kern_sig.c revision 1.395 1 /* $NetBSD: kern_sig.c,v 1.395 2020/11/01 18:51:02 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.395 2020/11/01 18:51:02 pgoyette Exp $");
74
75 #include "opt_execfmt.h"
76 #include "opt_ptrace.h"
77 #include "opt_dtrace.h"
78 #include "opt_compat_sunos.h"
79 #include "opt_compat_netbsd.h"
80 #include "opt_compat_netbsd32.h"
81 #include "opt_pax.h"
82
83 #define SIGPROP /* include signal properties table */
84 #include <sys/param.h>
85 #include <sys/signalvar.h>
86 #include <sys/proc.h>
87 #include <sys/ptrace.h>
88 #include <sys/systm.h>
89 #include <sys/wait.h>
90 #include <sys/ktrace.h>
91 #include <sys/syslog.h>
92 #include <sys/filedesc.h>
93 #include <sys/file.h>
94 #include <sys/pool.h>
95 #include <sys/ucontext.h>
96 #include <sys/exec.h>
97 #include <sys/kauth.h>
98 #include <sys/acct.h>
99 #include <sys/callout.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/sdt.h>
104 #include <sys/exec_elf.h>
105 #include <sys/compat_stub.h>
106
107 #ifdef PAX_SEGVGUARD
108 #include <sys/pax.h>
109 #endif /* PAX_SEGVGUARD */
110
111 #include <uvm/uvm_extern.h>
112
113 #define SIGQUEUE_MAX 32
114 static pool_cache_t sigacts_cache __read_mostly;
115 static pool_cache_t ksiginfo_cache __read_mostly;
116 static callout_t proc_stop_ch __cacheline_aligned;
117
118 sigset_t contsigmask __cacheline_aligned;
119 sigset_t stopsigmask __cacheline_aligned;
120 static sigset_t vforksigmask __cacheline_aligned;
121 sigset_t sigcantmask __cacheline_aligned;
122
123 static void ksiginfo_exechook(struct proc *, void *);
124 static void proc_stop(struct proc *, int);
125 static void proc_stop_done(struct proc *, int);
126 static void proc_stop_callout(void *);
127 static int sigchecktrace(void);
128 static int sigpost(struct lwp *, sig_t, int, int);
129 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
130 static int sigunwait(struct proc *, const ksiginfo_t *);
131 static void sigswitch(int, int, bool);
132 static void sigswitch_unlock_and_switch_away(struct lwp *);
133
134 static void sigacts_poolpage_free(struct pool *, void *);
135 static void *sigacts_poolpage_alloc(struct pool *, int);
136
137 /*
138 * DTrace SDT provider definitions
139 */
140 SDT_PROVIDER_DECLARE(proc);
141 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
142 "struct lwp *", /* target thread */
143 "struct proc *", /* target process */
144 "int"); /* signal */
145 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
146 "struct lwp *", /* target thread */
147 "struct proc *", /* target process */
148 "int"); /* signal */
149 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
150 "int", /* signal */
151 "ksiginfo_t *", /* signal info */
152 "void (*)(void)"); /* handler address */
153
154
155 static struct pool_allocator sigactspool_allocator = {
156 .pa_alloc = sigacts_poolpage_alloc,
157 .pa_free = sigacts_poolpage_free
158 };
159
160 #ifdef DEBUG
161 int kern_logsigexit = 1;
162 #else
163 int kern_logsigexit = 0;
164 #endif
165
166 static const char logcoredump[] =
167 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
168 static const char lognocoredump[] =
169 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
170
171 static kauth_listener_t signal_listener;
172
173 static int
174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
175 void *arg0, void *arg1, void *arg2, void *arg3)
176 {
177 struct proc *p;
178 int result, signum;
179
180 result = KAUTH_RESULT_DEFER;
181 p = arg0;
182 signum = (int)(unsigned long)arg1;
183
184 if (action != KAUTH_PROCESS_SIGNAL)
185 return result;
186
187 if (kauth_cred_uidmatch(cred, p->p_cred) ||
188 (signum == SIGCONT && (curproc->p_session == p->p_session)))
189 result = KAUTH_RESULT_ALLOW;
190
191 return result;
192 }
193
194 static int
195 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
196 {
197 memset(obj, 0, sizeof(struct sigacts));
198 return 0;
199 }
200
201 /*
202 * signal_init:
203 *
204 * Initialize global signal-related data structures.
205 */
206 void
207 signal_init(void)
208 {
209
210 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
211
212 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
213 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
214 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
215 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
216 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
217
218 exechook_establish(ksiginfo_exechook, NULL);
219
220 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
221 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
222
223 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
224 signal_listener_cb, NULL);
225 }
226
227 /*
228 * sigacts_poolpage_alloc:
229 *
230 * Allocate a page for the sigacts memory pool.
231 */
232 static void *
233 sigacts_poolpage_alloc(struct pool *pp, int flags)
234 {
235
236 return (void *)uvm_km_alloc(kernel_map,
237 PAGE_SIZE * 2, PAGE_SIZE * 2,
238 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
239 | UVM_KMF_WIRED);
240 }
241
242 /*
243 * sigacts_poolpage_free:
244 *
245 * Free a page on behalf of the sigacts memory pool.
246 */
247 static void
248 sigacts_poolpage_free(struct pool *pp, void *v)
249 {
250
251 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
252 }
253
254 /*
255 * sigactsinit:
256 *
257 * Create an initial sigacts structure, using the same signal state
258 * as of specified process. If 'share' is set, share the sigacts by
259 * holding a reference, otherwise just copy it from parent.
260 */
261 struct sigacts *
262 sigactsinit(struct proc *pp, int share)
263 {
264 struct sigacts *ps = pp->p_sigacts, *ps2;
265
266 if (__predict_false(share)) {
267 atomic_inc_uint(&ps->sa_refcnt);
268 return ps;
269 }
270 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
271 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
272 ps2->sa_refcnt = 1;
273
274 mutex_enter(&ps->sa_mutex);
275 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
276 mutex_exit(&ps->sa_mutex);
277 return ps2;
278 }
279
280 /*
281 * sigactsunshare:
282 *
283 * Make this process not share its sigacts, maintaining all signal state.
