kern_sig.c revision 1.391 1 /* $NetBSD: kern_sig.c,v 1.391 2020/10/19 19:33:02 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.391 2020/10/19 19:33:02 christos Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 #include <sys/exec_elf.h>
104 #include <sys/compat_stub.h>
105
106 #ifdef PAX_SEGVGUARD
107 #include <sys/pax.h>
108 #endif /* PAX_SEGVGUARD */
109
110 #include <uvm/uvm_extern.h>
111
112 #define SIGQUEUE_MAX 32
113 static pool_cache_t sigacts_cache __read_mostly;
114 static pool_cache_t ksiginfo_cache __read_mostly;
115 static callout_t proc_stop_ch __cacheline_aligned;
116
117 sigset_t contsigmask __cacheline_aligned;
118 sigset_t stopsigmask __cacheline_aligned;
119 static sigset_t vforksigmask __cacheline_aligned;
120 sigset_t sigcantmask __cacheline_aligned;
121
122 static void ksiginfo_exechook(struct proc *, void *);
123 static void proc_stop(struct proc *, int);
124 static void proc_stop_done(struct proc *, int);
125 static void proc_stop_callout(void *);
126 static int sigchecktrace(void);
127 static int sigpost(struct lwp *, sig_t, int, int);
128 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
129 static int sigunwait(struct proc *, const ksiginfo_t *);
130 static void sigswitch(int, int, bool);
131 static void sigswitch_unlock_and_switch_away(struct lwp *);
132
133 static void sigacts_poolpage_free(struct pool *, void *);
134 static void *sigacts_poolpage_alloc(struct pool *, int);
135
136 /*
137 * DTrace SDT provider definitions
138 */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141 "struct lwp *", /* target thread */
142 "struct proc *", /* target process */
143 "int"); /* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145 "struct lwp *", /* target thread */
146 "struct proc *", /* target process */
147 "int"); /* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149 "int", /* signal */
150 "ksiginfo_t *", /* signal info */
151 "void (*)(void)"); /* handler address */
152
153
154 static struct pool_allocator sigactspool_allocator = {
155 .pa_alloc = sigacts_poolpage_alloc,
156 .pa_free = sigacts_poolpage_free
157 };
158
159 #ifdef DEBUG
160 int kern_logsigexit = 1;
161 #else
162 int kern_logsigexit = 0;
163 #endif
164
165 static const char logcoredump[] =
166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169
170 static kauth_listener_t signal_listener;
171
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174 void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 struct proc *p;
177 int result, signum;
178
179 result = KAUTH_RESULT_DEFER;
180 p = arg0;
181 signum = (int)(unsigned long)arg1;
182
183 if (action != KAUTH_PROCESS_SIGNAL)
184 return result;
185
186 if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 result = KAUTH_RESULT_ALLOW;
189
190 return result;
191 }
192
193 static int
194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
195 {
196 memset(obj, 0, sizeof(struct sigacts));
197 return 0;
198 }
199
200 /*
201 * signal_init:
202 *
203 * Initialize global signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
210
211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
216
217 exechook_establish(ksiginfo_exechook, NULL);
218
219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
221
222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
223 signal_listener_cb, NULL);
224 }
225
226 /*
227 * sigacts_poolpage_alloc:
228 *
229 * Allocate a page for the sigacts memory pool.
230 */
231 static void *
232 sigacts_poolpage_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map,
236 PAGE_SIZE * 2, PAGE_SIZE * 2,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 /*
242 * sigacts_poolpage_free:
243 *
244 * Free a page on behalf of the sigacts memory pool.
245 */
246 static void
247 sigacts_poolpage_free(struct pool *pp, void *v)
248 {
249
250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
251 }
252
253 /*
254 * sigactsinit:
255 *
256 * Create an initial sigacts structure, using the same signal state
257 * as of specified process. If 'share' is set, share the sigacts by
258 * holding a reference, otherwise just copy it from parent.
259 */
260 struct sigacts *
261 sigactsinit(struct proc *pp, int share)
262 {
263 struct sigacts *ps = pp->p_sigacts, *ps2;
264
265 if (__predict_false(share)) {
266 atomic_inc_uint(&ps->sa_refcnt);
267 return ps;
268 }
269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 ps2->sa_refcnt = 1;
272
273 mutex_enter(&ps->sa_mutex);
274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
275 mutex_exit(&ps->sa_mutex);
276 return ps2;
277 }
278
279 /*
280 * sigactsunshare:
281 *
282 * Make this process not share its sigacts, maintaining all signal state.
283 */
284 void
285 sigactsunshare(struct proc *p)
286 {
287 struct sigacts *ps, *oldps = p->p_sigacts;
288
289 if (__predict_true(oldps->sa_refcnt == 1))
290 return;
291
292 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
295 ps->sa_refcnt = 1;
296
297 p->p_sigacts = ps;
298 sigactsfree(oldps);
299 }
300
301 /*
302 * sigactsfree;
303 *
304 * Release a sigacts structure.
305 */
306 void
307 sigactsfree(struct sigacts *ps)
308 {
309
310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
311 mutex_destroy(&ps->sa_mutex);
312 pool_cache_put(sigacts_cache, ps);
313 }
314 }
315
316 /*
317 * siginit:
318 *
319 * Initialize signal state for process 0; set to ignore signals that
320 * are ignored by default and disable the signal stack. Locking not
321 * required as the system is still cold.
322 */
323 void
324 siginit(struct proc *p)
325 {
326 struct lwp *l;
327 struct sigacts *ps;
328 int signo, prop;
329
330 ps = p->p_sigacts;
331 sigemptyset(&contsigmask);
332 sigemptyset(&stopsigmask);
333 sigemptyset(&vforksigmask);
334 sigemptyset(&sigcantmask);
335 for (signo = 1; signo < NSIG; signo++) {
336 prop = sigprop[signo];
337 if (prop & SA_CONT)
338 sigaddset(&contsigmask, signo);
339 if (prop & SA_STOP)
340 sigaddset(&stopsigmask, signo);
341 if (prop & SA_STOP && signo != SIGSTOP)
342 sigaddset(&vforksigmask, signo);
343 if (prop & SA_CANTMASK)
344 sigaddset(&sigcantmask, signo);
345 if (prop & SA_IGNORE && signo != SIGCONT)
346 sigaddset(&p->p_sigctx.ps_sigignore, signo);
347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
349 }
350 sigemptyset(&p->p_sigctx.ps_sigcatch);
351 p->p_sflag &= ~PS_NOCLDSTOP;
352
353 ksiginfo_queue_init(&p->p_sigpend.sp_info);
354 sigemptyset(&p->p_sigpend.sp_set);
355
356 /*
357 * Reset per LWP state.
358 */
359 l = LIST_FIRST(&p->p_lwps);
360 l->l_sigwaited = NULL;
361 l->l_sigstk = SS_INIT;
362 ksiginfo_queue_init(&l->l_sigpend.sp_info);
363 sigemptyset(&l->l_sigpend.sp_set);
364
365 /* One reference. */
366 ps->sa_refcnt = 1;
367 }
368
369 /*
370 * execsigs:
371 *
372 * Reset signals for an exec of the specified process.
373 */
374 void
375 execsigs(struct proc *p)
376 {
377 struct sigacts *ps;
378 struct lwp *l;
379 int signo, prop;
380 sigset_t tset;
381 ksiginfoq_t kq;
382
383 KASSERT(p->p_nlwps == 1);
384
385 sigactsunshare(p);
386 ps = p->p_sigacts;
387
388 /*
389 * Reset caught signals. Held signals remain held through
390 * l->l_sigmask (unless they were caught, and are now ignored
391 * by default).
392 *
393 * No need to lock yet, the process has only one LWP and
394 * at this point the sigacts are private to the process.
395 */
396 sigemptyset(&tset);
397 for (signo = 1; signo < NSIG; signo++) {
398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
399 prop = sigprop[signo];
400 if (prop & SA_IGNORE) {
401 if ((prop & SA_CONT) == 0)
402 sigaddset(&p->p_sigctx.ps_sigignore,
403 signo);
404 sigaddset(&tset, signo);
405 }
406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
407 }
408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
410 }
411 ksiginfo_queue_init(&kq);
412
413 mutex_enter(p->p_lock);
414 sigclearall(p, &tset, &kq);
415 sigemptyset(&p->p_sigctx.ps_sigcatch);
416
417 /*
418 * Reset no zombies if child dies flag as Solaris does.
419 */
420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
423
424 /*
425 * Reset per-LWP state.
426 */
427 l = LIST_FIRST(&p->p_lwps);
428 l->l_sigwaited = NULL;
429 l->l_sigstk = SS_INIT;
430 ksiginfo_queue_init(&l->l_sigpend.sp_info);
431 sigemptyset(&l->l_sigpend.sp_set);
432 mutex_exit(p->p_lock);
433
434 ksiginfo_queue_drain(&kq);
435 }
436
437 /*
438 * ksiginfo_exechook:
439 *
440 * Free all pending ksiginfo entries from a process on exec.
441 * Additionally, drain any unused ksiginfo structures in the
442 * system back to the pool.
443 *
444 * XXX This should not be a hook, every process has signals.
