa_refcnt);
    267 		return ps;
    268 	}
    269 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    270 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    271 	ps2->sa_refcnt = 1;
    272 
    273 	mutex_enter(&ps->sa_mutex);
    274 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    275 	mutex_exit(&ps->sa_mutex);
    276 	return ps2;
    277 }
    278 
    279 /*
    280  * sigactsunshare:
    281  *
    282  *	Make this process not share its sigacts, maintaining all signal state.
    283  */
    284 void
    285 sigactsunshare(struct proc *p)
    286 {
    287 	struct sigacts *ps, *oldps = p->p_sigacts;
    288 
    289 	if (__predict_true(oldps->sa_refcnt == 1))
    290 		return;
    291 
    292 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    293 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    294 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    295 	ps->sa_refcnt = 1;
    296 
    297 	p->p_sigacts = ps;
    298 	sigactsfree(oldps);
    299 }
    300 
    301 /*
    302  * sigactsfree;
    303  *
    304  *	Release a sigacts structure.
    305  */
    306 void
    307 sigactsfree(struct sigacts *ps)
    308 {
    309 
    310 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    311 		mutex_destroy(&ps->sa_mutex);
    312 		pool_cache_put(sigacts_cache, ps);
    313 	}
    314 }
    315 
    316 /*
    317  * siginit:
    318  *
    319  *	Initialize signal state for process 0; set to ignore signals that
    320  *	are ignored by default and disable the signal stack.  Locking not
    321  *	required as the system is still cold.
    322  */
    323 void
    324 siginit(struct proc *p)
    325 {
    326 	struct lwp *l;
    327 	struct sigacts *ps;
    328 	int signo, prop;
    329 
    330 	ps = p->p_sigacts;
    331 	sigemptyset(&contsigmask);
    332 	sigemptyset(&stopsigmask);
    333 	sigemptyset(&vforksigmask);
    334 	sigemptyset(&sigcantmask);
    335 	for (signo = 1; signo < NSIG; signo++) {
    336 		prop = sigprop[signo];
    337 		if (prop & SA_CONT)
    338 			sigaddset(&contsigmask, signo);
    339 		if (prop & SA_STOP)
    340 			sigaddset(&stopsigmask, signo);
    341 		if (prop & SA_STOP && signo != SIGSTOP)
    342 			sigaddset(&vforksigmask, signo);
    343 		if (prop & SA_CANTMASK)
    344 			sigaddset(&sigcantmask, signo);
    345 		if (prop & SA_IGNORE && signo != SIGCONT)
    346 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    347 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    348 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    349 	}
    350 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    351 	p->p_sflag &= ~PS_NOCLDSTOP;
    352 
    353 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    354 	sigemptyset(&p->p_sigpend.sp_set);
    355 
    356 	/*
    357 	 * Reset per LWP state.
    358 	 */
    359 	l = LIST_FIRST(&p->p_lwps);
    360 	l->l_sigwaited = NULL;
    361 	l->l_sigstk = SS_INIT;
    362 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    363 	sigemptyset(&l->l_sigpend.sp_set);
    364 
    365 	/* One reference. */
    366 	ps->sa_refcnt = 1;
    367 }
    368 
    369 /*
    370  * execsigs:
    371  *
    372  *	Reset signals for an exec of the specified process.
    373  */
    374 void
    375 execsigs(struct proc *p)
    376 {
    377 	struct sigacts *ps;
    378 	struct lwp *l;
    379 	int signo, prop;
    380 	sigset_t tset;
    381 	ksiginfoq_t kq;
    382 
    383 	KASSERT(p->p_nlwps == 1);
    384 
    385 	sigactsunshare(p);
    386 	ps = p->p_sigacts;
    387 
    388 	/*
    389 	 * Reset caught signals.  Held signals remain held through
    390 	 * l->l_sigmask (unless they were caught, and are now ignored
    391 	 * by default).
    392 	 *
    393 	 * No need to lock yet, the process has only one LWP and
    394 	 * at this point the sigacts are private to the process.
    395 	 */
    396 	sigemptyset(&tset);
    397 	for (signo = 1; signo < NSIG; signo++) {
    398 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    399 			prop = sigprop[signo];
    400 			if (prop & SA_IGNORE) {
    401 				if ((prop & SA_CONT) == 0)
    402 					sigaddset(&p->p_sigctx.ps_sigignore,
    403 					    signo);
    404 				sigaddset(&tset, signo);
    405 			}
    406 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    407 		}
    408 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    409 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    410 	}
    411 	ksiginfo_queue_init(&kq);
    412 
    413 	mutex_enter(p->p_lock);
    414 	sigclearall(p, &tset, &kq);
    415 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    416 
    417 	/*
    418 	 * Reset no zombies if child dies flag as Solaris does.
    419 	 */
    420 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    421 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    422 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    423 
    424 	/*
    425 	 * Reset per-LWP state.
    426 	 */
    427 	l = LIST_FIRST(&p->p_lwps);
    428 	l->l_sigwaited = NULL;
    429 	l->l_sigstk = SS_INIT;
    430 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    431 	sigemptyset(&l->l_sigpend.sp_set);
    432 	mutex_exit(p->p_lock);
    433 
    434 	ksiginfo_queue_drain(&kq);
    435 }
    436 
    437 /*
    438  * ksiginfo_exechook:
    439  *
    440  *	Free all pending ksiginfo entries from a process on exec.
    441  *	Additionally, drain any unused ksiginfo structures in the
    442  *	system back to the pool.
    443  *
    444  *	XXX This should not be a hook, every process has signals.
    445  */
    446 static void
    447 ksiginfo_exechook(struct proc *p, void *v)
    448 {
    449 	ksiginfoq_t kq;
    450 
    451 	ksiginfo_queue_init(&kq);
    452 
    453 	mutex_enter(p->p_lock);
    454 	sigclearall(p, NULL, &kq);
    455 	mutex_exit(p->p_lock);
    456 
    457 	ksiginfo_queue_drain(&kq);
    458 }
    459 
    460 /*
    461  * ksiginfo_alloc:
    462  *
    463  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    464  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    465  *	has not been queued somewhere, then just return it.  Additionally,
    466  *	if the existing ksiginfo_t does not contain any information beyond
    467  *	the signal number, then just return it.
    468  */
    469 ksiginfo_t *
    470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    471 {
    472 	ksiginfo_t *kp;
    473 
    474 	if (ok != NULL) {
    475 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    476 		    KSI_FROMPOOL)
    477 			return ok;
    478 		if (KSI_EMPTY_P(ok))
    479 			return ok;
    480 	}
    481 
    482 	kp = pool_cache_get(ksiginfo_cache, flags);
    483 	if (kp == NULL) {
    484 #ifdef DIAGNOSTIC
    485 		printf("Out of memory allocating ksiginfo for pid %d\n",
    486 		    p->p_pid);
    487 #endif
    488 		return NULL;
    489 	}
    490 
    491 	if (ok != NULL) {
    492 		memcpy(kp, ok, sizeof(*kp));
    493 		kp->ksi_flags &= ~KSI_QUEUED;
    494 	} else
    495 		KSI_INIT_EMPTY(kp);
    496 
    497 	kp->ksi_flags |= KSI_FROMPOOL;
    498 
    499 	return kp;
    500 }
    501 
    502 /*
    503  * ksiginfo_free:
    504  *
    505  *	If the given ksiginfo_t is from the pool and has not been queued,
    506  *	then free it.
    507  */
    508 void
    509 ksiginfo_free(ksiginfo_t *kp)
    510 {
    511 
    512 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    513 		return;
    514 	pool_cache_put(ksiginfo_cache, kp);
    515 }
    516 
    517 /*
    518  * ksiginfo_queue_drain:
    519  *
    520  *	Drain a non-empty ksiginfo_t queue.
    521  */
    522 void
    523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    524 {
    525 	ksiginfo_t *ksi;
    526 
    527 	KASSERT(!TAILQ_EMPTY(kq));
    528 
    529 	while (!TAILQ_EMPTY(kq)) {
    530 		ksi = TAILQ_FIRST(kq);
    531 		TAILQ_REMOVE(kq, ksi, ksi_list);
    532 		pool_cache_put(ksiginfo_cache, ksi);
    533 	}
    534 }
    535 
    536 static int
    537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    538 {
    539 	ksiginfo_t *ksi, *nksi;
    540 
    541 	if (sp == NULL)
    542 		goto out;
    543 
    544 	/* Find siginfo and copy it out. */
    545 	int count = 0;
    546 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    547 		if (ksi->ksi_signo != signo)
    548 			continue;
    549 		if (count++ > 0) /* Only remove the first, count all of them */
    550 			continue;
    551 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    552 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    553 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    554 		ksi->ksi_flags &= ~KSI_QUEUED;
    555 		if (out != NULL) {
    556 			memcpy(out, ksi, sizeof(*out));
    557 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    558 		}
    559 		ksiginfo_free(ksi);
    560 	}
    561 	if (count)
    562 		return count;
    563 
    564 out:
    565 	/* If there is no siginfo, then manufacture it. */
    566 	if (out != NULL) {
    567 		KSI_INIT(out);
    568 		out->ksi_info._signo = signo;
    569 		out->ksi_info._code = SI_NOINFO;
    570 	}
    571 	return 0;
    572 }
    573 
    574 /*
    575  * sigget:
    576  *
    577  *	Fetch the first pending signal from a set.  Optionally, also fetch
    578  *	or manufacture a ksiginfo element.  Returns the number of the first
    579  *	pending signal, or zero.