284 */
285 void
286 sigactsunshare(struct proc *p)
287 {
288 struct sigacts *ps, *oldps = p->p_sigacts;
289
290 if (__predict_true(oldps->sa_refcnt == 1))
291 return;
292
293 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
294 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
295 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
296 ps->sa_refcnt = 1;
297
298 p->p_sigacts = ps;
299 sigactsfree(oldps);
300 }
301
302 /*
303 * sigactsfree;
304 *
305 * Release a sigacts structure.
306 */
307 void
308 sigactsfree(struct sigacts *ps)
309 {
310
311 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
312 mutex_destroy(&ps->sa_mutex);
313 pool_cache_put(sigacts_cache, ps);
314 }
315 }
316
317 /*
318 * siginit:
319 *
320 * Initialize signal state for process 0; set to ignore signals that
321 * are ignored by default and disable the signal stack. Locking not
322 * required as the system is still cold.
323 */
324 void
325 siginit(struct proc *p)
326 {
327 struct lwp *l;
328 struct sigacts *ps;
329 int signo, prop;
330
331 ps = p->p_sigacts;
332 sigemptyset(&contsigmask);
333 sigemptyset(&stopsigmask);
334 sigemptyset(&vforksigmask);
335 sigemptyset(&sigcantmask);
336 for (signo = 1; signo < NSIG; signo++) {
337 prop = sigprop[signo];
338 if (prop & SA_CONT)
339 sigaddset(&contsigmask, signo);
340 if (prop & SA_STOP)
341 sigaddset(&stopsigmask, signo);
342 if (prop & SA_STOP && signo != SIGSTOP)
343 sigaddset(&vforksigmask, signo);
344 if (prop & SA_CANTMASK)
345 sigaddset(&sigcantmask, signo);
346 if (prop & SA_IGNORE && signo != SIGCONT)
347 sigaddset(&p->p_sigctx.ps_sigignore, signo);
348 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
349 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
350 }
351 sigemptyset(&p->p_sigctx.ps_sigcatch);
352 p->p_sflag &= ~PS_NOCLDSTOP;
353
354 ksiginfo_queue_init(&p->p_sigpend.sp_info);
355 sigemptyset(&p->p_sigpend.sp_set);
356
357 /*
358 * Reset per LWP state.
359 */
360 l = LIST_FIRST(&p->p_lwps);
361 l->l_sigwaited = NULL;
362 l->l_sigstk = SS_INIT;
363 ksiginfo_queue_init(&l->l_sigpend.sp_info);
364 sigemptyset(&l->l_sigpend.sp_set);
365
366 /* One reference. */
367 ps->sa_refcnt = 1;
368 }
369
370 /*
371 * execsigs:
372 *
373 * Reset signals for an exec of the specified process.
374 */
375 void
376 execsigs(struct proc *p)
377 {
378 struct sigacts *ps;
379 struct lwp *l;
380 int signo, prop;
381 sigset_t tset;
382 ksiginfoq_t kq;
383
384 KASSERT(p->p_nlwps == 1);
385
386 sigactsunshare(p);
387 ps = p->p_sigacts;
388
389 /*
390 * Reset caught signals. Held signals remain held through
391 * l->l_sigmask (unless they were caught, and are now ignored
392 * by default).
393 *
394 * No need to lock yet, the process has only one LWP and
395 * at this point the sigacts are private to the process.
396 */
397 sigemptyset(&tset);
398 for (signo = 1; signo < NSIG; signo++) {
399 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
400 prop = sigprop[signo];
401 if (prop & SA_IGNORE) {
402 if ((prop & SA_CONT) == 0)
403 sigaddset(&p->p_sigctx.ps_sigignore,
404 signo);
405 sigaddset(&tset, signo);
406 }
407 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
408 }
409 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
410 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
411 }
412 ksiginfo_queue_init(&kq);
413
414 mutex_enter(p->p_lock);
415 sigclearall(p, &tset, &kq);
416 sigemptyset(&p->p_sigctx.ps_sigcatch);
417
418 /*
419 * Reset no zombies if child dies flag as Solaris does.
420 */
421 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
422 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
423 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
424
425 /*
426 * Reset per-LWP state.
427 */
428 l = LIST_FIRST(&p->p_lwps);
429 l->l_sigwaited = NULL;
430 l->l_sigstk = SS_INIT;
431 ksiginfo_queue_init(&l->l_sigpend.sp_info);
432 sigemptyset(&l->l_sigpend.sp_set);
433 mutex_exit(p->p_lock);
434
435 ksiginfo_queue_drain(&kq);
436 }
437
438 /*
439 * ksiginfo_exechook:
440 *
441 * Free all pending ksiginfo entries from a process on exec.
442 * Additionally, drain any unused ksiginfo structures in the
443 * system back to the pool.
444 *
445 * XXX This should not be a hook, every process has signals.
446 */
447 static void
448 ksiginfo_exechook(struct proc *p, void *v)
449 {
450 ksiginfoq_t kq;
451
452 ksiginfo_queue_init(&kq);
453
454 mutex_enter(p->p_lock);
455 sigclearall(p, NULL, &kq);
456 mutex_exit(p->p_lock);
457
458 ksiginfo_queue_drain(&kq);
459 }
460
461 /*
462 * ksiginfo_alloc:
463 *
464 * Allocate a new ksiginfo structure from the pool, and optionally copy
465 * an existing one. If the existing ksiginfo_t is from the pool, and
466 * has not been queued somewhere, then just return it. Additionally,
467 * if the existing ksiginfo_t does not contain any information beyond
468 * the signal number, then just return it.
469 */
470 ksiginfo_t *
471 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
472 {
473 ksiginfo_t *kp;
474
475 if (ok != NULL) {
476 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
477 KSI_FROMPOOL)
478 return ok;
479 if (KSI_EMPTY_P(ok))
480 return ok;
481 }
482
483 kp = pool_cache_get(ksiginfo_cache, flags);
484 if (kp == NULL) {
485 #ifdef DIAGNOSTIC
486 printf("Out of memory allocating ksiginfo for pid %d\n",
487 p->p_pid);
488 #endif
489 return NULL;
490 }
491
492 if (ok != NULL) {
493 memcpy(kp, ok, sizeof(*kp));
494 kp->ksi_flags &= ~KSI_QUEUED;
495 } else
496 KSI_INIT_EMPTY(kp);
497
498 kp->ksi_flags |= KSI_FROMPOOL;
499
500 return kp;
501 }
502
503 /*
504 * ksiginfo_free:
505 *
506 * If the given ksiginfo_t is from the pool and has not been queued,
507 * then free it.