445 */
446 static void
447 ksiginfo_exechook(struct proc *p, void *v)
448 {
449 ksiginfoq_t kq;
450
451 ksiginfo_queue_init(&kq);
452
453 mutex_enter(p->p_lock);
454 sigclearall(p, NULL, &kq);
455 mutex_exit(p->p_lock);
456
457 ksiginfo_queue_drain(&kq);
458 }
459
460 /*
461 * ksiginfo_alloc:
462 *
463 * Allocate a new ksiginfo structure from the pool, and optionally copy
464 * an existing one. If the existing ksiginfo_t is from the pool, and
465 * has not been queued somewhere, then just return it. Additionally,
466 * if the existing ksiginfo_t does not contain any information beyond
467 * the signal number, then just return it.
468 */
469 ksiginfo_t *
470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
471 {
472 ksiginfo_t *kp;
473
474 if (ok != NULL) {
475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
476 KSI_FROMPOOL)
477 return ok;
478 if (KSI_EMPTY_P(ok))
479 return ok;
480 }
481
482 kp = pool_cache_get(ksiginfo_cache, flags);
483 if (kp == NULL) {
484 #ifdef DIAGNOSTIC
485 printf("Out of memory allocating ksiginfo for pid %d\n",
486 p->p_pid);
487 #endif
488 return NULL;
489 }
490
491 if (ok != NULL) {
492 memcpy(kp, ok, sizeof(*kp));
493 kp->ksi_flags &= ~KSI_QUEUED;
494 } else
495 KSI_INIT_EMPTY(kp);
496
497 kp->ksi_flags |= KSI_FROMPOOL;
498
499 return kp;
500 }
501
502 /*
503 * ksiginfo_free:
504 *
505 * If the given ksiginfo_t is from the pool and has not been queued,
506 * then free it.
507 */
508 void
509 ksiginfo_free(ksiginfo_t *kp)
510 {
511
512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
513 return;
514 pool_cache_put(ksiginfo_cache, kp);
515 }
516
517 /*
518 * ksiginfo_queue_drain:
519 *
520 * Drain a non-empty ksiginfo_t queue.
521 */
522 void
523 ksiginfo_queue_drain0(ksiginfoq_t *kq)
524 {
525 ksiginfo_t *ksi;
526
527 KASSERT(!TAILQ_EMPTY(kq));
528
529 while (!TAILQ_EMPTY(kq)) {
530 ksi = TAILQ_FIRST(kq);
531 TAILQ_REMOVE(kq, ksi, ksi_list);
532 pool_cache_put(ksiginfo_cache, ksi);
533 }
534 }
535
536 static int
537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
538 {
539 ksiginfo_t *ksi, *nksi;
540
541 if (sp == NULL)
542 goto out;
543
544 /* Find siginfo and copy it out. */
545 int count = 0;
546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
547 if (ksi->ksi_signo != signo)
548 continue;
549 if (count++ > 0) /* Only remove the first, count all of them */
550 continue;
551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
554 ksi->ksi_flags &= ~KSI_QUEUED;
555 if (out != NULL) {
556 memcpy(out, ksi, sizeof(*out));
557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
558 }
559 ksiginfo_free(ksi);
560 }
561 if (count)
562 return count;
563
564 out:
565 /* If there is no siginfo, then manufacture it. */
566 if (out != NULL) {
567 KSI_INIT(out);
568 out->ksi_info._signo = signo;
569 out->ksi_info._code = SI_NOINFO;
570 }
571 return 0;
572 }
573
574 /*
575 * sigget:
576 *
577 * Fetch the first pending signal from a set. Optionally, also fetch
578 * or manufacture a ksiginfo element. Returns the number of the first
579 * pending signal, or zero.
580 */
581 int
582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
583 {
584 sigset_t tset;
585 int count;
586
587 /* If there's no pending set, the signal is from the debugger. */
588 if (sp == NULL)
589 goto out;
590
591 /* Construct mask from signo, and 'mask'. */
592 if (signo == 0) {
593 if (mask != NULL) {
594 tset = *mask;
595 __sigandset(&sp->sp_set, &tset);
596 } else
597 tset = sp->sp_set;
598
599 /* If there are no signals pending - return. */
600 if ((signo = firstsig(&tset)) == 0)
601 goto out;
602 } else {
603 KASSERT(sigismember(&sp->sp_set, signo));
604 }
605
606 sigdelset(&sp->sp_set, signo);
607 out:
608 count = siggetinfo(sp, out, signo);
609 if (count > 1)
610 sigaddset(&sp->sp_set, signo);
611 return signo;
612 }
613
614 /*
615 * sigput:
616 *
617 * Append a new ksiginfo element to the list of pending ksiginfo's.
618 */
619 static int
620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
621 {
622 ksiginfo_t *kp;
623
624 KASSERT(mutex_owned(p->p_lock));
625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
626
627 sigaddset(&sp->sp_set, ksi->ksi_signo);
628
629 /*
630 * If there is no siginfo, we are done.
631 */
632 if (KSI_EMPTY_P(ksi))
633 return 0;
634
635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
636
637 size_t count = 0;
638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
639 count++;
640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
641 continue;
642 if (kp->ksi_signo == ksi->ksi_signo) {
643 KSI_COPY(ksi, kp);
644 kp->ksi_flags |= KSI_QUEUED;
645 return 0;
646 }
647 }
648
649 if (count >= SIGQUEUE_MAX) {
650 #ifdef DIAGNOSTIC
651 printf("%s(%d): Signal queue is full signal=%d\n",
652 p->p_comm, p->p_pid, ksi->ksi_signo);
653 #endif
654 return EAGAIN;
655 }
656 ksi->ksi_flags |= KSI_QUEUED;
657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
658
659 return 0;
660 }
661
662 /*
663 * sigclear:
664 *
665 * Clear all pending signals in the specified set.
666 */
667 void
668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
669 {
670 ksiginfo_t *ksi, *next;
671
672 if (mask == NULL)
673 sigemptyset(&sp->sp_set);
674 else
675 sigminusset(mask, &sp->sp_set);
676
677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
683 }
684 }
685 }
686
687 /*
688 * sigclearall:
689 *
690 * Clear all pending signals in the specified set from a process and
691 * its LWPs.
692 */
693 void
694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
695 {
696 struct lwp *l;
697
698 KASSERT(mutex_owned(p->p_lock));
699
700 sigclear(&p->p_sigpend, mask, kq);
701
702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
703 sigclear(&l->l_sigpend, mask, kq);
704 }
705 }
706
707 /*
708 * sigispending:
709 *
710 * Return the first signal number if there are pending signals for the
711 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
712 * and that the signal has been posted to the appopriate queue before
713 * LW_PENDSIG is set.
714 *
715 * This should only ever be called with (l == curlwp), unless the
716 * result does not matter (procfs, sysctl).
717 */
718 int
719 sigispending(struct lwp *l, int signo)
720 {
721 struct proc *p = l->l_proc;
722 sigset_t tset;
723
724 membar_consumer();
725
726 tset = l->l_sigpend.sp_set;
727 sigplusset(&p->p_sigpend.sp_set, &tset);
728 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
729 sigminusset(&l->l_sigmask, &tset);
730
731 if (signo == 0) {
732 return firstsig(&tset);
733 }
734 return sigismember(&tset, signo) ? signo : 0;
735 }
736
737 void
738 getucontext(struct lwp *l, ucontext_t *ucp)
739 {
740 struct proc *p = l->l_proc;
741
742 KASSERT(mutex_owned(p->p_lock));
743
744 ucp->uc_flags = 0;
745 ucp->uc_link = l->l_ctxlink;
746 ucp->uc_sigmask = l->l_sigmask;
747 ucp->uc_flags |= _UC_SIGMASK;
748
749 /*
750 * The (unsupplied) definition of the `current execution stack'
751 * in the System V Interface Definition appears to allow returning
752 * the main context stack.
753 */
754 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
755 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
756 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
757 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
758 } else {
759 /* Simply copy alternate signal execution stack. */
760 ucp->uc_stack = l->l_sigstk;
761 }
762 ucp->uc_flags |= _UC_STACK;
763 mutex_exit(p->p_lock);
764 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
765 mutex_enter(p->p_lock);
766 }
767
768 int
769 setucontext(struct lwp *l, const ucontext_t *ucp)
770 {
771 struct proc *p = l->l_proc;
772 int error;
773
774 KASSERT(mutex_owned(p->p_lock));
775
776 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
777 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
778 if (error != 0)
779 return error;
780 }
781
782 mutex_exit(p->p_lock);
783 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
784 mutex_enter(p->p_lock);
785 if (error != 0)
786 return (error);
787
788 l->l_ctxlink = ucp->uc_link;
789
790 /*
791 * If there was stack information, update whether or not we are
792 * still running on an alternate signal stack.
793 */
794 if ((ucp->uc_flags & _UC_STACK) != 0) {
795 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
796 l->l_sigstk.ss_flags |= SS_ONSTACK;
797 else
798 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
799 }
800
801 return 0;
802 }
803
804 /*
805 * killpg1: common code for kill process group/broadcast kill.