    580  */
    581 int
    582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    583 {
    584 	sigset_t tset;
    585 	int count;
    586 
    587 	/* If there's no pending set, the signal is from the debugger. */
    588 	if (sp == NULL)
    589 		goto out;
    590 
    591 	/* Construct mask from signo, and 'mask'. */
    592 	if (signo == 0) {
    593 		if (mask != NULL) {
    594 			tset = *mask;
    595 			__sigandset(&sp->sp_set, &tset);
    596 		} else
    597 			tset = sp->sp_set;
    598 
    599 		/* If there are no signals pending - return. */
    600 		if ((signo = firstsig(&tset)) == 0)
    601 			goto out;
    602 	} else {
    603 		KASSERT(sigismember(&sp->sp_set, signo));
    604 	}
    605 
    606 	sigdelset(&sp->sp_set, signo);
    607 out:
    608 	count = siggetinfo(sp, out, signo);
    609 	if (count > 1)
    610 		sigaddset(&sp->sp_set, signo);
    611 	return signo;
    612 }
    613 
    614 /*
    615  * sigput:
    616  *
    617  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    618  */
    619 static int
    620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    621 {
    622 	ksiginfo_t *kp;
    623 
    624 	KASSERT(mutex_owned(p->p_lock));
    625 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    626 
    627 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    628 
    629 	/*
    630 	 * If there is no siginfo, we are done.
    631 	 */
    632 	if (KSI_EMPTY_P(ksi))
    633 		return 0;
    634 
    635 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    636 
    637 	size_t count = 0;
    638 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    639 		count++;
    640 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    641 			continue;
    642 		if (kp->ksi_signo == ksi->ksi_signo) {
    643 			KSI_COPY(ksi, kp);
    644 			kp->ksi_flags |= KSI_QUEUED;
    645 			return 0;
    646 		}
    647 	}
    648 
    649 	if (count >= SIGQUEUE_MAX) {
    650 #ifdef DIAGNOSTIC
    651 		printf("%s(%d): Signal queue is full signal=%d\n",
    652 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    653 #endif
    654 		return EAGAIN;
    655 	}
    656 	ksi->ksi_flags |= KSI_QUEUED;
    657 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    658 
    659 	return 0;
    660 }
    661 
    662 /*
    663  * sigclear:
    664  *
    665  *	Clear all pending signals in the specified set.
    666  */
    667 void
    668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    669 {
    670 	ksiginfo_t *ksi, *next;
    671 
    672 	if (mask == NULL)
    673 		sigemptyset(&sp->sp_set);
    674 	else
    675 		sigminusset(mask, &sp->sp_set);
    676 
    677 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    678 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    679 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    680 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    681 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    682 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    683 		}
    684 	}
    685 }
    686 
    687 /*
    688  * sigclearall:
    689  *
    690  *	Clear all pending signals in the specified set from a process and
    691  *	its LWPs.
    692  */
    693 void
    694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    695 {
    696 	struct lwp *l;
    697 
    698 	KASSERT(mutex_owned(p->p_lock));
    699 
    700 	sigclear(&p->p_sigpend, mask, kq);
    701 
    702 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    703 		sigclear(&l->l_sigpend, mask, kq);
    704 	}
    705 }
    706 
    707 /*
    708  * sigispending:
    709  *
    710  *	Return the first signal number if there are pending signals for the
    711  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    712  *	and that the signal has been posted to the appopriate queue before
    713  *	LW_PENDSIG is set.
    714  *
    715  *	This should only ever be called with (l == curlwp), unless the
    716  *	result does not matter (procfs, sysctl).
    717  */
    718 int
    719 sigispending(struct lwp *l, int signo)
    720 {
    721 	struct proc *p = l->l_proc;
    722 	sigset_t tset;
    723 
    724 	membar_consumer();
    725 
    726 	tset = l->l_sigpend.sp_set;
    727 	sigplusset(&p->p_sigpend.sp_set, &tset);
    728 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    729 	sigminusset(&l->l_sigmask, &tset);
    730 
    731 	if (signo == 0) {
    732 		return firstsig(&tset);
    733 	}
    734 	return sigismember(&tset, signo) ? signo : 0;
    735 }
    736 
    737 void
    738 getucontext(struct lwp *l, ucontext_t *ucp)
    739 {
    740 	struct proc *p = l->l_proc;
    741 
    742 	KASSERT(mutex_owned(p->p_lock));
    743 
    744 	ucp->uc_flags = 0;
    745 	ucp->uc_link = l->l_ctxlink;
    746 	ucp->uc_sigmask = l->l_sigmask;
    747 	ucp->uc_flags |= _UC_SIGMASK;
    748 
    749 	/*
    750 	 * The (unsupplied) definition of the `current execution stack'
    751 	 * in the System V Interface Definition appears to allow returning
    752 	 * the main context stack.
    753 	 */
    754 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    755 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    756 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    757 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    758 	} else {
    759 		/* Simply copy alternate signal execution stack. */
    760 		ucp->uc_stack = l->l_sigstk;
    761 	}
    762 	ucp->uc_flags |= _UC_STACK;
    763 	mutex_exit(p->p_lock);
    764 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    765 	mutex_enter(p->p_lock);
    766 }
    767 
    768 int
    769 setucontext(struct lwp *l, const ucontext_t *ucp)
    770 {
    771 	struct proc *p = l->l_proc;
    772 	int error;
    773 
    774 	KASSERT(mutex_owned(p->p_lock));
    775 
    776 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    777 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    778 		if (error != 0)
    779 			return error;
    780 	}
    781 
    782 	mutex_exit(p->p_lock);
    783 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    784 	mutex_enter(p->p_lock);
    785 	if (error != 0)
    786 		return (error);
    787 
    788 	l->l_ctxlink = ucp->uc_link;
    789 
    790 	/*
    791 	 * If there was stack information, update whether or not we are
    792 	 * still running on an alternate signal stack.
    793 	 */
    794 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    795 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    796 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    797 		else
    798 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    799 	}
    800 
    801 	return 0;
    802 }
    803 
    804 /*
    805  * killpg1: common code for kill process group/broadcast kill.
    806  */
    807 int
    808 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    809 {
    810 	struct proc	*p, *cp;
    811 	kauth_cred_t	pc;
    812 	struct pgrp	*pgrp;
    813 	int		nfound;
    814 	int		signo = ksi->ksi_signo;
    815 
    816 	cp = l->l_proc;
    817 	pc = l->l_cred;
    818 	nfound = 0;
    819 
    820 	mutex_enter(&proc_lock);
    821 	if (all) {
    822 		/*
    823 		 * Broadcast.
    824 		 */
    825 		PROCLIST_FOREACH(p, &allproc) {
    826 			if (p->p_pid <= 1 || p == cp ||
    827 			    (p->p_flag & PK_SYSTEM) != 0)
    828 				continue;
    829 			mutex_enter(p->p_lock);
    830 			if (kauth_authorize_process(pc,
    831 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    832 			    NULL) == 0) {
    833 				nfound++;
    834 				if (signo)
    835 					kpsignal2(p, ksi);
    836 			}
    837 			mutex_exit(p->p_lock);
    838 		}
    839 	} else {
    840 		if (pgid == 0)
    841 			/* Zero pgid means send to my process group. */
    842 			pgrp = cp->p_pgrp;
    843 		else {
    844 			pgrp = pgrp_find(pgid);
    845 			if (pgrp == NULL)
    846 				goto out;
    847 		}
    848 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    849 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    850 				continue;
    851 			mutex_enter(p->p_lock);
    852 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    853 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    854 				nfound++;
    855 				if (signo && P_ZOMBIE(p) == 0)
    856 					kpsignal2(p, ksi);
    857 			}
    858 			mutex_exit(p->p_lock);
    859 		}
    860 	}
    861 out:
    862 	mutex_exit(&proc_lock);
    863 	return nfound ? 0 : ESRCH;
    864 }
    865 
    866 /*
    867  * Send a signal to a process group.  If checktty is set, limit to members
    868  * which have a controlling terminal.
    869  */
    870 void
    871 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    872 {
    873 	ksiginfo_t ksi;
    874 
    875 	KASSERT(!cpu_intr_p());
    876 	KASSERT(mutex_owned(&proc_lock));
    877 
    878 	KSI_INIT_EMPTY(&ksi);
    879 	ksi.ksi_signo = sig;
    880 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    881 }
    882 
    883 void
    884 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    885 {
    886 	struct proc *p;
    887 
    888 	KASSERT(!cpu_intr_p());
    889 	KASSERT(mutex_owned(&proc_lock));
    890 	KASSERT(pgrp != NULL);
    891 
    892 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    893 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    894 			kpsignal(p, ksi, data);
    895 }
    896 
    897 /*
    898  * Send a signal caused by a trap to the current LWP.  If it will be caught
    899  * immediately, deliver it with correct code.  Otherwise, post it normally.
    900  */
    901 void
    902 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    903 {
    904 	struct proc	*p;
    905 	struct sigacts	*ps;
    906 	int signo = ksi->ksi_signo;
    907 	sigset_t *mask;
    908 	sig_t action;
    909 
    910 	KASSERT(KSI_TRAP_P(ksi));
    911 
    912 	ksi->ksi_lid = l->l_lid;
    913 	p = l->l_proc;
    914 
    915 	KASSERT(!cpu_intr_p());
    916 	mutex_enter(&proc_lock);
    917 	mutex_enter(p->p_lock);
    918 
    919 repeat:
    920 	/*
    921 	 * If we are exiting, demise now.