508 */
509 void
510 ksiginfo_free(ksiginfo_t *kp)
511 {
512
513 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
514 return;
515 pool_cache_put(ksiginfo_cache, kp);
516 }
517
518 /*
519 * ksiginfo_queue_drain:
520 *
521 * Drain a non-empty ksiginfo_t queue.
522 */
523 void
524 ksiginfo_queue_drain0(ksiginfoq_t *kq)
525 {
526 ksiginfo_t *ksi;
527
528 KASSERT(!TAILQ_EMPTY(kq));
529
530 while (!TAILQ_EMPTY(kq)) {
531 ksi = TAILQ_FIRST(kq);
532 TAILQ_REMOVE(kq, ksi, ksi_list);
533 pool_cache_put(ksiginfo_cache, ksi);
534 }
535 }
536
537 static int
538 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
539 {
540 ksiginfo_t *ksi, *nksi;
541
542 if (sp == NULL)
543 goto out;
544
545 /* Find siginfo and copy it out. */
546 int count = 0;
547 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
548 if (ksi->ksi_signo != signo)
549 continue;
550 if (count++ > 0) /* Only remove the first, count all of them */
551 continue;
552 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
553 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
554 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
555 ksi->ksi_flags &= ~KSI_QUEUED;
556 if (out != NULL) {
557 memcpy(out, ksi, sizeof(*out));
558 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
559 }
560 ksiginfo_free(ksi);
561 }
562 if (count)
563 return count;
564
565 out:
566 /* If there is no siginfo, then manufacture it. */
567 if (out != NULL) {
568 KSI_INIT(out);
569 out->ksi_info._signo = signo;
570 out->ksi_info._code = SI_NOINFO;
571 }
572 return 0;
573 }
574
575 /*
576 * sigget:
577 *
578 * Fetch the first pending signal from a set. Optionally, also fetch
579 * or manufacture a ksiginfo element. Returns the number of the first
580 * pending signal, or zero.
581 */
582 int
583 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
584 {
585 sigset_t tset;
586 int count;
587
588 /* If there's no pending set, the signal is from the debugger. */
589 if (sp == NULL)
590 goto out;
591
592 /* Construct mask from signo, and 'mask'. */
593 if (signo == 0) {
594 if (mask != NULL) {
595 tset = *mask;
596 __sigandset(&sp->sp_set, &tset);
597 } else
598 tset = sp->sp_set;
599
600 /* If there are no signals pending - return. */
601 if ((signo = firstsig(&tset)) == 0)
602 goto out;
603 } else {
604 KASSERT(sigismember(&sp->sp_set, signo));
605 }
606
607 sigdelset(&sp->sp_set, signo);
608 out:
609 count = siggetinfo(sp, out, signo);
610 if (count > 1)
611 sigaddset(&sp->sp_set, signo);
612 return signo;
613 }
614
615 /*
616 * sigput:
617 *
618 * Append a new ksiginfo element to the list of pending ksiginfo's.
619 */
620 static int
621 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
622 {
623 ksiginfo_t *kp;
624
625 KASSERT(mutex_owned(p->p_lock));
626 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
627
628 sigaddset(&sp->sp_set, ksi->ksi_signo);
629
630 /*
631 * If there is no siginfo, we are done.
632 */
633 if (KSI_EMPTY_P(ksi))
634 return 0;
635
636 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
637
638 size_t count = 0;
639 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
640 count++;
641 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
642 continue;
643 if (kp->ksi_signo == ksi->ksi_signo) {
644 KSI_COPY(ksi, kp);
645 kp->ksi_flags |= KSI_QUEUED;
646 return 0;
647 }
648 }
649
650 if (count >= SIGQUEUE_MAX) {
651 #ifdef DIAGNOSTIC
652 printf("%s(%d): Signal queue is full signal=%d\n",
653 p->p_comm, p->p_pid, ksi->ksi_signo);
654 #endif
655 return EAGAIN;
656 }
657 ksi->ksi_flags |= KSI_QUEUED;
658 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
659
660 return 0;
661 }
662
663 /*
664 * sigclear:
665 *
666 * Clear all pending signals in the specified set.
667 */
668 void
669 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
670 {
671 ksiginfo_t *ksi, *next;
672
673 if (mask == NULL)
674 sigemptyset(&sp->sp_set);
675 else
676 sigminusset(mask, &sp->sp_set);
677
678 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
679 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
680 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
681 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
682 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
683 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
684 }
685 }
686 }
687
688 /*
689 * sigclearall:
690 *
691 * Clear all pending signals in the specified set from a process and
692 * its LWPs.
693 */
694 void
695 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
696 {
697 struct lwp *l;
698
699 KASSERT(mutex_owned(p->p_lock));
700
701 sigclear(&p->p_sigpend, mask, kq);
702
703 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
704 sigclear(&l->l_sigpend, mask, kq);
705 }
706 }
707
708 /*
709 * sigispending:
710 *
711 * Return the first signal number if there are pending signals for the
712 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
713 * and that the signal has been posted to the appopriate queue before
714 * LW_PENDSIG is set.
715 *
716 * This should only ever be called with (l == curlwp), unless the
717 * result does not matter (procfs, sysctl).
718 */
719 int
720 sigispending(struct lwp *l, int signo)
721 {
722 struct proc *p = l->l_proc;
723 sigset_t tset;
724
725 membar_consumer();
726
727 tset = l->l_sigpend.sp_set;
728 sigplusset(&p->p_sigpend.sp_set, &tset);
729 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
730 sigminusset(&l->l_sigmask, &tset);
731
732 if (signo == 0) {
733 return firstsig(&tset);
734 }
735 return sigismember(&tset, signo) ? signo : 0;
736 }
737
738 void
739 getucontext(struct lwp *l, ucontext_t *ucp)
740 {
741 struct proc *p = l->l_proc;
742
743 KASSERT(mutex_owned(p->p_lock));
744
745 ucp->uc_flags = 0;
746 ucp->uc_link = l->l_ctxlink;
747 ucp->uc_sigmask = l->l_sigmask;
748 ucp->uc_flags |= _UC_SIGMASK;
749
750 /*
751 * The (unsupplied) definition of the `current execution stack'
752 * in the System V Interface Definition appears to allow returning
753 * the main context stack.