806 */
807 int
808 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
809 {
810 struct proc *p, *cp;
811 kauth_cred_t pc;
812 struct pgrp *pgrp;
813 int nfound;
814 int signo = ksi->ksi_signo;
815
816 cp = l->l_proc;
817 pc = l->l_cred;
818 nfound = 0;
819
820 mutex_enter(&proc_lock);
821 if (all) {
822 /*
823 * Broadcast.
824 */
825 PROCLIST_FOREACH(p, &allproc) {
826 if (p->p_pid <= 1 || p == cp ||
827 (p->p_flag & PK_SYSTEM) != 0)
828 continue;
829 mutex_enter(p->p_lock);
830 if (kauth_authorize_process(pc,
831 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
832 NULL) == 0) {
833 nfound++;
834 if (signo)
835 kpsignal2(p, ksi);
836 }
837 mutex_exit(p->p_lock);
838 }
839 } else {
840 if (pgid == 0)
841 /* Zero pgid means send to my process group. */
842 pgrp = cp->p_pgrp;
843 else {
844 pgrp = pgrp_find(pgid);
845 if (pgrp == NULL)
846 goto out;
847 }
848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
849 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
850 continue;
851 mutex_enter(p->p_lock);
852 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
853 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
854 nfound++;
855 if (signo && P_ZOMBIE(p) == 0)
856 kpsignal2(p, ksi);
857 }
858 mutex_exit(p->p_lock);
859 }
860 }
861 out:
862 mutex_exit(&proc_lock);
863 return nfound ? 0 : ESRCH;
864 }
865
866 /*
867 * Send a signal to a process group. If checktty is set, limit to members
868 * which have a controlling terminal.
869 */
870 void
871 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
872 {
873 ksiginfo_t ksi;
874
875 KASSERT(!cpu_intr_p());
876 KASSERT(mutex_owned(&proc_lock));
877
878 KSI_INIT_EMPTY(&ksi);
879 ksi.ksi_signo = sig;
880 kpgsignal(pgrp, &ksi, NULL, checkctty);
881 }
882
883 void
884 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
885 {
886 struct proc *p;
887
888 KASSERT(!cpu_intr_p());
889 KASSERT(mutex_owned(&proc_lock));
890 KASSERT(pgrp != NULL);
891
892 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
893 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
894 kpsignal(p, ksi, data);
895 }
896
897 /*
898 * Send a signal caused by a trap to the current LWP. If it will be caught
899 * immediately, deliver it with correct code. Otherwise, post it normally.
900 */
901 void
902 trapsignal(struct lwp *l, ksiginfo_t *ksi)
903 {
904 struct proc *p;
905 struct sigacts *ps;
906 int signo = ksi->ksi_signo;
907 sigset_t *mask;
908 sig_t action;
909
910 KASSERT(KSI_TRAP_P(ksi));
911
912 ksi->ksi_lid = l->l_lid;
913 p = l->l_proc;
914
915 KASSERT(!cpu_intr_p());
916 mutex_enter(&proc_lock);
917 mutex_enter(p->p_lock);
918
919 repeat:
920 /*
921 * If we are exiting, demise now.
922 *
923 * This avoids notifying tracer and deadlocking.
924 */
925 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
926 mutex_exit(p->p_lock);
927 mutex_exit(&proc_lock);
928 lwp_exit(l);
929 panic("trapsignal");
930 /* NOTREACHED */
931 }
932
933 /*
934 * The process is already stopping.
935 */
936 if ((p->p_sflag & PS_STOPPING) != 0) {
937 mutex_exit(&proc_lock);
938 sigswitch_unlock_and_switch_away(l);
939 mutex_enter(&proc_lock);
940 mutex_enter(p->p_lock);
941 goto repeat;
942 }
943
944 mask = &l->l_sigmask;
945 ps = p->p_sigacts;
946 action = SIGACTION_PS(ps, signo).sa_handler;
947
948 if (ISSET(p->p_slflag, PSL_TRACED) &&
949 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
950 p->p_xsig != SIGKILL &&
951 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
952 p->p_xsig = signo;
953 p->p_sigctx.ps_faked = true;
954 p->p_sigctx.ps_lwp = ksi->ksi_lid;
955 p->p_sigctx.ps_info = ksi->ksi_info;
956 sigswitch(0, signo, true);
957
958 if (ktrpoint(KTR_PSIG)) {
959 if (p->p_emul->e_ktrpsig)
960 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
961 else
962 ktrpsig(signo, action, mask, ksi);
963 }
964 return;
965 }
966
967 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
968 const bool masked = sigismember(mask, signo);
969 if (caught && !masked) {
970 mutex_exit(&proc_lock);
971 l->l_ru.ru_nsignals++;
972 kpsendsig(l, ksi, mask);
973 mutex_exit(p->p_lock);
974
975 if (ktrpoint(KTR_PSIG)) {
976 if (p->p_emul->e_ktrpsig)
977 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
978 else
979 ktrpsig(signo, action, mask, ksi);
980 }
981 return;
982 }
983
984 /*
985 * If the signal is masked or ignored, then unmask it and
986 * reset it to the default action so that the process or
987 * its tracer will be notified.
988 */
989 const bool ignored = action == SIG_IGN;
990 if (masked || ignored) {
991 mutex_enter(&ps->sa_mutex);
992 sigdelset(mask, signo);
993 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
994 sigdelset(&p->p_sigctx.ps_sigignore, signo);
995 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
996 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
997 mutex_exit(&ps->sa_mutex);
998 }
999
1000 kpsignal2(p, ksi);
1001 mutex_exit(p->p_lock);
1002 mutex_exit(&proc_lock);
1003 }
1004
1005 /*
1006 * Fill in signal information and signal the parent for a child status change.
1007 */
1008 void
1009 child_psignal(struct proc *p, int mask)
1010 {
1011 ksiginfo_t ksi;
1012 struct proc *q;
1013 int xsig;
1014
1015 KASSERT(mutex_owned(&proc_lock));
1016 KASSERT(mutex_owned(p->p_lock));
1017
1018 xsig = p->p_xsig;
1019
1020 KSI_INIT(&ksi);
1021 ksi.ksi_signo = SIGCHLD;
1022 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1023 ksi.ksi_pid = p->p_pid;
1024 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1025 ksi.ksi_status = xsig;
1026 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1027 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1028
1029 q = p->p_pptr;
1030
1031 mutex_exit(p->p_lock);
1032 mutex_enter(q->p_lock);
1033
1034 if ((q->p_sflag & mask) == 0)
1035 kpsignal2(q, &ksi);
1036
1037 mutex_exit(q->p_lock);
1038 mutex_enter(p->p_lock);
1039 }
1040
1041 void
1042 psignal(struct proc *p, int signo)
1043 {
1044 ksiginfo_t ksi;
1045
1046 KASSERT(!cpu_intr_p());
1047 KASSERT(mutex_owned(&proc_lock));
1048
1049 KSI_INIT_EMPTY(&ksi);
1050 ksi.ksi_signo = signo;
1051 mutex_enter(p->p_lock);
1052 kpsignal2(p, &ksi);
1053 mutex_exit(p->p_lock);
1054 }
1055
1056 void
1057 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1058 {
1059 fdfile_t *ff;
1060 file_t *fp;
1061 fdtab_t *dt;
1062
1063 KASSERT(!cpu_intr_p());
1064 KASSERT(mutex_owned(&proc_lock));
1065
1066 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1067 size_t fd;
1068 filedesc_t *fdp = p->p_fd;
1069
1070 /* XXXSMP locking */
1071 ksi->ksi_fd = -1;
1072 dt = atomic_load_consume(&fdp->fd_dt);
1073 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1074 if ((ff = dt->dt_ff[fd]) == NULL)
1075 continue;
1076 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
1077 continue;
1078 if (fp->f_data == data) {
1079 ksi->ksi_fd = fd;
1080 break;
1081 }
1082 }
1083 }
1084 mutex_enter(p->p_lock);
1085 kpsignal2(p, ksi);
1086 mutex_exit(p->p_lock);
1087 }
1088
1089 /*
1090 * sigismasked:
1091 *
1092 * Returns true if signal is ignored or masked for the specified LWP.
1093 */
1094 int
1095 sigismasked(struct lwp *l, int sig)
1096 {
1097 struct proc *p = l->l_proc;
1098
1099 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1100 sigismember(&l->l_sigmask, sig);
1101 }
1102
1103 /*
1104 * sigpost:
1105 *
1106 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1107 * be able to take the signal.
1108 */
1109 static int
1110 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1111 {
1112 int rv, masked;
1113 struct proc *p = l->l_proc;
1114
1115 KASSERT(mutex_owned(p->p_lock));
1116
1117 /*
1118 * If the LWP is on the way out, sigclear() will be busy draining all
1119 * pending signals. Don't give it more.
1120 */
1121 if (l->l_stat == LSZOMB)
1122 return 0;
1123
1124 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1125
1126 lwp_lock(l);
1127 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1128 if ((prop & SA_KILL) != 0)
1129 l->l_flag &= ~LW_DBGSUSPEND;
1130 else {
1131 lwp_unlock(l);
1132 return 0;
1133 }
1134 }
1135
1136 /*
1137 * Have the LWP check for signals. This ensures that even if no LWP
1138 * is found to take the signal immediately, it should be taken soon.