    922 	 *
    923 	 * This avoids notifying tracer and deadlocking.
    924 	 */
    925 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    926 		mutex_exit(p->p_lock);
    927 		mutex_exit(&proc_lock);
    928 		lwp_exit(l);
    929 		panic("trapsignal");
    930 		/* NOTREACHED */
    931 	}
    932 
    933 	/*
    934 	 * The process is already stopping.
    935 	 */
    936 	if ((p->p_sflag & PS_STOPPING) != 0) {
    937 		mutex_exit(&proc_lock);
    938 		sigswitch_unlock_and_switch_away(l);
    939 		mutex_enter(&proc_lock);
    940 		mutex_enter(p->p_lock);
    941 		goto repeat;
    942 	}
    943 
    944 	mask = &l->l_sigmask;
    945 	ps = p->p_sigacts;
    946 	action = SIGACTION_PS(ps, signo).sa_handler;
    947 
    948 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    949 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    950 	    p->p_xsig != SIGKILL &&
    951 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    952 		p->p_xsig = signo;
    953 		p->p_sigctx.ps_faked = true;
    954 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    955 		p->p_sigctx.ps_info = ksi->ksi_info;
    956 		sigswitch(0, signo, true);
    957 
    958 		if (ktrpoint(KTR_PSIG)) {
    959 			if (p->p_emul->e_ktrpsig)
    960 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    961 			else
    962 				ktrpsig(signo, action, mask, ksi);
    963 		}
    964 		return;
    965 	}
    966 
    967 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    968 	const bool masked = sigismember(mask, signo);
    969 	if (caught && !masked) {
    970 		mutex_exit(&proc_lock);
    971 		l->l_ru.ru_nsignals++;
    972 		kpsendsig(l, ksi, mask);
    973 		mutex_exit(p->p_lock);
    974 
    975 		if (ktrpoint(KTR_PSIG)) {
    976 			if (p->p_emul->e_ktrpsig)
    977 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    978 			else
    979 				ktrpsig(signo, action, mask, ksi);
    980 		}
    981 		return;
    982 	}
    983 
    984 	/*
    985 	 * If the signal is masked or ignored, then unmask it and
    986 	 * reset it to the default action so that the process or
    987 	 * its tracer will be notified.
    988 	 */
    989 	const bool ignored = action == SIG_IGN;
    990 	if (masked || ignored) {
    991 		mutex_enter(&ps->sa_mutex);
    992 		sigdelset(mask, signo);
    993 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    994 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    995 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    996 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    997 		mutex_exit(&ps->sa_mutex);
    998 	}
    999 
   1000 	kpsignal2(p, ksi);
   1001 	mutex_exit(p->p_lock);
   1002 	mutex_exit(&proc_lock);
   1003 }
   1004 
   1005 /*
   1006  * Fill in signal information and signal the parent for a child status change.
   1007  */
   1008 void
   1009 child_psignal(struct proc *p, int mask)
   1010 {
   1011 	ksiginfo_t ksi;
   1012 	struct proc *q;
   1013 	int xsig;
   1014 
   1015 	KASSERT(mutex_owned(&proc_lock));
   1016 	KASSERT(mutex_owned(p->p_lock));
   1017 
   1018 	xsig = p->p_xsig;
   1019 
   1020 	KSI_INIT(&ksi);
   1021 	ksi.ksi_signo = SIGCHLD;
   1022 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1023 	ksi.ksi_pid = p->p_pid;
   1024 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1025 	ksi.ksi_status = xsig;
   1026 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1027 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1028 
   1029 	q = p->p_pptr;
   1030 
   1031 	mutex_exit(p->p_lock);
   1032 	mutex_enter(q->p_lock);
   1033 
   1034 	if ((q->p_sflag & mask) == 0)
   1035 		kpsignal2(q, &ksi);
   1036 
   1037 	mutex_exit(q->p_lock);
   1038 	mutex_enter(p->p_lock);
   1039 }
   1040 
   1041 void
   1042 psignal(struct proc *p, int signo)
   1043 {
   1044 	ksiginfo_t ksi;
   1045 
   1046 	KASSERT(!cpu_intr_p());
   1047 	KASSERT(mutex_owned(&proc_lock));
   1048 
   1049 	KSI_INIT_EMPTY(&ksi);
   1050 	ksi.ksi_signo = signo;
   1051 	mutex_enter(p->p_lock);
   1052 	kpsignal2(p, &ksi);
   1053 	mutex_exit(p->p_lock);
   1054 }
   1055 
   1056 void
   1057 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1058 {
   1059 	fdfile_t *ff;
   1060 	file_t *fp;
   1061 	fdtab_t *dt;
   1062 
   1063 	KASSERT(!cpu_intr_p());
   1064 	KASSERT(mutex_owned(&proc_lock));
   1065 
   1066 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1067 		size_t fd;
   1068 		filedesc_t *fdp = p->p_fd;
   1069 
   1070 		/* XXXSMP locking */
   1071 		ksi->ksi_fd = -1;
   1072 		dt = atomic_load_consume(&fdp->fd_dt);
   1073 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1074 			if ((ff = dt->dt_ff[fd]) == NULL)
   1075 				continue;
   1076 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
   1077 				continue;
   1078 			if (fp->f_data == data) {
   1079 				ksi->ksi_fd = fd;
   1080 				break;
   1081 			}
   1082 		}
   1083 	}
   1084 	mutex_enter(p->p_lock);
   1085 	kpsignal2(p, ksi);
   1086 	mutex_exit(p->p_lock);
   1087 }
   1088 
   1089 /*
   1090  * sigismasked:
   1091  *
   1092  *	Returns true if signal is ignored or masked for the specified LWP.
   1093  */
   1094 int
   1095 sigismasked(struct lwp *l, int sig)
   1096 {
   1097 	struct proc *p = l->l_proc;
   1098 
   1099 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1100 	    sigismember(&l->l_sigmask, sig);
   1101 }
   1102 
   1103 /*
   1104  * sigpost:
   1105  *
   1106  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1107  *	be able to take the signal.
   1108  */
   1109 static int
   1110 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1111 {
   1112 	int rv, masked;
   1113 	struct proc *p = l->l_proc;
   1114 
   1115 	KASSERT(mutex_owned(p->p_lock));
   1116 
   1117 	/*
   1118 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1119 	 * pending signals.  Don't give it more.
   1120 	 */
   1121 	if (l->l_stat == LSZOMB)
   1122 		return 0;
   1123 
   1124 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1125 
   1126 	lwp_lock(l);
   1127 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1128 		if ((prop & SA_KILL) != 0)
   1129 			l->l_flag &= ~LW_DBGSUSPEND;
   1130 		else {
   1131 			lwp_unlock(l);
   1132 			return 0;
   1133 		}
   1134 	}
   1135 
   1136 	/*
   1137 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1138 	 * is found to take the signal immediately, it should be taken soon.
   1139 	 */
   1140 	signotify(l);
   1141 
   1142 	/*
   1143 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1144 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1145 	 */
   1146 	masked = sigismember(&l->l_sigmask, sig);
   1147 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1148 		lwp_unlock(l);
   1149 		return 0;
   1150 	}
   1151 
   1152 	/*
   1153 	 * If killing the process, make it run fast.
   1154 	 */
   1155 	if (__predict_false((prop & SA_KILL) != 0) &&
   1156 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1157 		KASSERT(l->l_class == SCHED_OTHER);
   1158 		lwp_changepri(l, MAXPRI_USER);
   1159 	}
   1160 
   1161 	/*
   1162 	 * If the LWP is running or on a run queue, then we win.  If it's
   1163 	 * sleeping interruptably, wake it and make it take the signal.  If
   1164 	 * the sleep isn't interruptable, then the chances are it will get
   1165 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1166 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1167 	 * for later; otherwise punt.
   1168 	 */
   1169 	rv = 0;
   1170 
   1171 	switch (l->l_stat) {
   1172 	case LSRUN:
   1173 	case LSONPROC:
   1174 		rv = 1;
   1175 		break;
   1176 
   1177 	case LSSLEEP:
   1178 		if ((l->l_flag & LW_SINTR) != 0) {
   1179 			/* setrunnable() will release the lock. */
   1180 			setrunnable(l);
   1181 			return 1;
   1182 		}
   1183 		break;
   1184 
   1185 	case LSSUSPENDED:
   1186 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1187 			/* lwp_continue() will release the lock. */
   1188 			lwp_continue(l);
   1189 			return 1;
   1190 		}
   1191 		break;
   1192 
   1193 	case LSSTOP:
   1194 		if ((prop & SA_STOP) != 0)
   1195 			break;
   1196 
   1197 		/*
   1198 		 * If the LWP is stopped and we are sending a continue
   1199 		 * signal, then start it again.
   1200 		 */
   1201 		if ((prop & SA_CONT) != 0) {
   1202 			if (l->l_wchan != NULL) {
   1203 				l->l_stat = LSSLEEP;
   1204 				p->p_nrlwps++;
   1205 				rv = 1;
   1206 				break;
   1207 			}
   1208 			/* setrunnable() will release the lock. */
   1209 			setrunnable(l);
   1210 			return 1;
   1211 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1212 			/* setrunnable() will release the lock. */
   1213 			setrunnable(l);
   1214 			return 1;
   1215 		}
   1216 		break;
   1217 
   1218 	default:
   1219 		break;
   1220 	}
   1221 
   1222 	lwp_unlock(l);
   1223 	return rv;
   1224 }
   1225 
   1226 /*
   1227  * Notify an LWP that it has a pending signal.