754 */
755 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
756 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
757 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
758 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
759 } else {
760 /* Simply copy alternate signal execution stack. */
761 ucp->uc_stack = l->l_sigstk;
762 }
763 ucp->uc_flags |= _UC_STACK;
764 mutex_exit(p->p_lock);
765 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
766 mutex_enter(p->p_lock);
767 }
768
769 int
770 setucontext(struct lwp *l, const ucontext_t *ucp)
771 {
772 struct proc *p = l->l_proc;
773 int error;
774
775 KASSERT(mutex_owned(p->p_lock));
776
777 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
778 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
779 if (error != 0)
780 return error;
781 }
782
783 mutex_exit(p->p_lock);
784 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
785 mutex_enter(p->p_lock);
786 if (error != 0)
787 return (error);
788
789 l->l_ctxlink = ucp->uc_link;
790
791 /*
792 * If there was stack information, update whether or not we are
793 * still running on an alternate signal stack.
794 */
795 if ((ucp->uc_flags & _UC_STACK) != 0) {
796 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
797 l->l_sigstk.ss_flags |= SS_ONSTACK;
798 else
799 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
800 }
801
802 return 0;
803 }
804
805 /*
806 * killpg1: common code for kill process group/broadcast kill.
807 */
808 int
809 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
810 {
811 struct proc *p, *cp;
812 kauth_cred_t pc;
813 struct pgrp *pgrp;
814 int nfound;
815 int signo = ksi->ksi_signo;
816
817 cp = l->l_proc;
818 pc = l->l_cred;
819 nfound = 0;
820
821 mutex_enter(&proc_lock);
822 if (all) {
823 /*
824 * Broadcast.
825 */
826 PROCLIST_FOREACH(p, &allproc) {
827 if (p->p_pid <= 1 || p == cp ||
828 (p->p_flag & PK_SYSTEM) != 0)
829 continue;
830 mutex_enter(p->p_lock);
831 if (kauth_authorize_process(pc,
832 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
833 NULL) == 0) {
834 nfound++;
835 if (signo)
836 kpsignal2(p, ksi);
837 }
838 mutex_exit(p->p_lock);
839 }
840 } else {
841 if (pgid == 0)
842 /* Zero pgid means send to my process group. */
843 pgrp = cp->p_pgrp;
844 else {
845 pgrp = pgrp_find(pgid);
846 if (pgrp == NULL)
847 goto out;
848 }
849 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
850 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
851 continue;
852 mutex_enter(p->p_lock);
853 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
854 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
855 nfound++;
856 if (signo && P_ZOMBIE(p) == 0)
857 kpsignal2(p, ksi);
858 }
859 mutex_exit(p->p_lock);
860 }
861 }
862 out:
863 mutex_exit(&proc_lock);
864 return nfound ? 0 : ESRCH;
865 }
866
867 /*
868 * Send a signal to a process group. If checktty is set, limit to members
869 * which have a controlling terminal.
870 */
871 void
872 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
873 {
874 ksiginfo_t ksi;
875
876 KASSERT(!cpu_intr_p());
877 KASSERT(mutex_owned(&proc_lock));
878
879 KSI_INIT_EMPTY(&ksi);
880 ksi.ksi_signo = sig;
881 kpgsignal(pgrp, &ksi, NULL, checkctty);
882 }
883
884 void
885 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
886 {
887 struct proc *p;
888
889 KASSERT(!cpu_intr_p());
890 KASSERT(mutex_owned(&proc_lock));
891 KASSERT(pgrp != NULL);
892
893 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
894 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
895 kpsignal(p, ksi, data);
896 }
897
898 /*
899 * Send a signal caused by a trap to the current LWP. If it will be caught
900 * immediately, deliver it with correct code. Otherwise, post it normally.
901 */
902 void
903 trapsignal(struct lwp *l, ksiginfo_t *ksi)
904 {
905 struct proc *p;
906 struct sigacts *ps;
907 int signo = ksi->ksi_signo;
908 sigset_t *mask;
909 sig_t action;
910
911 KASSERT(KSI_TRAP_P(ksi));
912
913 ksi->ksi_lid = l->l_lid;
914 p = l->l_proc;
915
916 KASSERT(!cpu_intr_p());
917 mutex_enter(&proc_lock);
918 mutex_enter(p->p_lock);
919
920 repeat:
921 /*
922 * If we are exiting, demise now.
923 *
924 * This avoids notifying tracer and deadlocking.
925 */
926 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
927 mutex_exit(p->p_lock);
928 mutex_exit(&proc_lock);
929 lwp_exit(l);
930 panic("trapsignal");
931 /* NOTREACHED */
932 }
933
934 /*
935 * The process is already stopping.
936 */
937 if ((p->p_sflag & PS_STOPPING) != 0) {
938 mutex_exit(&proc_lock);
939 sigswitch_unlock_and_switch_away(l);
940 mutex_enter(&proc_lock);
941 mutex_enter(p->p_lock);
942 goto repeat;
943 }
944
945 mask = &l->l_sigmask;
946 ps = p->p_sigacts;
947 action = SIGACTION_PS(ps, signo).sa_handler;
948
949 if (ISSET(p->p_slflag, PSL_TRACED) &&
950 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
951 p->p_xsig != SIGKILL &&
952 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
953 p->p_xsig = signo;
954 p->p_sigctx.ps_faked = true;
955 p->p_sigctx.ps_lwp = ksi->ksi_lid;
956 p->p_sigctx.ps_info = ksi->ksi_info;
957 sigswitch(0, signo, true);
958
959 if (ktrpoint(KTR_PSIG)) {
960 if (p->p_emul->e_ktrpsig)
961 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
962 else
963 ktrpsig(signo, action, mask, ksi);
964 }
965 return;
966 }
967
968 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
969 const bool masked = sigismember(mask, signo);
970 if (caught && !masked) {
971 mutex_exit(&proc_lock);
972 l->l_ru.ru_nsignals++;
973 kpsendsig(l, ksi, mask);
974 mutex_exit(p->p_lock);
975
976 if (ktrpoint(KTR_PSIG)) {
977 if (p->p_emul->e_ktrpsig)
978 p->p_emul->e_ktrpsig(signo, action, mask, ksi);
979 else
980 ktrpsig(signo, action, mask, ksi);
981 }
982 return;
983 }
984
985 /*
986 * If the signal is masked or ignored, then unmask it and
987 * reset it to the default action so that the process or
988 * its tracer will be notified.