1139 */
1140 signotify(l);
1141
1142 /*
1143 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1144 * Note: SIGKILL and SIGSTOP cannot be masked.
1145 */
1146 masked = sigismember(&l->l_sigmask, sig);
1147 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1148 lwp_unlock(l);
1149 return 0;
1150 }
1151
1152 /*
1153 * If killing the process, make it run fast.
1154 */
1155 if (__predict_false((prop & SA_KILL) != 0) &&
1156 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1157 KASSERT(l->l_class == SCHED_OTHER);
1158 lwp_changepri(l, MAXPRI_USER);
1159 }
1160
1161 /*
1162 * If the LWP is running or on a run queue, then we win. If it's
1163 * sleeping interruptably, wake it and make it take the signal. If
1164 * the sleep isn't interruptable, then the chances are it will get
1165 * to see the signal soon anyhow. If suspended, it can't take the
1166 * signal right now. If it's LWP private or for all LWPs, save it
1167 * for later; otherwise punt.
1168 */
1169 rv = 0;
1170
1171 switch (l->l_stat) {
1172 case LSRUN:
1173 case LSONPROC:
1174 rv = 1;
1175 break;
1176
1177 case LSSLEEP:
1178 if ((l->l_flag & LW_SINTR) != 0) {
1179 /* setrunnable() will release the lock. */
1180 setrunnable(l);
1181 return 1;
1182 }
1183 break;
1184
1185 case LSSUSPENDED:
1186 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1187 /* lwp_continue() will release the lock. */
1188 lwp_continue(l);
1189 return 1;
1190 }
1191 break;
1192
1193 case LSSTOP:
1194 if ((prop & SA_STOP) != 0)
1195 break;
1196
1197 /*
1198 * If the LWP is stopped and we are sending a continue
1199 * signal, then start it again.
1200 */
1201 if ((prop & SA_CONT) != 0) {
1202 if (l->l_wchan != NULL) {
1203 l->l_stat = LSSLEEP;
1204 p->p_nrlwps++;
1205 rv = 1;
1206 break;
1207 }
1208 /* setrunnable() will release the lock. */
1209 setrunnable(l);
1210 return 1;
1211 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1212 /* setrunnable() will release the lock. */
1213 setrunnable(l);
1214 return 1;
1215 }
1216 break;
1217
1218 default:
1219 break;
1220 }
1221
1222 lwp_unlock(l);
1223 return rv;
1224 }
1225
1226 /*
1227 * Notify an LWP that it has a pending signal.
1228 */
1229 void
1230 signotify(struct lwp *l)
1231 {
1232 KASSERT(lwp_locked(l, NULL));
1233
1234 l->l_flag |= LW_PENDSIG;
1235 lwp_need_userret(l);
1236 }
1237
1238 /*
1239 * Find an LWP within process p that is waiting on signal ksi, and hand
1240 * it on.
1241 */
1242 static int
1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1244 {
1245 struct lwp *l;
1246 int signo;
1247
1248 KASSERT(mutex_owned(p->p_lock));
1249
1250 signo = ksi->ksi_signo;
1251
1252 if (ksi->ksi_lid != 0) {
1253 /*
1254 * Signal came via _lwp_kill(). Find the LWP and see if
1255 * it's interested.
1256 */
1257 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1258 return 0;
1259 if (l->l_sigwaited == NULL ||
1260 !sigismember(&l->l_sigwaitset, signo))
1261 return 0;
1262 } else {
1263 /*
1264 * Look for any LWP that may be interested.
1265 */
1266 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1267 KASSERT(l->l_sigwaited != NULL);
1268 if (sigismember(&l->l_sigwaitset, signo))
1269 break;
1270 }
1271 }
1272
1273 if (l != NULL) {
1274 l->l_sigwaited->ksi_info = ksi->ksi_info;
1275 l->l_sigwaited = NULL;
1276 LIST_REMOVE(l, l_sigwaiter);
1277 cv_signal(&l->l_sigcv);
1278 return 1;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * Send the signal to the process. If the signal has an action, the action
1286 * is usually performed by the target process rather than the caller; we add
1287 * the signal to the set of pending signals for the process.
1288 *
1289 * Exceptions:
1290 * o When a stop signal is sent to a sleeping process that takes the
1291 * default action, the process is stopped without awakening it.
1292 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1293 * regardless of the signal action (eg, blocked or ignored).
1294 *
1295 * Other ignored signals are discarded immediately.
1296 */
1297 int
1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1299 {
1300 int prop, signo = ksi->ksi_signo;
1301 struct lwp *l = NULL;
1302 ksiginfo_t *kp;
1303 lwpid_t lid;
1304 sig_t action;
1305 bool toall;
1306 bool traced;
1307 int error = 0;
1308
1309 KASSERT(!cpu_intr_p());
1310 KASSERT(mutex_owned(&proc_lock));
1311 KASSERT(mutex_owned(p->p_lock));
1312 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1313 KASSERT(signo > 0 && signo < NSIG);
1314
1315 /*
1316 * If the process is being created by fork, is a zombie or is
1317 * exiting, then just drop the signal here and bail out.
1318 */
1319 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1320 return 0;
1321
1322 /*
1323 * Notify any interested parties of the signal.
1324 */
1325 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1326
1327 /*
1328 * Some signals including SIGKILL must act on the entire process.
1329 */
1330 kp = NULL;
1331 prop = sigprop[signo];
1332 toall = ((prop & SA_TOALL) != 0);
1333 lid = toall ? 0 : ksi->ksi_lid;
1334 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1335 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1336
1337 /*
1338 * If proc is traced, always give parent a chance.
1339 */
1340 if (traced) {
1341 action = SIG_DFL;
1342
1343 if (lid == 0) {
1344 /*
1345 * If the process is being traced and the signal
1346 * is being caught, make sure to save any ksiginfo.
1347 */
1348 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1349 goto discard;
1350 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1351 goto out;
1352 }
1353 } else {
1354
1355 /*
1356 * If the signal is being ignored, then drop it. Note: we
1357 * don't set SIGCONT in ps_sigignore, and if it is set to
1358 * SIG_IGN, action will be SIG_DFL here.
1359 */
1360 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1361 goto discard;
1362
1363 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1364 action = SIG_CATCH;
1365 else {
1366 action = SIG_DFL;
1367
1368 /*
1369 * If sending a tty stop signal to a member of an
1370 * orphaned process group, discard the signal here if
1371 * the action is default; don't stop the process below
1372 * if sleeping, and don't clear any pending SIGCONT.
1373 */
1374 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1375 goto discard;
1376
1377 if (prop & SA_KILL && p->p_nice > NZERO)
1378 p->p_nice = NZERO;
1379 }
1380 }
1381
1382 /*
1383 * If stopping or continuing a process, discard any pending
1384 * signals that would do the inverse.
1385 */
1386 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1387 ksiginfoq_t kq;
1388
1389 ksiginfo_queue_init(&kq);
1390 if ((prop & SA_CONT) != 0)
1391 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1392 if ((prop & SA_STOP) != 0)
1393 sigclear(&p->p_sigpend, &contsigmask, &kq);
1394 ksiginfo_queue_drain(&kq); /* XXXSMP */
1395 }
1396
1397 /*
1398 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1399 * please!), check if any LWPs are waiting on it. If yes, pass on
1400 * the signal info. The signal won't be processed further here.
1401 */
1402 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1403 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1404 sigunwait(p, ksi))
1405 goto discard;
1406
1407 /*
1408 * XXXSMP Should be allocated by the caller, we're holding locks
1409 * here.
1410 */
1411 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1412 goto discard;
1413
1414 /*
1415 * LWP private signals are easy - just find the LWP and post
1416 * the signal to it.
1417 */
1418 if (lid != 0) {
1419 l = lwp_find(p, lid);
1420 if (l != NULL) {
1421 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1422 goto out;
1423 membar_producer();
1424 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1425 signo = -1;
1426 }
1427 goto out;
1428 }
1429
1430 /*
1431 * Some signals go to all LWPs, even if posted with _lwp_kill()
1432 * or for an SA process.
1433 */
1434 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1435 if (traced)
1436 goto deliver;
1437
1438 /*
1439 * If SIGCONT is default (or ignored) and process is
1440 * asleep, we are finished; the process should not
1441 * be awakened.
1442 */
1443 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1444 goto out;
1445 } else {
1446 /*
1447 * Process is stopped or stopping.
1448 * - If traced, then no action is needed, unless killing.
1449 * - Run the process only if sending SIGCONT or SIGKILL.
1450 */
1451 if (traced && signo != SIGKILL) {
1452 goto out;
1453 }
1454 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1455 /*
1456 * Re-adjust p_nstopchild if the process was
1457 * stopped but not yet collected by its parent.
1458 */
1459 if (p->p_stat == SSTOP && !p->p_waited)
1460 p->p_pptr->p_nstopchild--;
1461 p->p_stat = SACTIVE;
1462 p->p_sflag &= ~PS_STOPPING;
1463 if (traced) {
1464 KASSERT(signo == SIGKILL);
1465 goto deliver;
1466 }
1467 /*
1468 * Do not make signal pending if SIGCONT is default.