   1228  */
   1229 void
   1230 signotify(struct lwp *l)
   1231 {
   1232 	KASSERT(lwp_locked(l, NULL));
   1233 
   1234 	l->l_flag |= LW_PENDSIG;
   1235 	lwp_need_userret(l);
   1236 }
   1237 
   1238 /*
   1239  * Find an LWP within process p that is waiting on signal ksi, and hand
   1240  * it on.
   1241  */
   1242 static int
   1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1244 {
   1245 	struct lwp *l;
   1246 	int signo;
   1247 
   1248 	KASSERT(mutex_owned(p->p_lock));
   1249 
   1250 	signo = ksi->ksi_signo;
   1251 
   1252 	if (ksi->ksi_lid != 0) {
   1253 		/*
   1254 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1255 		 * it's interested.
   1256 		 */
   1257 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1258 			return 0;
   1259 		if (l->l_sigwaited == NULL ||
   1260 		    !sigismember(&l->l_sigwaitset, signo))
   1261 			return 0;
   1262 	} else {
   1263 		/*
   1264 		 * Look for any LWP that may be interested.
   1265 		 */
   1266 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1267 			KASSERT(l->l_sigwaited != NULL);
   1268 			if (sigismember(&l->l_sigwaitset, signo))
   1269 				break;
   1270 		}
   1271 	}
   1272 
   1273 	if (l != NULL) {
   1274 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1275 		l->l_sigwaited = NULL;
   1276 		LIST_REMOVE(l, l_sigwaiter);
   1277 		cv_signal(&l->l_sigcv);
   1278 		return 1;
   1279 	}
   1280 
   1281 	return 0;
   1282 }
   1283 
   1284 /*
   1285  * Send the signal to the process.  If the signal has an action, the action
   1286  * is usually performed by the target process rather than the caller; we add
   1287  * the signal to the set of pending signals for the process.
   1288  *
   1289  * Exceptions:
   1290  *   o When a stop signal is sent to a sleeping process that takes the
   1291  *     default action, the process is stopped without awakening it.
   1292  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1293  *     regardless of the signal action (eg, blocked or ignored).
   1294  *
   1295  * Other ignored signals are discarded immediately.
   1296  */
   1297 int
   1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1299 {
   1300 	int prop, signo = ksi->ksi_signo;
   1301 	struct lwp *l = NULL;
   1302 	ksiginfo_t *kp;
   1303 	lwpid_t lid;
   1304 	sig_t action;
   1305 	bool toall;
   1306 	bool traced;
   1307 	int error = 0;
   1308 
   1309 	KASSERT(!cpu_intr_p());
   1310 	KASSERT(mutex_owned(&proc_lock));
   1311 	KASSERT(mutex_owned(p->p_lock));
   1312 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1313 	KASSERT(signo > 0 && signo < NSIG);
   1314 
   1315 	/*
   1316 	 * If the process is being created by fork, is a zombie or is
   1317 	 * exiting, then just drop the signal here and bail out.
   1318 	 */
   1319 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1320 		return 0;
   1321 
   1322 	/*
   1323 	 * Notify any interested parties of the signal.
   1324 	 */
   1325 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1326 
   1327 	/*
   1328 	 * Some signals including SIGKILL must act on the entire process.
   1329 	 */
   1330 	kp = NULL;
   1331 	prop = sigprop[signo];
   1332 	toall = ((prop & SA_TOALL) != 0);
   1333 	lid = toall ? 0 : ksi->ksi_lid;
   1334 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1335 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1336 
   1337 	/*
   1338 	 * If proc is traced, always give parent a chance.
   1339 	 */
   1340 	if (traced) {
   1341 		action = SIG_DFL;
   1342 
   1343 		if (lid == 0) {
   1344 			/*
   1345 			 * If the process is being traced and the signal
   1346 			 * is being caught, make sure to save any ksiginfo.
   1347 			 */
   1348 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1349 				goto discard;
   1350 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1351 				goto out;
   1352 		}
   1353 	} else {
   1354 
   1355 		/*
   1356 		 * If the signal is being ignored, then drop it.  Note: we
   1357 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1358 		 * SIG_IGN, action will be SIG_DFL here.
   1359 		 */
   1360 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1361 			goto discard;
   1362 
   1363 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1364 			action = SIG_CATCH;
   1365 		else {
   1366 			action = SIG_DFL;
   1367 
   1368 			/*
   1369 			 * If sending a tty stop signal to a member of an
   1370 			 * orphaned process group, discard the signal here if
   1371 			 * the action is default; don't stop the process below
   1372 			 * if sleeping, and don't clear any pending SIGCONT.
   1373 			 */
   1374 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1375 				goto discard;
   1376 
   1377 			if (prop & SA_KILL && p->p_nice > NZERO)
   1378 				p->p_nice = NZERO;
   1379 		}
   1380 	}
   1381 
   1382 	/*
   1383 	 * If stopping or continuing a process, discard any pending
   1384 	 * signals that would do the inverse.
   1385 	 */
   1386 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1387 		ksiginfoq_t kq;
   1388 
   1389 		ksiginfo_queue_init(&kq);
   1390 		if ((prop & SA_CONT) != 0)
   1391 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1392 		if ((prop & SA_STOP) != 0)
   1393 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1394 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1395 	}
   1396 
   1397 	/*
   1398 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1399 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1400 	 * the signal info.  The signal won't be processed further here.
   1401 	 */
   1402 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1403 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1404 	    sigunwait(p, ksi))
   1405 		goto discard;
   1406 
   1407 	/*
   1408 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1409 	 * here.
   1410 	 */
   1411 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1412 		goto discard;
   1413 
   1414 	/*
   1415 	 * LWP private signals are easy - just find the LWP and post
   1416 	 * the signal to it.
   1417 	 */
   1418 	if (lid != 0) {
   1419 		l = lwp_find(p, lid);
   1420 		if (l != NULL) {
   1421 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1422 				goto out;
   1423 			membar_producer();
   1424 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1425 				signo = -1;
   1426 		}
   1427 		goto out;
   1428 	}
   1429 
   1430 	/*
   1431 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1432 	 * or for an SA process.
   1433 	 */
   1434 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1435 		if (traced)
   1436 			goto deliver;
   1437 
   1438 		/*
   1439 		 * If SIGCONT is default (or ignored) and process is
   1440 		 * asleep, we are finished; the process should not
   1441 		 * be awakened.
   1442 		 */
   1443 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1444 			goto out;
   1445 	} else {
   1446 		/*
   1447 		 * Process is stopped or stopping.
   1448 		 * - If traced, then no action is needed, unless killing.
   1449 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1450 		 */
   1451 		if (traced && signo != SIGKILL) {
   1452 			goto out;
   1453 		}
   1454 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1455 			/*
   1456 			 * Re-adjust p_nstopchild if the process was
   1457 			 * stopped but not yet collected by its parent.
   1458 			 */
   1459 			if (p->p_stat == SSTOP && !p->p_waited)
   1460 				p->p_pptr->p_nstopchild--;
   1461 			p->p_stat = SACTIVE;
   1462 			p->p_sflag &= ~PS_STOPPING;
   1463 			if (traced) {
   1464 				KASSERT(signo == SIGKILL);
   1465 				goto deliver;
   1466 			}
   1467 			/*
   1468 			 * Do not make signal pending if SIGCONT is default.
   1469 			 *
   1470 			 * If the process catches SIGCONT, let it handle the
   1471 			 * signal itself (if waiting on event - process runs,
   1472 			 * otherwise continues sleeping).
   1473 			 */
   1474 			if ((prop & SA_CONT) != 0) {
   1475 				p->p_xsig = SIGCONT;
   1476 				p->p_sflag |= PS_CONTINUED;
   1477 				child_psignal(p, 0);
   1478 				if (action == SIG_DFL) {
   1479 					KASSERT(signo != SIGKILL);
   1480 					goto deliver;
   1481 				}
   1482 			}
   1483 		} else if ((prop & SA_STOP) != 0) {
   1484 			/*
   1485 			 * Already stopped, don't need to stop again.
   1486 			 * (If we did the shell could get confused.)
   1487 			 */
   1488 			goto out;
   1489 		}
   1490 	}
   1491 	/*
   1492 	 * Make signal pending.
   1493 	 */
   1494 	KASSERT(!traced);
   1495 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1496 		goto out;
   1497 deliver:
   1498 	/*
   1499 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1500 	 * visible on the per process list (for sigispending()).  This
   1501 	 * is unlikely to be needed in practice, but...
   1502 	 */
   1503 	membar_producer();
   1504 
   1505 	/*
   1506 	 * Try to find an LWP that can take the signal.
   1507 	 */
   1508 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1509 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1510 			break;
   1511 	}
   1512 	signo = -1;
   1513 out:
   1514 	/*
   1515 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1516 	 * with locks held.  The caller should take care of this.
   1517 	 */
   1518 	ksiginfo_free(kp);
   1519 	if (signo == -1)
   1520 		return error;
   1521 discard:
   1522 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1523 	return error;
   1524 }
   1525 
   1526 void
   1527 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1528 {
   1529 	struct proc *p = l->l_proc;
   1530 
   1531 	KASSERT(mutex_owned(p->p_lock));
   1532 	(*p->p_emul->e_sendsig)(ksi, mask);
   1533 }
   1534 
   1535 /*
   1536  * Stop any LWPs sleeping interruptably.