989 */
990 const bool ignored = action == SIG_IGN;
991 if (masked || ignored) {
992 mutex_enter(&ps->sa_mutex);
993 sigdelset(mask, signo);
994 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
995 sigdelset(&p->p_sigctx.ps_sigignore, signo);
996 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
997 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
998 mutex_exit(&ps->sa_mutex);
999 }
1000
1001 kpsignal2(p, ksi);
1002 mutex_exit(p->p_lock);
1003 mutex_exit(&proc_lock);
1004 }
1005
1006 /*
1007 * Fill in signal information and signal the parent for a child status change.
1008 */
1009 void
1010 child_psignal(struct proc *p, int mask)
1011 {
1012 ksiginfo_t ksi;
1013 struct proc *q;
1014 int xsig;
1015
1016 KASSERT(mutex_owned(&proc_lock));
1017 KASSERT(mutex_owned(p->p_lock));
1018
1019 xsig = p->p_xsig;
1020
1021 KSI_INIT(&ksi);
1022 ksi.ksi_signo = SIGCHLD;
1023 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1024 ksi.ksi_pid = p->p_pid;
1025 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1026 ksi.ksi_status = xsig;
1027 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1028 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1029
1030 q = p->p_pptr;
1031
1032 mutex_exit(p->p_lock);
1033 mutex_enter(q->p_lock);
1034
1035 if ((q->p_sflag & mask) == 0)
1036 kpsignal2(q, &ksi);
1037
1038 mutex_exit(q->p_lock);
1039 mutex_enter(p->p_lock);
1040 }
1041
1042 void
1043 psignal(struct proc *p, int signo)
1044 {
1045 ksiginfo_t ksi;
1046
1047 KASSERT(!cpu_intr_p());
1048 KASSERT(mutex_owned(&proc_lock));
1049
1050 KSI_INIT_EMPTY(&ksi);
1051 ksi.ksi_signo = signo;
1052 mutex_enter(p->p_lock);
1053 kpsignal2(p, &ksi);
1054 mutex_exit(p->p_lock);
1055 }
1056
1057 void
1058 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1059 {
1060 fdfile_t *ff;
1061 file_t *fp;
1062 fdtab_t *dt;
1063
1064 KASSERT(!cpu_intr_p());
1065 KASSERT(mutex_owned(&proc_lock));
1066
1067 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1068 size_t fd;
1069 filedesc_t *fdp = p->p_fd;
1070
1071 /* XXXSMP locking */
1072 ksi->ksi_fd = -1;
1073 dt = atomic_load_consume(&fdp->fd_dt);
1074 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1075 if ((ff = dt->dt_ff[fd]) == NULL)
1076 continue;
1077 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
1078 continue;
1079 if (fp->f_data == data) {
1080 ksi->ksi_fd = fd;
1081 break;
1082 }
1083 }
1084 }
1085 mutex_enter(p->p_lock);
1086 kpsignal2(p, ksi);
1087 mutex_exit(p->p_lock);
1088 }
1089
1090 /*
1091 * sigismasked:
1092 *
1093 * Returns true if signal is ignored or masked for the specified LWP.
1094 */
1095 int
1096 sigismasked(struct lwp *l, int sig)
1097 {
1098 struct proc *p = l->l_proc;
1099
1100 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1101 sigismember(&l->l_sigmask, sig);
1102 }
1103
1104 /*
1105 * sigpost:
1106 *
1107 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1108 * be able to take the signal.
1109 */
1110 static int
1111 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1112 {
1113 int rv, masked;
1114 struct proc *p = l->l_proc;
1115
1116 KASSERT(mutex_owned(p->p_lock));
1117
1118 /*
1119 * If the LWP is on the way out, sigclear() will be busy draining all
1120 * pending signals. Don't give it more.
1121 */
1122 if (l->l_stat == LSZOMB)
1123 return 0;
1124
1125 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1126
1127 lwp_lock(l);
1128 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1129 if ((prop & SA_KILL) != 0)
1130 l->l_flag &= ~LW_DBGSUSPEND;
1131 else {
1132 lwp_unlock(l);
1133 return 0;
1134 }
1135 }
1136
1137 /*
1138 * Have the LWP check for signals. This ensures that even if no LWP
1139 * is found to take the signal immediately, it should be taken soon.
1140 */
1141 signotify(l);
1142
1143 /*
1144 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1145 * Note: SIGKILL and SIGSTOP cannot be masked.
1146 */
1147 masked = sigismember(&l->l_sigmask, sig);
1148 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1149 lwp_unlock(l);
1150 return 0;
1151 }
1152
1153 /*
1154 * If killing the process, make it run fast.
1155 */
1156 if (__predict_false((prop & SA_KILL) != 0) &&
1157 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1158 KASSERT(l->l_class == SCHED_OTHER);
1159 lwp_changepri(l, MAXPRI_USER);
1160 }
1161
1162 /*
1163 * If the LWP is running or on a run queue, then we win. If it's
1164 * sleeping interruptably, wake it and make it take the signal. If
1165 * the sleep isn't interruptable, then the chances are it will get
1166 * to see the signal soon anyhow. If suspended, it can't take the
1167 * signal right now. If it's LWP private or for all LWPs, save it
1168 * for later; otherwise punt.
1169 */
1170 rv = 0;
1171
1172 switch (l->l_stat) {
1173 case LSRUN:
1174 case LSONPROC:
1175 rv = 1;
1176 break;
1177
1178 case LSSLEEP:
1179 if ((l->l_flag & LW_SINTR) != 0) {
1180 /* setrunnable() will release the lock. */
1181 setrunnable(l);
1182 return 1;
1183 }
1184 break;
1185
1186 case LSSUSPENDED:
1187 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1188 /* lwp_continue() will release the lock. */
1189 lwp_continue(l);
1190 return 1;
1191 }
1192 break;
1193
1194 case LSSTOP:
1195 if ((prop & SA_STOP) != 0)
1196 break;
1197
1198 /*
1199 * If the LWP is stopped and we are sending a continue
1200 * signal, then start it again.
1201 */
1202 if ((prop & SA_CONT) != 0) {
1203 if (l->l_wchan != NULL) {
1204 l->l_stat = LSSLEEP;
1205 p->p_nrlwps++;
1206 rv = 1;
1207 break;
1208 }
1209 /* setrunnable() will release the lock. */
1210 setrunnable(l);
1211 return 1;
1212 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1213 /* setrunnable() will release the lock. */
1214 setrunnable(l);
1215 return 1;
1216 }
1217 break;
1218
1219 default:
1220 break;
1221 }
1222
1223 lwp_unlock(l);
1224 return rv;
1225 }
1226
1227 /*
1228 * Notify an LWP that it has a pending signal.