1469 *
1470 * If the process catches SIGCONT, let it handle the
1471 * signal itself (if waiting on event - process runs,
1472 * otherwise continues sleeping).
1473 */
1474 if ((prop & SA_CONT) != 0) {
1475 p->p_xsig = SIGCONT;
1476 p->p_sflag |= PS_CONTINUED;
1477 child_psignal(p, 0);
1478 if (action == SIG_DFL) {
1479 KASSERT(signo != SIGKILL);
1480 goto deliver;
1481 }
1482 }
1483 } else if ((prop & SA_STOP) != 0) {
1484 /*
1485 * Already stopped, don't need to stop again.
1486 * (If we did the shell could get confused.)
1487 */
1488 goto out;
1489 }
1490 }
1491 /*
1492 * Make signal pending.
1493 */
1494 KASSERT(!traced);
1495 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1496 goto out;
1497 deliver:
1498 /*
1499 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1500 * visible on the per process list (for sigispending()). This
1501 * is unlikely to be needed in practice, but...
1502 */
1503 membar_producer();
1504
1505 /*
1506 * Try to find an LWP that can take the signal.
1507 */
1508 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1509 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1510 break;
1511 }
1512 signo = -1;
1513 out:
1514 /*
1515 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1516 * with locks held. The caller should take care of this.
1517 */
1518 ksiginfo_free(kp);
1519 if (signo == -1)
1520 return error;
1521 discard:
1522 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1523 return error;
1524 }
1525
1526 void
1527 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1528 {
1529 struct proc *p = l->l_proc;
1530
1531 KASSERT(mutex_owned(p->p_lock));
1532 (*p->p_emul->e_sendsig)(ksi, mask);
1533 }
1534
1535 /*
1536 * Stop any LWPs sleeping interruptably.
1537 */
1538 static void
1539 proc_stop_lwps(struct proc *p)
1540 {
1541 struct lwp *l;
1542
1543 KASSERT(mutex_owned(p->p_lock));
1544 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1545
1546 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1547 lwp_lock(l);
1548 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1549 l->l_stat = LSSTOP;
1550 p->p_nrlwps--;
1551 }
1552 lwp_unlock(l);
1553 }
1554 }
1555
1556 /*
1557 * Finish stopping of a process. Mark it stopped and notify the parent.
1558 *
1559 * Drop p_lock briefly if ppsig is true.
1560 */
1561 static void
1562 proc_stop_done(struct proc *p, int ppmask)
1563 {
1564
1565 KASSERT(mutex_owned(&proc_lock));
1566 KASSERT(mutex_owned(p->p_lock));
1567 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1568 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1569
1570 p->p_sflag &= ~PS_STOPPING;
1571 p->p_stat = SSTOP;
1572 p->p_waited = 0;
1573 p->p_pptr->p_nstopchild++;
1574
1575 /* child_psignal drops p_lock briefly. */
1576 child_psignal(p, ppmask);
1577 cv_broadcast(&p->p_pptr->p_waitcv);
1578 }
1579
1580 /*
1581 * Stop the current process and switch away to the debugger notifying
1582 * an event specific to a traced process only.
1583 */
1584 void
1585 eventswitch(int code, int pe_report_event, int entity)
1586 {
1587 struct lwp *l = curlwp;
1588 struct proc *p = l->l_proc;
1589 struct sigacts *ps;
1590 sigset_t *mask;
1591 sig_t action;
1592 ksiginfo_t ksi;
1593 const int signo = SIGTRAP;
1594
1595 KASSERT(mutex_owned(&proc_lock));
1596 KASSERT(mutex_owned(p->p_lock));
1597 KASSERT(p->p_pptr != initproc);
1598 KASSERT(l->l_stat == LSONPROC);
1599 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1600 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1601 KASSERT(p->p_nrlwps > 0);
1602 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1603 (code == TRAP_EXEC));
1604 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1605 KASSERT((code != TRAP_LWP) || (entity > 0));
1606
1607 repeat:
1608 /*
1609 * If we are exiting, demise now.
1610 *
1611 * This avoids notifying tracer and deadlocking.
1612 */
1613 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1614 mutex_exit(p->p_lock);
1615 mutex_exit(&proc_lock);
1616
1617 if (pe_report_event == PTRACE_LWP_EXIT) {
1618 /* Avoid double lwp_exit() and panic. */
1619 return;
1620 }
1621
1622 lwp_exit(l);
1623 panic("eventswitch");
1624 /* NOTREACHED */
1625 }
1626
1627 /*
1628 * If we are no longer traced, abandon this event signal.
1629 *
1630 * This avoids killing a process after detaching the debugger.
1631 */
1632 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1633 mutex_exit(p->p_lock);
1634 mutex_exit(&proc_lock);
1635 return;
1636 }
1637
1638 /*
1639 * If there's a pending SIGKILL process it immediately.
1640 */
1641 if (p->p_xsig == SIGKILL ||
1642 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1643 mutex_exit(p->p_lock);
1644 mutex_exit(&proc_lock);
1645 return;
1646 }
1647
1648 /*
1649 * The process is already stopping.
1650 */
1651 if ((p->p_sflag & PS_STOPPING) != 0) {
1652 mutex_exit(&proc_lock);
1653 sigswitch_unlock_and_switch_away(l);
1654 mutex_enter(&proc_lock);
1655 mutex_enter(p->p_lock);
1656 goto repeat;
1657 }
1658
1659 KSI_INIT_TRAP(&ksi);
1660 ksi.ksi_lid = l->l_lid;
1661 ksi.ksi_signo = signo;
1662 ksi.ksi_code = code;
1663 ksi.ksi_pe_report_event = pe_report_event;
1664
1665 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1666 ksi.ksi_pe_other_pid = entity;
1667
1668 /* Needed for ktrace */
1669 ps = p->p_sigacts;
1670 action = SIGACTION_PS(ps, signo).sa_handler;
1671 mask = &l->l_sigmask;
1672
1673 p->p_xsig = signo;
1674 p->p_sigctx.ps_faked = true;
1675 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1676 p->p_sigctx.ps_info = ksi.ksi_info;
1677
1678 sigswitch(0, signo, true);
1679
1680 if (code == TRAP_CHLD) {
1681 mutex_enter(&proc_lock);
1682 while (l->l_vforkwaiting)
1683 cv_wait(&l->l_waitcv, &proc_lock);
1684 mutex_exit(&proc_lock);
1685 }
1686
1687 if (ktrpoint(KTR_PSIG)) {
1688 if (p->p_emul->e_ktrpsig)
1689 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1690 else
1691 ktrpsig(signo, action, mask, &ksi);
1692 }
1693 }
1694
1695 void
1696 eventswitchchild(struct proc *p, int code, int pe_report_event)
1697 {
1698 mutex_enter(&proc_lock);
1699 mutex_enter(p->p_lock);
1700 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
1701 (PSL_TRACED|PSL_TRACEDCHILD)) {
1702 mutex_exit(p->p_lock);
1703 mutex_exit(&proc_lock);
1704 return;
1705 }
1706 eventswitch(code, pe_report_event, p->p_oppid);
1707 }
1708
1709 /*
1710 * Stop the current process and switch away when being stopped or traced.
1711 */
1712 static void
1713 sigswitch(int ppmask, int signo, bool proc_lock_held)
1714 {
1715 struct lwp *l = curlwp;
1716 struct proc *p = l->l_proc;
1717
1718 KASSERT(mutex_owned(p->p_lock));
1719 KASSERT(l->l_stat == LSONPROC);
1720 KASSERT(p->p_nrlwps > 0);
1721
1722 if (proc_lock_held) {
1723 KASSERT(mutex_owned(&proc_lock));
1724 } else {
1725 KASSERT(!mutex_owned(&proc_lock));
1726 }
1727
1728 /*
1729 * On entry we know that the process needs to stop. If it's
1730 * the result of a 'sideways' stop signal that has been sourced
1731 * through issignal(), then stop other LWPs in the process too.
1732 */
1733 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1734 KASSERT(signo != 0);
1735 proc_stop(p, signo);
1736 KASSERT(p->p_nrlwps > 0);
1737 }
1738
1739 /*
1740 * If we are the last live LWP, and the stop was a result of
1741 * a new signal, then signal the parent.
1742 */
1743 if ((p->p_sflag & PS_STOPPING) != 0) {
1744 if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
1745 mutex_exit(p->p_lock);
1746 mutex_enter(&proc_lock);
1747 mutex_enter(p->p_lock);
1748 }
1749
1750 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1751 /*
1752 * Note that proc_stop_done() can drop
1753 * p->p_lock briefly.
1754 */
1755 proc_stop_done(p, ppmask);
1756 }
1757
1758 mutex_exit(&proc_lock);
1759 }
1760
1761 sigswitch_unlock_and_switch_away(l);
1762 }
1763
1764 /*
1765 * Unlock and switch away.