   1537  */
   1538 static void
   1539 proc_stop_lwps(struct proc *p)
   1540 {
   1541 	struct lwp *l;
   1542 
   1543 	KASSERT(mutex_owned(p->p_lock));
   1544 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1545 
   1546 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1547 		lwp_lock(l);
   1548 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1549 			l->l_stat = LSSTOP;
   1550 			p->p_nrlwps--;
   1551 		}
   1552 		lwp_unlock(l);
   1553 	}
   1554 }
   1555 
   1556 /*
   1557  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1558  *
   1559  * Drop p_lock briefly if ppsig is true.
   1560  */
   1561 static void
   1562 proc_stop_done(struct proc *p, int ppmask)
   1563 {
   1564 
   1565 	KASSERT(mutex_owned(&proc_lock));
   1566 	KASSERT(mutex_owned(p->p_lock));
   1567 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1568 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1569 
   1570 	p->p_sflag &= ~PS_STOPPING;
   1571 	p->p_stat = SSTOP;
   1572 	p->p_waited = 0;
   1573 	p->p_pptr->p_nstopchild++;
   1574 
   1575 	/* child_psignal drops p_lock briefly. */
   1576 	child_psignal(p, ppmask);
   1577 	cv_broadcast(&p->p_pptr->p_waitcv);
   1578 }
   1579 
   1580 /*
   1581  * Stop the current process and switch away to the debugger notifying
   1582  * an event specific to a traced process only.
   1583  */
   1584 void
   1585 eventswitch(int code, int pe_report_event, int entity)
   1586 {
   1587 	struct lwp *l = curlwp;
   1588 	struct proc *p = l->l_proc;
   1589 	struct sigacts *ps;
   1590 	sigset_t *mask;
   1591 	sig_t action;
   1592 	ksiginfo_t ksi;
   1593 	const int signo = SIGTRAP;
   1594 
   1595 	KASSERT(mutex_owned(&proc_lock));
   1596 	KASSERT(mutex_owned(p->p_lock));
   1597 	KASSERT(p->p_pptr != initproc);
   1598 	KASSERT(l->l_stat == LSONPROC);
   1599 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1600 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1601 	KASSERT(p->p_nrlwps > 0);
   1602 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1603 	        (code == TRAP_EXEC));
   1604 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1605 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1606 
   1607 repeat:
   1608 	/*
   1609 	 * If we are exiting, demise now.
   1610 	 *
   1611 	 * This avoids notifying tracer and deadlocking.
   1612 	 */
   1613 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1614 		mutex_exit(p->p_lock);
   1615 		mutex_exit(&proc_lock);
   1616 
   1617 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1618 			/* Avoid double lwp_exit() and panic. */
   1619 			return;
   1620 		}
   1621 
   1622 		lwp_exit(l);
   1623 		panic("eventswitch");
   1624 		/* NOTREACHED */
   1625 	}
   1626 
   1627 	/*
   1628 	 * If we are no longer traced, abandon this event signal.
   1629 	 *
   1630 	 * This avoids killing a process after detaching the debugger.
   1631 	 */
   1632 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1633 		mutex_exit(p->p_lock);
   1634 		mutex_exit(&proc_lock);
   1635 		return;
   1636 	}
   1637 
   1638 	/*
   1639 	 * If there's a pending SIGKILL process it immediately.
   1640 	 */
   1641 	if (p->p_xsig == SIGKILL ||
   1642 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1643 		mutex_exit(p->p_lock);
   1644 		mutex_exit(&proc_lock);
   1645 		return;
   1646 	}
   1647 
   1648 	/*
   1649 	 * The process is already stopping.
   1650 	 */
   1651 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1652 		mutex_exit(&proc_lock);
   1653 		sigswitch_unlock_and_switch_away(l);
   1654 		mutex_enter(&proc_lock);
   1655 		mutex_enter(p->p_lock);
   1656 		goto repeat;
   1657 	}
   1658 
   1659 	KSI_INIT_TRAP(&ksi);
   1660 	ksi.ksi_lid = l->l_lid;
   1661 	ksi.ksi_signo = signo;
   1662 	ksi.ksi_code = code;
   1663 	ksi.ksi_pe_report_event = pe_report_event;
   1664 
   1665 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1666 	ksi.ksi_pe_other_pid = entity;
   1667 
   1668 	/* Needed for ktrace */
   1669 	ps = p->p_sigacts;
   1670 	action = SIGACTION_PS(ps, signo).sa_handler;
   1671 	mask = &l->l_sigmask;
   1672 
   1673 	p->p_xsig = signo;
   1674 	p->p_sigctx.ps_faked = true;
   1675 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1676 	p->p_sigctx.ps_info = ksi.ksi_info;
   1677 
   1678 	sigswitch(0, signo, true);
   1679 
   1680 	if (code == TRAP_CHLD) {
   1681 		mutex_enter(&proc_lock);
   1682 		while (l->l_vforkwaiting)
   1683 			cv_wait(&l->l_waitcv, &proc_lock);
   1684 		mutex_exit(&proc_lock);
   1685 	}
   1686 
   1687 	if (ktrpoint(KTR_PSIG)) {
   1688 		if (p->p_emul->e_ktrpsig)
   1689 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1690 		else
   1691 			ktrpsig(signo, action, mask, &ksi);
   1692 	}
   1693 }
   1694 
   1695 void
   1696 eventswitchchild(struct proc *p, int code, int pe_report_event)
   1697 {
   1698 	mutex_enter(&proc_lock);
   1699 	mutex_enter(p->p_lock);
   1700 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
   1701 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   1702 		mutex_exit(p->p_lock);
   1703 		mutex_exit(&proc_lock);
   1704 		return;
   1705 	}
   1706 	eventswitch(code, pe_report_event, p->p_oppid);
   1707 }
   1708 
   1709 /*
   1710  * Stop the current process and switch away when being stopped or traced.
   1711  */
   1712 static void
   1713 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1714 {
   1715 	struct lwp *l = curlwp;
   1716 	struct proc *p = l->l_proc;
   1717 
   1718 	KASSERT(mutex_owned(p->p_lock));
   1719 	KASSERT(l->l_stat == LSONPROC);
   1720 	KASSERT(p->p_nrlwps > 0);
   1721 
   1722 	if (proc_lock_held) {
   1723 		KASSERT(mutex_owned(&proc_lock));
   1724 	} else {
   1725 		KASSERT(!mutex_owned(&proc_lock));
   1726 	}
   1727 
   1728 	/*
   1729 	 * On entry we know that the process needs to stop.  If it's
   1730 	 * the result of a 'sideways' stop signal that has been sourced
   1731 	 * through issignal(), then stop other LWPs in the process too.
   1732 	 */
   1733 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1734 		KASSERT(signo != 0);
   1735 		proc_stop(p, signo);
   1736 		KASSERT(p->p_nrlwps > 0);
   1737 	}
   1738 
   1739 	/*
   1740 	 * If we are the last live LWP, and the stop was a result of
   1741 	 * a new signal, then signal the parent.
   1742 	 */
   1743 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1744 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
   1745 			mutex_exit(p->p_lock);
   1746 			mutex_enter(&proc_lock);
   1747 			mutex_enter(p->p_lock);
   1748 		}
   1749 
   1750 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1751 			/*
   1752 			 * Note that proc_stop_done() can drop
   1753 			 * p->p_lock briefly.
   1754 			 */
   1755 			proc_stop_done(p, ppmask);
   1756 		}
   1757 
   1758 		mutex_exit(&proc_lock);
   1759 	}
   1760 
   1761 	sigswitch_unlock_and_switch_away(l);
   1762 }
   1763 
   1764 /*
   1765  * Unlock and switch away.
   1766  */
   1767 static void
   1768 sigswitch_unlock_and_switch_away(struct lwp *l)
   1769 {
   1770 	struct proc *p;
   1771 	int biglocks;
   1772 
   1773 	p = l->l_proc;
   1774 
   1775 	KASSERT(mutex_owned(p->p_lock));
   1776 	KASSERT(!mutex_owned(&proc_lock));
   1777 
   1778 	KASSERT(l->l_stat == LSONPROC);
   1779 	KASSERT(p->p_nrlwps > 0);
   1780 
   1781 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1782 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1783 		p->p_nrlwps--;
   1784 		lwp_lock(l);
   1785 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1786 		l->l_stat = LSSTOP;
   1787 		lwp_unlock(l);
   1788 	}
   1789 
   1790 	mutex_exit(p->p_lock);
   1791 	lwp_lock(l);
   1792 	spc_lock(l->l_cpu);
   1793 	mi_switch(l);
   1794 	KERNEL_LOCK(biglocks, l);
   1795 }
   1796 
   1797 /*
   1798  * Check for a signal from the debugger.
   1799  */
   1800 static int
   1801 sigchecktrace(void)
   1802 {
   1803 	struct lwp *l = curlwp;
   1804 	struct proc *p = l->l_proc;
   1805 	int signo;
   1806 
   1807 	KASSERT(mutex_owned(p->p_lock));
   1808 
   1809 	/* If there's a pending SIGKILL, process it immediately. */
   1810 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1811 		return 0;
   1812 
   1813 	/*
   1814 	 * If we are no longer being traced, or the parent didn't
   1815 	 * give us a signal, or we're stopping, look for more signals.
   1816 	 */
   1817 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1818 	    (p->p_sflag & PS_STOPPING) != 0)
   1819 		return 0;
   1820 
   1821 	/*
   1822 	 * If the new signal is being masked, look for other signals.