1229 */
1230 void
1231 signotify(struct lwp *l)
1232 {
1233 KASSERT(lwp_locked(l, NULL));
1234
1235 l->l_flag |= LW_PENDSIG;
1236 lwp_need_userret(l);
1237 }
1238
1239 /*
1240 * Find an LWP within process p that is waiting on signal ksi, and hand
1241 * it on.
1242 */
1243 static int
1244 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1245 {
1246 struct lwp *l;
1247 int signo;
1248
1249 KASSERT(mutex_owned(p->p_lock));
1250
1251 signo = ksi->ksi_signo;
1252
1253 if (ksi->ksi_lid != 0) {
1254 /*
1255 * Signal came via _lwp_kill(). Find the LWP and see if
1256 * it's interested.
1257 */
1258 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1259 return 0;
1260 if (l->l_sigwaited == NULL ||
1261 !sigismember(&l->l_sigwaitset, signo))
1262 return 0;
1263 } else {
1264 /*
1265 * Look for any LWP that may be interested.
1266 */
1267 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1268 KASSERT(l->l_sigwaited != NULL);
1269 if (sigismember(&l->l_sigwaitset, signo))
1270 break;
1271 }
1272 }
1273
1274 if (l != NULL) {
1275 l->l_sigwaited->ksi_info = ksi->ksi_info;
1276 l->l_sigwaited = NULL;
1277 LIST_REMOVE(l, l_sigwaiter);
1278 cv_signal(&l->l_sigcv);
1279 return 1;
1280 }
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * Send the signal to the process. If the signal has an action, the action
1287 * is usually performed by the target process rather than the caller; we add
1288 * the signal to the set of pending signals for the process.
1289 *
1290 * Exceptions:
1291 * o When a stop signal is sent to a sleeping process that takes the
1292 * default action, the process is stopped without awakening it.
1293 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1294 * regardless of the signal action (eg, blocked or ignored).
1295 *
1296 * Other ignored signals are discarded immediately.
1297 */
1298 int
1299 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1300 {
1301 int prop, signo = ksi->ksi_signo;
1302 struct lwp *l = NULL;
1303 ksiginfo_t *kp;
1304 lwpid_t lid;
1305 sig_t action;
1306 bool toall;
1307 bool traced;
1308 int error = 0;
1309
1310 KASSERT(!cpu_intr_p());
1311 KASSERT(mutex_owned(&proc_lock));
1312 KASSERT(mutex_owned(p->p_lock));
1313 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1314 KASSERT(signo > 0 && signo < NSIG);
1315
1316 /*
1317 * If the process is being created by fork, is a zombie or is
1318 * exiting, then just drop the signal here and bail out.
1319 */
1320 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1321 return 0;
1322
1323 /*
1324 * Notify any interested parties of the signal.
1325 */
1326 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1327
1328 /*
1329 * Some signals including SIGKILL must act on the entire process.
1330 */
1331 kp = NULL;
1332 prop = sigprop[signo];
1333 toall = ((prop & SA_TOALL) != 0);
1334 lid = toall ? 0 : ksi->ksi_lid;
1335 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1336 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1337
1338 /*
1339 * If proc is traced, always give parent a chance.
1340 */
1341 if (traced) {
1342 action = SIG_DFL;
1343
1344 if (lid == 0) {
1345 /*
1346 * If the process is being traced and the signal
1347 * is being caught, make sure to save any ksiginfo.
1348 */
1349 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1350 goto discard;
1351 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1352 goto out;
1353 }
1354 } else {
1355
1356 /*
1357 * If the signal is being ignored, then drop it. Note: we
1358 * don't set SIGCONT in ps_sigignore, and if it is set to
1359 * SIG_IGN, action will be SIG_DFL here.
1360 */
1361 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1362 goto discard;
1363
1364 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1365 action = SIG_CATCH;
1366 else {
1367 action = SIG_DFL;
1368
1369 /*
1370 * If sending a tty stop signal to a member of an
1371 * orphaned process group, discard the signal here if
1372 * the action is default; don't stop the process below
1373 * if sleeping, and don't clear any pending SIGCONT.
1374 */
1375 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1376 goto discard;
1377
1378 if (prop & SA_KILL && p->p_nice > NZERO)
1379 p->p_nice = NZERO;
1380 }
1381 }
1382
1383 /*
1384 * If stopping or continuing a process, discard any pending
1385 * signals that would do the inverse.
1386 */
1387 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1388 ksiginfoq_t kq;
1389
1390 ksiginfo_queue_init(&kq);
1391 if ((prop & SA_CONT) != 0)
1392 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1393 if ((prop & SA_STOP) != 0)
1394 sigclear(&p->p_sigpend, &contsigmask, &kq);
1395 ksiginfo_queue_drain(&kq); /* XXXSMP */
1396 }
1397
1398 /*
1399 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1400 * please!), check if any LWPs are waiting on it. If yes, pass on
1401 * the signal info. The signal won't be processed further here.
1402 */
1403 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1404 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1405 sigunwait(p, ksi))
1406 goto discard;
1407
1408 /*
1409 * XXXSMP Should be allocated by the caller, we're holding locks
1410 * here.
1411 */
1412 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1413 goto discard;
1414
1415 /*
1416 * LWP private signals are easy - just find the LWP and post
1417 * the signal to it.
1418 */
1419 if (lid != 0) {
1420 l = lwp_find(p, lid);
1421 if (l != NULL) {
1422 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1423 goto out;
1424 membar_producer();
1425 if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1426 signo = -1;
1427 }
1428 goto out;
1429 }
1430
1431 /*
1432 * Some signals go to all LWPs, even if posted with _lwp_kill()
1433 * or for an SA process.
1434 */
1435 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1436 if (traced)
1437 goto deliver;
1438
1439 /*
1440 * If SIGCONT is default (or ignored) and process is
1441 * asleep, we are finished; the process should not
1442 * be awakened.
1443 */
1444 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1445 goto out;
1446 } else {
1447 /*
1448 * Process is stopped or stopping.
1449 * - If traced, then no action is needed, unless killing.
1450 * - Run the process only if sending SIGCONT or SIGKILL.