1766 */
1767 static void
1768 sigswitch_unlock_and_switch_away(struct lwp *l)
1769 {
1770 struct proc *p;
1771 int biglocks;
1772
1773 p = l->l_proc;
1774
1775 KASSERT(mutex_owned(p->p_lock));
1776 KASSERT(!mutex_owned(&proc_lock));
1777
1778 KASSERT(l->l_stat == LSONPROC);
1779 KASSERT(p->p_nrlwps > 0);
1780
1781 KERNEL_UNLOCK_ALL(l, &biglocks);
1782 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1783 p->p_nrlwps--;
1784 lwp_lock(l);
1785 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1786 l->l_stat = LSSTOP;
1787 lwp_unlock(l);
1788 }
1789
1790 mutex_exit(p->p_lock);
1791 lwp_lock(l);
1792 spc_lock(l->l_cpu);
1793 mi_switch(l);
1794 KERNEL_LOCK(biglocks, l);
1795 }
1796
1797 /*
1798 * Check for a signal from the debugger.
1799 */
1800 static int
1801 sigchecktrace(void)
1802 {
1803 struct lwp *l = curlwp;
1804 struct proc *p = l->l_proc;
1805 int signo;
1806
1807 KASSERT(mutex_owned(p->p_lock));
1808
1809 /* If there's a pending SIGKILL, process it immediately. */
1810 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1811 return 0;
1812
1813 /*
1814 * If we are no longer being traced, or the parent didn't
1815 * give us a signal, or we're stopping, look for more signals.
1816 */
1817 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1818 (p->p_sflag & PS_STOPPING) != 0)
1819 return 0;
1820
1821 /*
1822 * If the new signal is being masked, look for other signals.
1823 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1824 */
1825 signo = p->p_xsig;
1826 p->p_xsig = 0;
1827 if (sigismember(&l->l_sigmask, signo)) {
1828 signo = 0;
1829 }
1830 return signo;
1831 }
1832
1833 /*
1834 * If the current process has received a signal (should be caught or cause
1835 * termination, should interrupt current syscall), return the signal number.
1836 *
1837 * Stop signals with default action are processed immediately, then cleared;
1838 * they aren't returned. This is checked after each entry to the system for
1839 * a syscall or trap.
1840 *
1841 * We will also return -1 if the process is exiting and the current LWP must
1842 * follow suit.
1843 */
1844 int
1845 issignal(struct lwp *l)
1846 {
1847 struct proc *p;
1848 int siglwp, signo, prop;
1849 sigpend_t *sp;
1850 sigset_t ss;
1851 bool traced;
1852
1853 p = l->l_proc;
1854 sp = NULL;
1855 signo = 0;
1856
1857 KASSERT(p == curproc);
1858 KASSERT(mutex_owned(p->p_lock));
1859
1860 for (;;) {
1861 /* Discard any signals that we have decided not to take. */
1862 if (signo != 0) {
1863 (void)sigget(sp, NULL, signo, NULL);
1864 }
1865
1866 /*
1867 * If the process is stopped/stopping, then stop ourselves
1868 * now that we're on the kernel/userspace boundary. When
1869 * we awaken, check for a signal from the debugger.
1870 */
1871 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1872 sigswitch_unlock_and_switch_away(l);
1873 mutex_enter(p->p_lock);
1874 continue;
1875 } else if (p->p_stat == SACTIVE)
1876 signo = sigchecktrace();
1877 else
1878 signo = 0;
1879
1880 /* Signals from the debugger are "out of band". */
1881 sp = NULL;
1882
1883 /*
1884 * If the debugger didn't provide a signal, find a pending
1885 * signal from our set. Check per-LWP signals first, and
1886 * then per-process.
1887 */
1888 if (signo == 0) {
1889 sp = &l->l_sigpend;
1890 ss = sp->sp_set;
1891 siglwp = l->l_lid;
1892 if ((p->p_lflag & PL_PPWAIT) != 0)
1893 sigminusset(&vforksigmask, &ss);
1894 sigminusset(&l->l_sigmask, &ss);
1895
1896 if ((signo = firstsig(&ss)) == 0) {
1897 sp = &p->p_sigpend;
1898 ss = sp->sp_set;
1899 siglwp = 0;
1900 if ((p->p_lflag & PL_PPWAIT) != 0)
1901 sigminusset(&vforksigmask, &ss);
1902 sigminusset(&l->l_sigmask, &ss);
1903
1904 if ((signo = firstsig(&ss)) == 0) {
1905 /*
1906 * No signal pending - clear the
1907 * indicator and bail out.
1908 */
1909 lwp_lock(l);
1910 l->l_flag &= ~LW_PENDSIG;
1911 lwp_unlock(l);
1912 sp = NULL;
1913 break;
1914 }
1915 }
1916 }
1917
1918 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1919 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1920
1921 if (sp) {
1922 /* Overwrite process' signal context to correspond
1923 * to the currently reported LWP. This is necessary
1924 * for PT_GET_SIGINFO to report the correct signal when
1925 * multiple LWPs have pending signals. We do this only
1926 * when the signal comes from the queue, for signals
1927 * created by the debugger we assume it set correct
1928 * siginfo.
1929 */
1930 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1931 if (ksi) {
1932 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1933 p->p_sigctx.ps_info = ksi->ksi_info;
1934 } else {
1935 p->p_sigctx.ps_lwp = siglwp;
1936 memset(&p->p_sigctx.ps_info, 0,
1937 sizeof(p->p_sigctx.ps_info));
1938 p->p_sigctx.ps_info._signo = signo;
1939 p->p_sigctx.ps_info._code = SI_NOINFO;
1940 }
1941 }
1942
1943 /*
1944 * We should see pending but ignored signals only if
1945 * we are being traced.
1946 */
1947 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1948 !traced) {
1949 /* Discard the signal. */
1950 continue;
1951 }
1952
1953 /*
1954 * If traced, always stop, and stay stopped until released
1955 * by the debugger. If the our parent is our debugger waiting
1956 * for us and we vforked, don't hang as we could deadlock.
1957 */
1958 if (traced && signo != SIGKILL &&
1959 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1960 (p->p_pptr == p->p_opptr))) {
1961 /*
1962 * Take the signal, but don't remove it from the
1963 * siginfo queue, because the debugger can send
1964 * it later.
1965 */
1966 if (sp)
1967 sigdelset(&sp->sp_set, signo);
1968 p->p_xsig = signo;
1969
1970 /* Handling of signal trace */
1971 sigswitch(0, signo, false);
1972 mutex_enter(p->p_lock);
1973
1974 /* Check for a signal from the debugger. */
1975 if ((signo = sigchecktrace()) == 0)
1976 continue;
1977
1978 /* Signals from the debugger are "out of band". */
1979 sp = NULL;
1980 }
1981
1982 prop = sigprop[signo];
1983
1984 /*
1985 * Decide whether the signal should be returned.
1986 */
1987 switch ((long)SIGACTION(p, signo).sa_handler) {
1988 case (long)SIG_DFL:
1989 /*
1990 * Don't take default actions on system processes.
1991 */
1992 if (p->p_pid <= 1) {
1993 #ifdef DIAGNOSTIC
1994 /*
1995 * Are you sure you want to ignore SIGSEGV
1996 * in init? XXX
1997 */
1998 printf_nolog("Process (pid %d) got sig %d\n",
1999 p->p_pid, signo);
2000 #endif
2001 continue;
2002 }
2003
2004 /*
2005 * If there is a pending stop signal to process with
2006 * default action, stop here, then clear the signal.
2007 * However, if process is member of an orphaned
2008 * process group, ignore tty stop signals.
2009 */
2010 if (prop & SA_STOP) {
2011 /*
2012 * XXX Don't hold proc_lock for p_lflag,
2013 * but it's not a big deal.
2014 */
2015 if ((traced &&
2016 !(ISSET(p->p_lflag, PL_PPWAIT) &&
2017 (p->p_pptr == p->p_opptr))) ||
2018 ((p->p_lflag & PL_ORPHANPG) != 0 &&
2019 prop & SA_TTYSTOP)) {
2020 /* Ignore the signal. */
2021 continue;
2022 }
2023 /* Take the signal. */
2024 (void)sigget(sp, NULL, signo, NULL);
2025 p->p_xsig = signo;
2026 p->p_sflag &= ~PS_CONTINUED;
2027 signo = 0;
2028 sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2029 mutex_enter(p->p_lock);
2030 } else if (prop & SA_IGNORE) {
2031 /*
2032 * Except for SIGCONT, shouldn't get here.
2033 * Default action is to ignore; drop it.
2034 */
2035 continue;
2036 }
2037 break;
2038
2039 case (long)SIG_IGN:
2040 #ifdef DEBUG_ISSIGNAL
2041 /*
2042 * Masking above should prevent us ever trying
2043 * to take action on an ignored signal other
2044 * than SIGCONT, unless process is traced.
2045 */
2046 if ((prop & SA_CONT) == 0 && !traced)
2047 printf_nolog("issignal\n");
2048 #endif
2049 continue;
2050
2051 default:
2052 /*
2053 * This signal has an action, let postsig() process
2054 * it.
2055 */
2056 break;
2057 }
2058
2059 break;
2060 }
2061
2062 l->l_sigpendset = sp;
2063 return signo;
2064 }
2065
2066 /*
2067 * Take the action for the specified signal
2068 * from the current set of pending signals.