   1823 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1824 	 */
   1825 	signo = p->p_xsig;
   1826 	p->p_xsig = 0;
   1827 	if (sigismember(&l->l_sigmask, signo)) {
   1828 		signo = 0;
   1829 	}
   1830 	return signo;
   1831 }
   1832 
   1833 /*
   1834  * If the current process has received a signal (should be caught or cause
   1835  * termination, should interrupt current syscall), return the signal number.
   1836  *
   1837  * Stop signals with default action are processed immediately, then cleared;
   1838  * they aren't returned.  This is checked after each entry to the system for
   1839  * a syscall or trap.
   1840  *
   1841  * We will also return -1 if the process is exiting and the current LWP must
   1842  * follow suit.
   1843  */
   1844 int
   1845 issignal(struct lwp *l)
   1846 {
   1847 	struct proc *p;
   1848 	int siglwp, signo, prop;
   1849 	sigpend_t *sp;
   1850 	sigset_t ss;
   1851 	bool traced;
   1852 
   1853 	p = l->l_proc;
   1854 	sp = NULL;
   1855 	signo = 0;
   1856 
   1857 	KASSERT(p == curproc);
   1858 	KASSERT(mutex_owned(p->p_lock));
   1859 
   1860 	for (;;) {
   1861 		/* Discard any signals that we have decided not to take. */
   1862 		if (signo != 0) {
   1863 			(void)sigget(sp, NULL, signo, NULL);
   1864 		}
   1865 
   1866 		/*
   1867 		 * If the process is stopped/stopping, then stop ourselves
   1868 		 * now that we're on the kernel/userspace boundary.  When
   1869 		 * we awaken, check for a signal from the debugger.
   1870 		 */
   1871 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1872 			sigswitch_unlock_and_switch_away(l);
   1873 			mutex_enter(p->p_lock);
   1874 			continue;
   1875 		} else if (p->p_stat == SACTIVE)
   1876 			signo = sigchecktrace();
   1877 		else
   1878 			signo = 0;
   1879 
   1880 		/* Signals from the debugger are "out of band". */
   1881 		sp = NULL;
   1882 
   1883 		/*
   1884 		 * If the debugger didn't provide a signal, find a pending
   1885 		 * signal from our set.  Check per-LWP signals first, and
   1886 		 * then per-process.
   1887 		 */
   1888 		if (signo == 0) {
   1889 			sp = &l->l_sigpend;
   1890 			ss = sp->sp_set;
   1891 			siglwp = l->l_lid;
   1892 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1893 				sigminusset(&vforksigmask, &ss);
   1894 			sigminusset(&l->l_sigmask, &ss);
   1895 
   1896 			if ((signo = firstsig(&ss)) == 0) {
   1897 				sp = &p->p_sigpend;
   1898 				ss = sp->sp_set;
   1899 				siglwp = 0;
   1900 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1901 					sigminusset(&vforksigmask, &ss);
   1902 				sigminusset(&l->l_sigmask, &ss);
   1903 
   1904 				if ((signo = firstsig(&ss)) == 0) {
   1905 					/*
   1906 					 * No signal pending - clear the
   1907 					 * indicator and bail out.
   1908 					 */
   1909 					lwp_lock(l);
   1910 					l->l_flag &= ~LW_PENDSIG;
   1911 					lwp_unlock(l);
   1912 					sp = NULL;
   1913 					break;
   1914 				}
   1915 			}
   1916 		}
   1917 
   1918 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1919 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1920 
   1921 		if (sp) {
   1922 			/* Overwrite process' signal context to correspond
   1923 			 * to the currently reported LWP.  This is necessary
   1924 			 * for PT_GET_SIGINFO to report the correct signal when
   1925 			 * multiple LWPs have pending signals.  We do this only
   1926 			 * when the signal comes from the queue, for signals
   1927 			 * created by the debugger we assume it set correct
   1928 			 * siginfo.
   1929 			 */
   1930 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1931 			if (ksi) {
   1932 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1933 				p->p_sigctx.ps_info = ksi->ksi_info;
   1934 			} else {
   1935 				p->p_sigctx.ps_lwp = siglwp;
   1936 				memset(&p->p_sigctx.ps_info, 0,
   1937 				    sizeof(p->p_sigctx.ps_info));
   1938 				p->p_sigctx.ps_info._signo = signo;
   1939 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1940 			}
   1941 		}
   1942 
   1943 		/*
   1944 		 * We should see pending but ignored signals only if
   1945 		 * we are being traced.
   1946 		 */
   1947 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1948 		    !traced) {
   1949 			/* Discard the signal. */
   1950 			continue;
   1951 		}
   1952 
   1953 		/*
   1954 		 * If traced, always stop, and stay stopped until released
   1955 		 * by the debugger.  If the our parent is our debugger waiting
   1956 		 * for us and we vforked, don't hang as we could deadlock.
   1957 		 */
   1958 		if (traced && signo != SIGKILL &&
   1959 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1960 		     (p->p_pptr == p->p_opptr))) {
   1961 			/*
   1962 			 * Take the signal, but don't remove it from the
   1963 			 * siginfo queue, because the debugger can send
   1964 			 * it later.
   1965 			 */
   1966 			if (sp)
   1967 				sigdelset(&sp->sp_set, signo);
   1968 			p->p_xsig = signo;
   1969 
   1970 			/* Handling of signal trace */
   1971 			sigswitch(0, signo, false);
   1972 			mutex_enter(p->p_lock);
   1973 
   1974 			/* Check for a signal from the debugger. */
   1975 			if ((signo = sigchecktrace()) == 0)
   1976 				continue;
   1977 
   1978 			/* Signals from the debugger are "out of band". */
   1979 			sp = NULL;
   1980 		}
   1981 
   1982 		prop = sigprop[signo];
   1983 
   1984 		/*
   1985 		 * Decide whether the signal should be returned.
   1986 		 */
   1987 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1988 		case (long)SIG_DFL:
   1989 			/*
   1990 			 * Don't take default actions on system processes.
   1991 			 */
   1992 			if (p->p_pid <= 1) {
   1993 #ifdef DIAGNOSTIC
   1994 				/*
   1995 				 * Are you sure you want to ignore SIGSEGV
   1996 				 * in init? XXX
   1997 				 */
   1998 				printf_nolog("Process (pid %d) got sig %d\n",
   1999 				    p->p_pid, signo);
   2000 #endif
   2001 				continue;
   2002 			}
   2003 
   2004 			/*
   2005 			 * If there is a pending stop signal to process with
   2006 			 * default action, stop here, then clear the signal.
   2007 			 * However, if process is member of an orphaned
   2008 			 * process group, ignore tty stop signals.
   2009 			 */
   2010 			if (prop & SA_STOP) {
   2011 				/*
   2012 				 * XXX Don't hold proc_lock for p_lflag,
   2013 				 * but it's not a big deal.
   2014 				 */
   2015 				if ((traced &&
   2016 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   2017 				     (p->p_pptr == p->p_opptr))) ||
   2018 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   2019 				    prop & SA_TTYSTOP)) {
   2020 					/* Ignore the signal. */
   2021 					continue;
   2022 				}
   2023 				/* Take the signal. */
   2024 				(void)sigget(sp, NULL, signo, NULL);
   2025 				p->p_xsig = signo;
   2026 				p->p_sflag &= ~PS_CONTINUED;
   2027 				signo = 0;
   2028 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2029 				mutex_enter(p->p_lock);
   2030 			} else if (prop & SA_IGNORE) {
   2031 				/*
   2032 				 * Except for SIGCONT, shouldn't get here.
   2033 				 * Default action is to ignore; drop it.
   2034 				 */
   2035 				continue;
   2036 			}
   2037 			break;
   2038 
   2039 		case (long)SIG_IGN:
   2040 #ifdef DEBUG_ISSIGNAL
   2041 			/*
   2042 			 * Masking above should prevent us ever trying
   2043 			 * to take action on an ignored signal other
   2044 			 * than SIGCONT, unless process is traced.
   2045 			 */
   2046 			if ((prop & SA_CONT) == 0 && !traced)
   2047 				printf_nolog("issignal\n");
   2048 #endif
   2049 			continue;
   2050 
   2051 		default:
   2052 			/*
   2053 			 * This signal has an action, let postsig() process
   2054 			 * it.
   2055 			 */
   2056 			break;
   2057 		}
   2058 
   2059 		break;
   2060 	}
   2061 
   2062 	l->l_sigpendset = sp;
   2063 	return signo;
   2064 }
   2065 
   2066 /*
   2067  * Take the action for the specified signal
   2068  * from the current set of pending signals.
   2069  */
   2070 void
   2071 postsig(int signo)
   2072 {
   2073 	struct lwp	*l;
   2074 	struct proc	*p;
   2075 	struct sigacts	*ps;
   2076 	sig_t		action;
   2077 	sigset_t	*returnmask;
   2078 	ksiginfo_t	ksi;
   2079 
   2080 	l = curlwp;
   2081 	p = l->l_proc;
   2082 	ps = p->p_sigacts;
   2083 
   2084 	KASSERT(mutex_owned(p->p_lock));
   2085 	KASSERT(signo > 0);
   2086 
   2087 	/*
   2088 	 * Set the new mask value and also defer further occurrences of this
   2089 	 * signal.
   2090 	 *
   2091 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2092 	 * not of interest, but rather the mask from before the sigsuspend is
   2093 	 * what we want restored after the signal processing is completed.