1451 */
1452 if (traced && signo != SIGKILL) {
1453 goto out;
1454 }
1455 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1456 /*
1457 * Re-adjust p_nstopchild if the process was
1458 * stopped but not yet collected by its parent.
1459 */
1460 if (p->p_stat == SSTOP && !p->p_waited)
1461 p->p_pptr->p_nstopchild--;
1462 p->p_stat = SACTIVE;
1463 p->p_sflag &= ~PS_STOPPING;
1464 if (traced) {
1465 KASSERT(signo == SIGKILL);
1466 goto deliver;
1467 }
1468 /*
1469 * Do not make signal pending if SIGCONT is default.
1470 *
1471 * If the process catches SIGCONT, let it handle the
1472 * signal itself (if waiting on event - process runs,
1473 * otherwise continues sleeping).
1474 */
1475 if ((prop & SA_CONT) != 0) {
1476 p->p_xsig = SIGCONT;
1477 p->p_sflag |= PS_CONTINUED;
1478 child_psignal(p, 0);
1479 if (action == SIG_DFL) {
1480 KASSERT(signo != SIGKILL);
1481 goto deliver;
1482 }
1483 }
1484 } else if ((prop & SA_STOP) != 0) {
1485 /*
1486 * Already stopped, don't need to stop again.
1487 * (If we did the shell could get confused.)
1488 */
1489 goto out;
1490 }
1491 }
1492 /*
1493 * Make signal pending.
1494 */
1495 KASSERT(!traced);
1496 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1497 goto out;
1498 deliver:
1499 /*
1500 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1501 * visible on the per process list (for sigispending()). This
1502 * is unlikely to be needed in practice, but...
1503 */
1504 membar_producer();
1505
1506 /*
1507 * Try to find an LWP that can take the signal.
1508 */
1509 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1510 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1511 break;
1512 }
1513 signo = -1;
1514 out:
1515 /*
1516 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1517 * with locks held. The caller should take care of this.
1518 */
1519 ksiginfo_free(kp);
1520 if (signo == -1)
1521 return error;
1522 discard:
1523 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1524 return error;
1525 }
1526
1527 void
1528 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1529 {
1530 struct proc *p = l->l_proc;
1531
1532 KASSERT(mutex_owned(p->p_lock));
1533 (*p->p_emul->e_sendsig)(ksi, mask);
1534 }
1535
1536 /*
1537 * Stop any LWPs sleeping interruptably.
1538 */
1539 static void
1540 proc_stop_lwps(struct proc *p)
1541 {
1542 struct lwp *l;
1543
1544 KASSERT(mutex_owned(p->p_lock));
1545 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1546
1547 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1548 lwp_lock(l);
1549 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1550 l->l_stat = LSSTOP;
1551 p->p_nrlwps--;
1552 }
1553 lwp_unlock(l);
1554 }
1555 }
1556
1557 /*
1558 * Finish stopping of a process. Mark it stopped and notify the parent.
1559 *
1560 * Drop p_lock briefly if ppsig is true.
1561 */
1562 static void
1563 proc_stop_done(struct proc *p, int ppmask)
1564 {
1565
1566 KASSERT(mutex_owned(&proc_lock));
1567 KASSERT(mutex_owned(p->p_lock));
1568 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1569 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1570
1571 p->p_sflag &= ~PS_STOPPING;
1572 p->p_stat = SSTOP;
1573 p->p_waited = 0;
1574 p->p_pptr->p_nstopchild++;
1575
1576 /* child_psignal drops p_lock briefly. */
1577 child_psignal(p, ppmask);
1578 cv_broadcast(&p->p_pptr->p_waitcv);
1579 }
1580
1581 /*
1582 * Stop the current process and switch away to the debugger notifying
1583 * an event specific to a traced process only.
1584 */
1585 void
1586 eventswitch(int code, int pe_report_event, int entity)
1587 {
1588 struct lwp *l = curlwp;
1589 struct proc *p = l->l_proc;
1590 struct sigacts *ps;
1591 sigset_t *mask;
1592 sig_t action;
1593 ksiginfo_t ksi;
1594 const int signo = SIGTRAP;
1595
1596 KASSERT(mutex_owned(&proc_lock));
1597 KASSERT(mutex_owned(p->p_lock));
1598 KASSERT(p->p_pptr != initproc);
1599 KASSERT(l->l_stat == LSONPROC);
1600 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1601 KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1602 KASSERT(p->p_nrlwps > 0);
1603 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1604 (code == TRAP_EXEC));
1605 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1606 KASSERT((code != TRAP_LWP) || (entity > 0));
1607
1608 repeat:
1609 /*
1610 * If we are exiting, demise now.
1611 *
1612 * This avoids notifying tracer and deadlocking.
1613 */
1614 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1615 mutex_exit(p->p_lock);
1616 mutex_exit(&proc_lock);
1617
1618 if (pe_report_event == PTRACE_LWP_EXIT) {
1619 /* Avoid double lwp_exit() and panic. */
1620 return;
1621 }
1622
1623 lwp_exit(l);
1624 panic("eventswitch");
1625 /* NOTREACHED */
1626 }
1627
1628 /*
1629 * If we are no longer traced, abandon this event signal.
1630 *
1631 * This avoids killing a process after detaching the debugger.
1632 */
1633 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1634 mutex_exit(p->p_lock);
1635 mutex_exit(&proc_lock);
1636 return;
1637 }
1638
1639 /*
1640 * If there's a pending SIGKILL process it immediately.
1641 */
1642 if (p->p_xsig == SIGKILL ||
1643 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1644 mutex_exit(p->p_lock);
1645 mutex_exit(&proc_lock);
1646 return;
1647 }
1648
1649 /*
1650 * The process is already stopping.