2069 */
2070 void
2071 postsig(int signo)
2072 {
2073 struct lwp *l;
2074 struct proc *p;
2075 struct sigacts *ps;
2076 sig_t action;
2077 sigset_t *returnmask;
2078 ksiginfo_t ksi;
2079
2080 l = curlwp;
2081 p = l->l_proc;
2082 ps = p->p_sigacts;
2083
2084 KASSERT(mutex_owned(p->p_lock));
2085 KASSERT(signo > 0);
2086
2087 /*
2088 * Set the new mask value and also defer further occurrences of this
2089 * signal.
2090 *
2091 * Special case: user has done a sigsuspend. Here the current mask is
2092 * not of interest, but rather the mask from before the sigsuspend is
2093 * what we want restored after the signal processing is completed.
2094 */
2095 if (l->l_sigrestore) {
2096 returnmask = &l->l_sigoldmask;
2097 l->l_sigrestore = 0;
2098 } else
2099 returnmask = &l->l_sigmask;
2100
2101 /*
2102 * Commit to taking the signal before releasing the mutex.
2103 */
2104 action = SIGACTION_PS(ps, signo).sa_handler;
2105 l->l_ru.ru_nsignals++;
2106 if (l->l_sigpendset == NULL) {
2107 /* From the debugger */
2108 if (p->p_sigctx.ps_faked &&
2109 signo == p->p_sigctx.ps_info._signo) {
2110 KSI_INIT(&ksi);
2111 ksi.ksi_info = p->p_sigctx.ps_info;
2112 ksi.ksi_lid = p->p_sigctx.ps_lwp;
2113 p->p_sigctx.ps_faked = false;
2114 } else {
2115 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2116 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
2117 }
2118 } else
2119 sigget(l->l_sigpendset, &ksi, signo, NULL);
2120
2121 if (ktrpoint(KTR_PSIG)) {
2122 mutex_exit(p->p_lock);
2123 if (p->p_emul->e_ktrpsig)
2124 p->p_emul->e_ktrpsig(signo, action,
2125 returnmask, &ksi);
2126 else
2127 ktrpsig(signo, action, returnmask, &ksi);
2128 mutex_enter(p->p_lock);
2129 }
2130
2131 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2132
2133 if (action == SIG_DFL) {
2134 /*
2135 * Default action, where the default is to kill
2136 * the process. (Other cases were ignored above.)
2137 */
2138 sigexit(l, signo);
2139 return;
2140 }
2141
2142 /*
2143 * If we get here, the signal must be caught.
2144 */
2145 #ifdef DIAGNOSTIC
2146 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2147 panic("postsig action");
2148 #endif
2149
2150 kpsendsig(l, &ksi, returnmask);
2151 }
2152
2153 /*
2154 * sendsig:
2155 *
2156 * Default signal delivery method for NetBSD.
2157 */
2158 void
2159 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2160 {
2161 struct sigacts *sa;
2162 int sig;
2163
2164 sig = ksi->ksi_signo;
2165 sa = curproc->p_sigacts;
2166
2167 switch (sa->sa_sigdesc[sig].sd_vers) {
2168 case 0:
2169 case 1:
2170 /* Compat for 1.6 and earlier. */
2171 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2172 break);
2173 return;
2174 case 2:
2175 case 3:
2176 sendsig_siginfo(ksi, mask);
2177 return;
2178 default:
2179 break;
2180 }
2181
2182 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2183 sigexit(curlwp, SIGILL);
2184 }
2185
2186 /*
2187 * sendsig_reset:
2188 *
2189 * Reset the signal action. Called from emulation specific sendsig()
2190 * before unlocking to deliver the signal.
2191 */
2192 void
2193 sendsig_reset(struct lwp *l, int signo)
2194 {
2195 struct proc *p = l->l_proc;
2196 struct sigacts *ps = p->p_sigacts;
2197
2198 KASSERT(mutex_owned(p->p_lock));
2199
2200 p->p_sigctx.ps_lwp = 0;
2201 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2202
2203 mutex_enter(&ps->sa_mutex);
2204 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2205 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2206 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2207 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2208 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2209 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2210 }
2211 mutex_exit(&ps->sa_mutex);
2212 }
2213
2214 /*
2215 * Kill the current process for stated reason.
2216 */
2217 void
2218 killproc(struct proc *p, const char *why)
2219 {
2220
2221 KASSERT(mutex_owned(&proc_lock));
2222
2223 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2224 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2225 psignal(p, SIGKILL);
2226 }
2227
2228 /*
2229 * Force the current process to exit with the specified signal, dumping core
2230 * if appropriate. We bypass the normal tests for masked and caught
2231 * signals, allowing unrecoverable failures to terminate the process without
2232 * changing signal state. Mark the accounting record with the signal
2233 * termination. If dumping core, save the signal number for the debugger.
2234 * Calls exit and does not return.
2235 */
2236 void
2237 sigexit(struct lwp *l, int signo)
2238 {
2239 int exitsig, error, docore;
2240 struct proc *p;
2241 struct lwp *t;
2242
2243 p = l->l_proc;
2244
2245 KASSERT(mutex_owned(p->p_lock));
2246 KERNEL_UNLOCK_ALL(l, NULL);
2247
2248 /*
2249 * Don't permit coredump() multiple times in the same process.
2250 * Call back into sigexit, where we will be suspended until
2251 * the deed is done. Note that this is a recursive call, but
2252 * LW_WCORE will prevent us from coming back this way.
2253 */
2254 if ((p->p_sflag & PS_WCORE) != 0) {
2255 lwp_lock(l);
2256 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2257 lwp_unlock(l);
2258 mutex_exit(p->p_lock);
2259 lwp_userret(l);
2260 panic("sigexit 1");
2261 /* NOTREACHED */
2262 }
2263
2264 /* If process is already on the way out, then bail now. */
2265 if ((p->p_sflag & PS_WEXIT) != 0) {
2266 mutex_exit(p->p_lock);
2267 lwp_exit(l);
2268 panic("sigexit 2");
2269 /* NOTREACHED */
2270 }
2271
2272 /*
2273 * Prepare all other LWPs for exit. If dumping core, suspend them
2274 * so that their registers are available long enough to be dumped.
2275 */
2276 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2277 p->p_sflag |= PS_WCORE;
2278 for (;;) {
2279 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2280 lwp_lock(t);
2281 if (t == l) {
2282 t->l_flag &=
2283 ~(LW_WSUSPEND | LW_DBGSUSPEND);
2284 lwp_unlock(t);
2285 continue;
2286 }
2287 t->l_flag |= (LW_WCORE | LW_WEXIT);
2288 lwp_suspend(l, t);
2289 }
2290
2291 if (p->p_nrlwps == 1)
2292 break;
2293
2294 /*
2295 * Kick any LWPs sitting in lwp_wait1(), and wait
2296 * for everyone else to stop before proceeding.
2297 */
2298 p->p_nlwpwait++;
2299 cv_broadcast(&p->p_lwpcv);
2300 cv_wait(&p->p_lwpcv, p->p_lock);
2301 p->p_nlwpwait--;
2302 }
2303 }
2304
2305 exitsig = signo;
2306 p->p_acflag |= AXSIG;
2307 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2308 p->p_sigctx.ps_info._signo = signo;
2309 p->p_sigctx.ps_info._code = SI_NOINFO;
2310
2311 if (docore) {
2312 mutex_exit(p->p_lock);
2313 MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2314
2315 if (kern_logsigexit) {
2316 int uid = l->l_cred ?
2317 (int)kauth_cred_geteuid(l->l_cred) : -1;
2318
2319 if (error)
2320 log(LOG_INFO, lognocoredump, p->p_pid,
2321 p->p_comm, uid, signo, error);
2322 else
2323 log(LOG_INFO, logcoredump, p->p_pid,
2324 p->p_comm, uid, signo);
2325 }
2326
2327 #ifdef PAX_SEGVGUARD
2328 rw_enter(&exec_lock, RW_WRITER);
2329 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2330 rw_exit(&exec_lock);
2331 #endif /* PAX_SEGVGUARD */
2332
2333 /* Acquire the sched state mutex. exit1() will release it. */
2334 mutex_enter(p->p_lock);
2335 if (error == 0)
2336 p->p_sflag |= PS_COREDUMP;
2337 }
2338
2339 /* No longer dumping core. */
2340 p->p_sflag &= ~PS_WCORE;
2341
2342 exit1(l, 0, exitsig);
2343 /* NOTREACHED */
2344 }
2345
2346 /*
2347 * Since the "real" code may (or may not) be present in loadable module,
2348 * we provide routines here which calls the module hooks.
2349 */
2350 int
2351 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2352 {
2353 int retval;
2354
2355 MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2356 return retval;
2357 }
2358
2359 int
2360 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
2361 {
2362 int retval;
2363
2364 MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
2365 return retval;
2366 }
2367
2368 #ifdef _LP64
2369 int
2370 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
2371 {
2372 int retval;
2373
2374 MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
2375 return retval;
2376 }
2377 #endif
2378
2379 /*
2380 * Put process 'p' into the stopped state and optionally, notify the parent.