   2094 	 */
   2095 	if (l->l_sigrestore) {
   2096 		returnmask = &l->l_sigoldmask;
   2097 		l->l_sigrestore = 0;
   2098 	} else
   2099 		returnmask = &l->l_sigmask;
   2100 
   2101 	/*
   2102 	 * Commit to taking the signal before releasing the mutex.
   2103 	 */
   2104 	action = SIGACTION_PS(ps, signo).sa_handler;
   2105 	l->l_ru.ru_nsignals++;
   2106 	if (l->l_sigpendset == NULL) {
   2107 		/* From the debugger */
   2108 		if (p->p_sigctx.ps_faked &&
   2109 		    signo == p->p_sigctx.ps_info._signo) {
   2110 			KSI_INIT(&ksi);
   2111 			ksi.ksi_info = p->p_sigctx.ps_info;
   2112 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2113 			p->p_sigctx.ps_faked = false;
   2114 		} else {
   2115 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2116 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2117 		}
   2118 	} else
   2119 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2120 
   2121 	if (ktrpoint(KTR_PSIG)) {
   2122 		mutex_exit(p->p_lock);
   2123 		if (p->p_emul->e_ktrpsig)
   2124 			p->p_emul->e_ktrpsig(signo, action,
   2125 			    returnmask, &ksi);
   2126 		else
   2127 			ktrpsig(signo, action, returnmask, &ksi);
   2128 		mutex_enter(p->p_lock);
   2129 	}
   2130 
   2131 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2132 
   2133 	if (action == SIG_DFL) {
   2134 		/*
   2135 		 * Default action, where the default is to kill
   2136 		 * the process.  (Other cases were ignored above.)
   2137 		 */
   2138 		sigexit(l, signo);
   2139 		return;
   2140 	}
   2141 
   2142 	/*
   2143 	 * If we get here, the signal must be caught.
   2144 	 */
   2145 #ifdef DIAGNOSTIC
   2146 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2147 		panic("postsig action");
   2148 #endif
   2149 
   2150 	kpsendsig(l, &ksi, returnmask);
   2151 }
   2152 
   2153 /*
   2154  * sendsig:
   2155  *
   2156  *	Default signal delivery method for NetBSD.
   2157  */
   2158 void
   2159 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2160 {
   2161 	struct sigacts *sa;
   2162 	int sig;
   2163 
   2164 	sig = ksi->ksi_signo;
   2165 	sa = curproc->p_sigacts;
   2166 
   2167 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2168 	case 0:
   2169 	case 1:
   2170 		/* Compat for 1.6 and earlier. */
   2171 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2172 		    break);
   2173 		return;
   2174 	case 2:
   2175 	case 3:
   2176 		sendsig_siginfo(ksi, mask);
   2177 		return;
   2178 	default:
   2179 		break;
   2180 	}
   2181 
   2182 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2183 	sigexit(curlwp, SIGILL);
   2184 }
   2185 
   2186 /*
   2187  * sendsig_reset:
   2188  *
   2189  *	Reset the signal action.  Called from emulation specific sendsig()
   2190  *	before unlocking to deliver the signal.
   2191  */
   2192 void
   2193 sendsig_reset(struct lwp *l, int signo)
   2194 {
   2195 	struct proc *p = l->l_proc;
   2196 	struct sigacts *ps = p->p_sigacts;
   2197 
   2198 	KASSERT(mutex_owned(p->p_lock));
   2199 
   2200 	p->p_sigctx.ps_lwp = 0;
   2201 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2202 
   2203 	mutex_enter(&ps->sa_mutex);
   2204 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2205 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2206 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2207 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2208 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2209 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2210 	}
   2211 	mutex_exit(&ps->sa_mutex);
   2212 }
   2213 
   2214 /*
   2215  * Kill the current process for stated reason.
   2216  */
   2217 void
   2218 killproc(struct proc *p, const char *why)
   2219 {
   2220 
   2221 	KASSERT(mutex_owned(&proc_lock));
   2222 
   2223 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2224 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2225 	psignal(p, SIGKILL);
   2226 }
   2227 
   2228 /*
   2229  * Force the current process to exit with the specified signal, dumping core
   2230  * if appropriate.  We bypass the normal tests for masked and caught
   2231  * signals, allowing unrecoverable failures to terminate the process without
   2232  * changing signal state.  Mark the accounting record with the signal
   2233  * termination.  If dumping core, save the signal number for the debugger.
   2234  * Calls exit and does not return.
   2235  */
   2236 void
   2237 sigexit(struct lwp *l, int signo)
   2238 {
   2239 	int exitsig, error, docore;
   2240 	struct proc *p;
   2241 	struct lwp *t;
   2242 
   2243 	p = l->l_proc;
   2244 
   2245 	KASSERT(mutex_owned(p->p_lock));
   2246 	KERNEL_UNLOCK_ALL(l, NULL);
   2247 
   2248 	/*
   2249 	 * Don't permit coredump() multiple times in the same process.
   2250 	 * Call back into sigexit, where we will be suspended until
   2251 	 * the deed is done.  Note that this is a recursive call, but
   2252 	 * LW_WCORE will prevent us from coming back this way.
   2253 	 */
   2254 	if ((p->p_sflag & PS_WCORE) != 0) {
   2255 		lwp_lock(l);
   2256 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2257 		lwp_unlock(l);
   2258 		mutex_exit(p->p_lock);
   2259 		lwp_userret(l);
   2260 		panic("sigexit 1");
   2261 		/* NOTREACHED */
   2262 	}
   2263 
   2264 	/* If process is already on the way out, then bail now. */
   2265 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2266 		mutex_exit(p->p_lock);
   2267 		lwp_exit(l);
   2268 		panic("sigexit 2");
   2269 		/* NOTREACHED */
   2270 	}
   2271 
   2272 	/*
   2273 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2274 	 * so that their registers are available long enough to be dumped.
   2275  	 */
   2276 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2277 		p->p_sflag |= PS_WCORE;
   2278 		for (;;) {
   2279 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2280 				lwp_lock(t);
   2281 				if (t == l) {
   2282 					t->l_flag &=
   2283 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2284 					lwp_unlock(t);
   2285 					continue;
   2286 				}
   2287 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2288 				lwp_suspend(l, t);
   2289 			}
   2290 
   2291 			if (p->p_nrlwps == 1)
   2292 				break;
   2293 
   2294 			/*
   2295 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2296 			 * for everyone else to stop before proceeding.
   2297 			 */
   2298 			p->p_nlwpwait++;
   2299 			cv_broadcast(&p->p_lwpcv);
   2300 			cv_wait(&p->p_lwpcv, p->p_lock);
   2301 			p->p_nlwpwait--;
   2302 		}
   2303 	}
   2304 
   2305 	exitsig = signo;
   2306 	p->p_acflag |= AXSIG;
   2307 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2308 	p->p_sigctx.ps_info._signo = signo;
   2309 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2310 
   2311 	if (docore) {
   2312 		mutex_exit(p->p_lock);
   2313 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2314 
   2315 		if (kern_logsigexit) {
   2316 			int uid = l->l_cred ?
   2317 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2318 
   2319 			if (error)
   2320 				log(LOG_INFO, lognocoredump, p->p_pid,
   2321 				    p->p_comm, uid, signo, error);
   2322 			else
   2323 				log(LOG_INFO, logcoredump, p->p_pid,
   2324 				    p->p_comm, uid, signo);
   2325 		}
   2326 
   2327 #ifdef PAX_SEGVGUARD
   2328 		rw_enter(&exec_lock, RW_WRITER);
   2329 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2330 		rw_exit(&exec_lock);
   2331 #endif /* PAX_SEGVGUARD */
   2332 
   2333 		/* Acquire the sched state mutex.  exit1() will release it. */
   2334 		mutex_enter(p->p_lock);
   2335 		if (error == 0)
   2336 			p->p_sflag |= PS_COREDUMP;
   2337 	}
   2338 
   2339 	/* No longer dumping core. */
   2340 	p->p_sflag &= ~PS_WCORE;
   2341 
   2342 	exit1(l, 0, exitsig);
   2343 	/* NOTREACHED */
   2344 }
   2345 
   2346 /*
   2347  * Since the "real" code may (or may not) be present in loadable module,
   2348  * we provide routines here which calls the module hooks.
   2349  */
   2350 int
   2351 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2352 {
   2353 	int retval;
   2354 
   2355 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
   2356 	return retval;
   2357 }
   2358 
   2359 int
   2360 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
   2361 {
   2362 	int retval;
   2363 
   2364 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
   2365 	return retval;
   2366 }
   2367 
   2368 #ifdef _LP64
   2369 int
   2370 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
   2371 {
   2372 	int retval;
   2373 
   2374 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
   2375 	return retval;
   2376 }
   2377 #endif
   2378 
   2379 /*
   2380  * Put process 'p' into the stopped state and optionally, notify the parent.
   2381  */
   2382 void
   2383 proc_stop(struct proc *p, int signo)
   2384 {
   2385 	struct lwp *l;
   2386 
   2387 	KASSERT(mutex_owned(p->p_lock));
   2388 
   2389 	/*
   2390 	 * First off, set the stopping indicator and bring all sleeping
   2391 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2392 	 * unlock between here and the p->p_nrlwps check below.
   2393 	 */
   2394 	p->p_sflag |= PS_STOPPING;
   2395 	membar_producer();
   2396 
   2397 	proc_stop_lwps(p);
   2398 
   2399 	/*
   2400 	 * If there are no LWPs available to take the signal, then we
   2401 	 * signal the parent process immediately.  Otherwise, the last
   2402 	 * LWP to stop will take care of it.
   2403 	 */
   2404 
   2405 	if (p->p_nrlwps == 0) {
   2406 		proc_stop_done(p, PS_NOCLDSTOP);
   2407 	} else {
   2408 		/*
   2409 		 * Have the remaining LWPs come to a halt, and trigger
   2410 		 * proc_stop_callout() to ensure that they do.
   2411 		 */
   2412 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2413 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2414 		}
   2415 		callout_schedule(&proc_stop_ch, 1);
   2416 	}
   2417 }
   2418 
   2419 /*
   2420  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2421  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2422  * to allow LWPs to release any locks that they may hold before stopping.
   2423  *
   2424  * Non-interruptable sleeps can be long, and there is the potential for an
   2425  * LWP to begin sleeping interruptably soon after the process has been set
   2426  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2427  * stopping, and so complete halt of the process and the return of status
   2428  * information to the parent could be delayed indefinitely.
   2429  *
   2430  * To handle this race, proc_stop_callout() runs once per tick while there
   2431  * are stopping processes in the system.  It sets LWPs that are sleeping
   2432  * interruptably into the LSSTOP state.
   2433  *
   2434  * Note that we are not concerned about keeping all LWPs stopped while the
   2435  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2436  * What we do need to ensure is that all LWPs in a stopping process have
   2437  * stopped at least once, so that notification can be sent to the parent
   2438  * process.
   2439  */
   2440 static void
   2441 proc_stop_callout(void *cookie)
   2442 {
   2443 	bool more, restart;
   2444 	struct proc *p;
   2445 
   2446 	(void)cookie;
   2447 
   2448 	do {
   2449 		restart = false;
   2450 		more = false;
   2451 
   2452 		mutex_enter(&proc_lock);
   2453 		PROCLIST_FOREACH(p, &allproc) {
   2454 			mutex_enter(p->p_lock);
   2455 
   2456 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2457 				mutex_exit(p->p_lock);
   2458 				continue;
   2459 			}
   2460 
   2461 			/* Stop any LWPs sleeping interruptably. */
   2462 			proc_stop_lwps(p);
   2463 			if (p->p_nrlwps == 0) {
   2464 				/*
   2465 				 * We brought the process to a halt.
   2466 				 * Mark it as stopped and notify the
   2467 				 * parent.
   2468 				 *
   2469 				 * Note that proc_stop_done() will
   2470 				 * drop p->p_lock briefly.
   2471 				 * Arrange to restart and check
   2472 				 * all processes again.
   2473 				 */
   2474 				restart = true;
   2475 				proc_stop_done(p, PS_NOCLDSTOP);
   2476 			} else
   2477 				more = true;
   2478 
   2479 			mutex_exit(p->p_lock);
   2480 			if (restart)
   2481 				break;
   2482 		}
   2483 		mutex_exit(&proc_lock);
   2484 	} while (restart);
   2485 
   2486 	/*
   2487 	 * If we noted processes that are stopping but still have
   2488 	 * running LWPs, then arrange to check again in 1 tick.
   2489 	 */
   2490 	if (more)
   2491 		callout_schedule(&proc_stop_ch, 1);
   2492 }
   2493 
   2494 /*
   2495  * Given a process in state SSTOP, set the state back to SACTIVE and
   2496  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2497  */
   2498 void
   2499 proc_unstop(struct proc *p)
   2500 {
   2501 	struct lwp *l;
   2502 	int sig;
   2503 
   2504 	KASSERT(mutex_owned(&proc_lock));
   2505 	KASSERT(mutex_owned(p->p_lock));
   2506 
   2507 	p->p_stat = SACTIVE;
   2508 	p->p_sflag &= ~PS_STOPPING;
   2509 	sig = p->p_xsig;
   2510 
   2511 	if (!p->p_waited)
   2512 		p->p_pptr->p_nstopchild--;
   2513 
   2514 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2515 		lwp_lock(l);
   2516 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2517 			lwp_unlock(l);
   2518 			continue;
   2519 		}
   2520 		if (l->l_wchan == NULL) {
   2521 			setrunnable(l);
   2522 			continue;
   2523 		}
   2524 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2525 			setrunnable(l);
   2526 			sig = 0;
   2527 		} else {
   2528 			l->l_stat = LSSLEEP;
   2529 			p->p_nrlwps++;
   2530 			lwp_unlock(l);
   2531 		}
   2532 	}
   2533 }
   2534 
   2535 void
   2536 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2537                const register_t *ret, int error)
   2538 {
   2539 	struct lwp *l = curlwp;
   2540 	struct proc *p = l->l_proc;
   2541 	struct sigacts *ps;
   2542 	sigset_t *mask;
   2543 	sig_t action;
   2544 	ksiginfo_t ksi;
   2545 	size_t i, sy_narg;
   2546 	const int signo = SIGTRAP;
   2547 
   2548 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2549 	KASSERT(p->p_pptr != initproc);
   2550 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2551 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2552 
   2553 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2554 
   2555 	KSI_INIT_TRAP(&ksi);
   2556 	ksi.ksi_lid = l->l_lid;
   2557 	ksi.ksi_signo = signo;
   2558 	ksi.ksi_code = trapno;
   2559 
   2560 	ksi.ksi_sysnum = sysnum;
   2561 	if (trapno == TRAP_SCE) {
   2562 		ksi.ksi_retval[0] = 0;
   2563 		ksi.ksi_retval[1] = 0;
   2564 		ksi.ksi_error = 0;
   2565 	} else {
   2566 		ksi.ksi_retval[0] = ret[0];
   2567 		ksi.ksi_retval[1] = ret[1];
   2568 		ksi.ksi_error = error;
   2569 	}
   2570 
   2571 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2572 
   2573 	for (i = 0; i < sy_narg; i++)
   2574 		ksi.ksi_args[i] = args[i];
   2575 
   2576 	mutex_enter(p->p_lock);
   2577 
   2578 repeat:
   2579 	/*
   2580 	 * If we are exiting, demise now.
   2581 	 *
   2582 	 * This avoids notifying tracer and deadlocking.
   2583 	 */
   2584 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2585 		mutex_exit(p->p_lock);
   2586 		lwp_exit(l);
   2587 		panic("proc_stoptrace");
   2588 		/* NOTREACHED */
   2589 	}
   2590 
   2591 	/*
   2592 	 * If there's a pending SIGKILL process it immediately.
   2593 	 */
   2594 	if (p->p_xsig == SIGKILL ||
   2595 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2596 		mutex_exit(p->p_lock);
   2597 		return;
   2598 	}
   2599 
   2600 	/*
   2601 	 * If we are no longer traced, abandon this event signal.
   2602 	 *
   2603 	 * This avoids killing a process after detaching the debugger.
   2604 	 */
   2605 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2606 		mutex_exit(p->p_lock);
   2607 		return;
   2608 	}
   2609 
   2610 	/*
   2611 	 * The process is already stopping.
   2612 	 */
   2613 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2614 		sigswitch_unlock_and_switch_away(l);
   2615 		mutex_enter(p->p_lock);
   2616 		goto repeat;
   2617 	}
   2618 
   2619 	/* Needed for ktrace */
   2620 	ps = p->p_sigacts;
   2621 	action = SIGACTION_PS(ps, signo).sa_handler;
   2622 	mask = &l->l_sigmask;
   2623 
   2624 	p->p_xsig = signo;
   2625 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2626 	p->p_sigctx.ps_info = ksi.ksi_info;
   2627 	sigswitch(0, signo, false);
   2628 
   2629 	if (ktrpoint(KTR_PSIG)) {
   2630 		if (p->p_emul->e_ktrpsig)
   2631 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2632 		else
   2633 			ktrpsig(signo, action, mask, &ksi);
   2634 	}
   2635 }
   2636 
   2637 static int
   2638 filt_sigattach(struct knote *kn)
   2639 {
   2640 	struct proc *p = curproc;
   2641 
   2642 	kn->kn_obj = p;
   2643 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2644 
   2645 	mutex_enter(p->p_lock);
   2646 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2647 	mutex_exit(p->p_lock);
   2648 
   2649 	return 0;
   2650 }
   2651 
   2652 static void
   2653 filt_sigdetach(struct knote *kn)
   2654 {
   2655 	struct proc *p = kn->kn_obj;
   2656 
   2657 	mutex_enter(p->p_lock);
   2658 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2659 	mutex_exit(p->p_lock);
   2660 }
   2661 
   2662 /*
   2663  * Signal knotes are shared with proc knotes, so we apply a mask to
   2664  * the hint in order to differentiate them from process hints.  This
   2665  * could be avoided by using a signal-specific knote list, but probably
   2666  * isn't worth the trouble.
   2667  */
   2668 static int
   2669 filt_signal(struct knote *kn, long hint)
   2670 {
   2671 
   2672 	if (hint & NOTE_SIGNAL) {
   2673 		hint &= ~NOTE_SIGNAL;
   2674 
   2675 		if (kn->kn_id == hint)
   2676 			kn->kn_data++;
   2677 	}
   2678 	return (kn->kn_data != 0);
   2679 }
   2680 
   2681 const struct filterops sig_filtops = {
   2682 		.f_isfd = 0,
   2683 		.f_attach = filt_sigattach,
   2684 		.f_detach = filt_sigdetach,
   2685 		.f_event = filt_signal,
   2686 };
   2687