2381 */
2382 void
2383 proc_stop(struct proc *p, int signo)
2384 {
2385 struct lwp *l;
2386
2387 KASSERT(mutex_owned(p->p_lock));
2388
2389 /*
2390 * First off, set the stopping indicator and bring all sleeping
2391 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2392 * unlock between here and the p->p_nrlwps check below.
2393 */
2394 p->p_sflag |= PS_STOPPING;
2395 membar_producer();
2396
2397 proc_stop_lwps(p);
2398
2399 /*
2400 * If there are no LWPs available to take the signal, then we
2401 * signal the parent process immediately. Otherwise, the last
2402 * LWP to stop will take care of it.
2403 */
2404
2405 if (p->p_nrlwps == 0) {
2406 proc_stop_done(p, PS_NOCLDSTOP);
2407 } else {
2408 /*
2409 * Have the remaining LWPs come to a halt, and trigger
2410 * proc_stop_callout() to ensure that they do.
2411 */
2412 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2413 sigpost(l, SIG_DFL, SA_STOP, signo);
2414 }
2415 callout_schedule(&proc_stop_ch, 1);
2416 }
2417 }
2418
2419 /*
2420 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2421 * but wait for them to come to a halt at the kernel-user boundary. This is
2422 * to allow LWPs to release any locks that they may hold before stopping.
2423 *
2424 * Non-interruptable sleeps can be long, and there is the potential for an
2425 * LWP to begin sleeping interruptably soon after the process has been set
2426 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2427 * stopping, and so complete halt of the process and the return of status
2428 * information to the parent could be delayed indefinitely.
2429 *
2430 * To handle this race, proc_stop_callout() runs once per tick while there
2431 * are stopping processes in the system. It sets LWPs that are sleeping
2432 * interruptably into the LSSTOP state.
2433 *
2434 * Note that we are not concerned about keeping all LWPs stopped while the
2435 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2436 * What we do need to ensure is that all LWPs in a stopping process have
2437 * stopped at least once, so that notification can be sent to the parent
2438 * process.
2439 */
2440 static void
2441 proc_stop_callout(void *cookie)
2442 {
2443 bool more, restart;
2444 struct proc *p;
2445
2446 (void)cookie;
2447
2448 do {
2449 restart = false;
2450 more = false;
2451
2452 mutex_enter(&proc_lock);
2453 PROCLIST_FOREACH(p, &allproc) {
2454 mutex_enter(p->p_lock);
2455
2456 if ((p->p_sflag & PS_STOPPING) == 0) {
2457 mutex_exit(p->p_lock);
2458 continue;
2459 }
2460
2461 /* Stop any LWPs sleeping interruptably. */
2462 proc_stop_lwps(p);
2463 if (p->p_nrlwps == 0) {
2464 /*
2465 * We brought the process to a halt.
2466 * Mark it as stopped and notify the
2467 * parent.
2468 *
2469 * Note that proc_stop_done() will
2470 * drop p->p_lock briefly.
2471 * Arrange to restart and check
2472 * all processes again.
2473 */
2474 restart = true;
2475 proc_stop_done(p, PS_NOCLDSTOP);
2476 } else
2477 more = true;
2478
2479 mutex_exit(p->p_lock);
2480 if (restart)
2481 break;
2482 }
2483 mutex_exit(&proc_lock);
2484 } while (restart);
2485
2486 /*
2487 * If we noted processes that are stopping but still have
2488 * running LWPs, then arrange to check again in 1 tick.
2489 */
2490 if (more)
2491 callout_schedule(&proc_stop_ch, 1);
2492 }
2493
2494 /*
2495 * Given a process in state SSTOP, set the state back to SACTIVE and
2496 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2497 */
2498 void
2499 proc_unstop(struct proc *p)
2500 {
2501 struct lwp *l;
2502 int sig;
2503
2504 KASSERT(mutex_owned(&proc_lock));
2505 KASSERT(mutex_owned(p->p_lock));
2506
2507 p->p_stat = SACTIVE;
2508 p->p_sflag &= ~PS_STOPPING;
2509 sig = p->p_xsig;
2510
2511 if (!p->p_waited)
2512 p->p_pptr->p_nstopchild--;
2513
2514 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2515 lwp_lock(l);
2516 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2517 lwp_unlock(l);
2518 continue;
2519 }
2520 if (l->l_wchan == NULL) {
2521 setrunnable(l);
2522 continue;
2523 }
2524 if (sig && (l->l_flag & LW_SINTR) != 0) {
2525 setrunnable(l);
2526 sig = 0;
2527 } else {
2528 l->l_stat = LSSLEEP;
2529 p->p_nrlwps++;
2530 lwp_unlock(l);
2531 }
2532 }
2533 }
2534
2535 void
2536 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2537 const register_t *ret, int error)
2538 {
2539 struct lwp *l = curlwp;
2540 struct proc *p = l->l_proc;
2541 struct sigacts *ps;
2542 sigset_t *mask;
2543 sig_t action;
2544 ksiginfo_t ksi;
2545 size_t i, sy_narg;
2546 const int signo = SIGTRAP;
2547
2548 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2549 KASSERT(p->p_pptr != initproc);
2550 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2551 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2552
2553 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2554
2555 KSI_INIT_TRAP(&ksi);
2556 ksi.ksi_lid = l->l_lid;
2557 ksi.ksi_signo = signo;
2558 ksi.ksi_code = trapno;
2559
2560 ksi.ksi_sysnum = sysnum;
2561 if (trapno == TRAP_SCE) {
2562 ksi.ksi_retval[0] = 0;
2563 ksi.ksi_retval[1] = 0;
2564 ksi.ksi_error = 0;
2565 } else {
2566 ksi.ksi_retval[0] = ret[0];
2567 ksi.ksi_retval[1] = ret[1];
2568 ksi.ksi_error = error;
2569 }
2570
2571 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2572
2573 for (i = 0; i < sy_narg; i++)
2574 ksi.ksi_args[i] = args[i];
2575
2576 mutex_enter(p->p_lock);
2577
2578 repeat:
2579 /*
2580 * If we are exiting, demise now.
2581 *
2582 * This avoids notifying tracer and deadlocking.
2583 */
2584 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2585 mutex_exit(p->p_lock);
2586 lwp_exit(l);
2587 panic("proc_stoptrace");
2588 /* NOTREACHED */
2589 }
2590
2591 /*
2592 * If there's a pending SIGKILL process it immediately.
2593 */
2594 if (p->p_xsig == SIGKILL ||
2595 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2596 mutex_exit(p->p_lock);
2597 return;
2598 }
2599
2600 /*
2601 * If we are no longer traced, abandon this event signal.
2602 *
2603 * This avoids killing a process after detaching the debugger.
2604 */
2605 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2606 mutex_exit(p->p_lock);
2607 return;
2608 }
2609
2610 /*
2611 * The process is already stopping.
2612 */
2613 if ((p->p_sflag & PS_STOPPING) != 0) {
2614 sigswitch_unlock_and_switch_away(l);
2615 mutex_enter(p->p_lock);
2616 goto repeat;
2617 }
2618
2619 /* Needed for ktrace */
2620 ps = p->p_sigacts;
2621 action = SIGACTION_PS(ps, signo).sa_handler;
2622 mask = &l->l_sigmask;
2623
2624 p->p_xsig = signo;
2625 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2626 p->p_sigctx.ps_info = ksi.ksi_info;
2627 sigswitch(0, signo, false);
2628
2629 if (ktrpoint(KTR_PSIG)) {
2630 if (p->p_emul->e_ktrpsig)
2631 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2632 else
2633 ktrpsig(signo, action, mask, &ksi);
2634 }
2635 }
2636
2637 static int
2638 filt_sigattach(struct knote *kn)
2639 {
2640 struct proc *p = curproc;
2641
2642 kn->kn_obj = p;
2643 kn->kn_flags |= EV_CLEAR; /* automatically set */
2644
2645 mutex_enter(p->p_lock);
2646 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2647 mutex_exit(p->p_lock);
2648
2649 return 0;
2650 }
2651
2652 static void
2653 filt_sigdetach(struct knote *kn)
2654 {
2655 struct proc *p = kn->kn_obj;
2656
2657 mutex_enter(p->p_lock);
2658 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2659 mutex_exit(p->p_lock);
2660 }
2661
2662 /*
2663 * Signal knotes are shared with proc knotes, so we apply a mask to
2664 * the hint in order to differentiate them from process hints. This
2665 * could be avoided by using a signal-specific knote list, but probably
2666 * isn't worth the trouble.
2667 */
2668 static int
2669 filt_signal(struct knote *kn, long hint)
2670 {
2671
2672 if (hint & NOTE_SIGNAL) {
2673 hint &= ~NOTE_SIGNAL;
2674
2675 if (kn->kn_id == hint)
2676 kn->kn_data++;
2677 }
2678 return (kn->kn_data != 0);
2679 }
2680
2681 const struct filterops sig_filtops = {
2682 .f_isfd = 0,
2683 .f_attach = filt_sigattach,
2684 .f_detach = filt_sigdetach,
2685 .f_event = filt_signal,
2686 };
2687