1651 */
1652 if ((p->p_sflag & PS_STOPPING) != 0) {
1653 mutex_exit(&proc_lock);
1654 sigswitch_unlock_and_switch_away(l);
1655 mutex_enter(&proc_lock);
1656 mutex_enter(p->p_lock);
1657 goto repeat;
1658 }
1659
1660 KSI_INIT_TRAP(&ksi);
1661 ksi.ksi_lid = l->l_lid;
1662 ksi.ksi_signo = signo;
1663 ksi.ksi_code = code;
1664 ksi.ksi_pe_report_event = pe_report_event;
1665
1666 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1667 ksi.ksi_pe_other_pid = entity;
1668
1669 /* Needed for ktrace */
1670 ps = p->p_sigacts;
1671 action = SIGACTION_PS(ps, signo).sa_handler;
1672 mask = &l->l_sigmask;
1673
1674 p->p_xsig = signo;
1675 p->p_sigctx.ps_faked = true;
1676 p->p_sigctx.ps_lwp = ksi.ksi_lid;
1677 p->p_sigctx.ps_info = ksi.ksi_info;
1678
1679 sigswitch(0, signo, true);
1680
1681 if (code == TRAP_CHLD) {
1682 mutex_enter(&proc_lock);
1683 while (l->l_vforkwaiting)
1684 cv_wait(&l->l_waitcv, &proc_lock);
1685 mutex_exit(&proc_lock);
1686 }
1687
1688 if (ktrpoint(KTR_PSIG)) {
1689 if (p->p_emul->e_ktrpsig)
1690 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1691 else
1692 ktrpsig(signo, action, mask, &ksi);
1693 }
1694 }
1695
1696 void
1697 eventswitchchild(struct proc *p, int code, int pe_report_event)
1698 {
1699 mutex_enter(&proc_lock);
1700 mutex_enter(p->p_lock);
1701 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
1702 (PSL_TRACED|PSL_TRACEDCHILD)) {
1703 mutex_exit(p->p_lock);
1704 mutex_exit(&proc_lock);
1705 return;
1706 }
1707 eventswitch(code, pe_report_event, p->p_oppid);
1708 }
1709
1710 /*
1711 * Stop the current process and switch away when being stopped or traced.
1712 */
1713 static void
1714 sigswitch(int ppmask, int signo, bool proc_lock_held)
1715 {
1716 struct lwp *l = curlwp;
1717 struct proc *p = l->l_proc;
1718
1719 KASSERT(mutex_owned(p->p_lock));
1720 KASSERT(l->l_stat == LSONPROC);
1721 KASSERT(p->p_nrlwps > 0);
1722
1723 if (proc_lock_held) {
1724 KASSERT(mutex_owned(&proc_lock));
1725 } else {
1726 KASSERT(!mutex_owned(&proc_lock));
1727 }
1728
1729 /*
1730 * On entry we know that the process needs to stop. If it's
1731 * the result of a 'sideways' stop signal that has been sourced
1732 * through issignal(), then stop other LWPs in the process too.
1733 */
1734 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1735 KASSERT(signo != 0);
1736 proc_stop(p, signo);
1737 KASSERT(p->p_nrlwps > 0);
1738 }
1739
1740 /*
1741 * If we are the last live LWP, and the stop was a result of
1742 * a new signal, then signal the parent.
1743 */
1744 if ((p->p_sflag & PS_STOPPING) != 0) {
1745 if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
1746 mutex_exit(p->p_lock);
1747 mutex_enter(&proc_lock);
1748 mutex_enter(p->p_lock);
1749 }
1750
1751 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1752 /*
1753 * Note that proc_stop_done() can drop
1754 * p->p_lock briefly.
1755 */
1756 proc_stop_done(p, ppmask);
1757 }
1758
1759 mutex_exit(&proc_lock);
1760 }
1761
1762 sigswitch_unlock_and_switch_away(l);
1763 }
1764
1765 /*
1766 * Unlock and switch away.
1767 */
1768 static void
1769 sigswitch_unlock_and_switch_away(struct lwp *l)
1770 {
1771 struct proc *p;
1772 int biglocks;
1773
1774 p = l->l_proc;
1775
1776 KASSERT(mutex_owned(p->p_lock));
1777 KASSERT(!mutex_owned(&proc_lock));
1778
1779 KASSERT(l->l_stat == LSONPROC);
1780 KASSERT(p->p_nrlwps > 0);
1781
1782 KERNEL_UNLOCK_ALL(l, &biglocks);
1783 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1784 p->p_nrlwps--;
1785 lwp_lock(l);
1786 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1787 l->l_stat = LSSTOP;
1788 lwp_unlock(l);
1789 }
1790
1791 mutex_exit(p->p_lock);
1792 lwp_lock(l);
1793 spc_lock(l->l_cpu);
1794 mi_switch(l);
1795 KERNEL_LOCK(biglocks, l);
1796 }
1797
1798 /*
1799 * Check for a signal from the debugger.
1800 */
1801 static int
1802 sigchecktrace(void)
1803 {
1804 struct lwp *l = curlwp;
1805 struct proc *p = l->l_proc;
1806 int signo;
1807
1808 KASSERT(mutex_owned(p->p_lock));
1809
1810 /* If there's a pending SIGKILL, process it immediately. */
1811 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1812 return 0;
1813
1814 /*
1815 * If we are no longer being traced, or the parent didn't
1816 * give us a signal, or we're stopping, look for more signals.
1817 */
1818 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1819 (p->p_sflag & PS_STOPPING) != 0)
1820 return 0;
1821
1822 /*
1823 * If the new signal is being masked, look for other signals.
1824 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1825 */
1826 signo = p->p_xsig;
1827 p->p_xsig = 0;
1828 if (sigismember(&l->l_sigmask, signo)) {
1829 signo = 0;
1830 }
1831 return signo;
1832 }
1833
1834 /*
1835 * If the current process has received a signal (should be caught or cause
1836 * termination, should interrupt current syscall), return the signal number.
1837 *
1838 * Stop signals with default action are processed immediately, then cleared;
1839 * they aren't returned. This is checked after each entry to the system for
1840 * a syscall or trap.
1841 *
1842 * We will also return -1 if the process is exiting and the current LWP must
1843 * follow suit.
1844 */
1845 int
1846 issignal(struct lwp *l)
1847 {
1848 struct proc *p;
1849 int siglwp, signo, prop;
1850 sigpend_t *sp;
1851 sigset_t ss;
1852 bool traced;
1853
1854 p = l->l_proc;
1855 sp = NULL;
1856 signo = 0;
1857
1858 KASSERT(p == curproc);
1859 KASSERT(mutex_owned(p->p_lock));
1860
1861 for (;;) {
1862 /* Discard any signals that we have decided not to take. */
1863 if (signo != 0) {
1864 (void)sigget(sp, NULL, signo, NULL);
1865 }
1866
1867 /*
1868 * If the process is stopped/stopping, then stop ourselves
1869 * now that we're on the kernel/userspace boundary. When
1870 * we awaken, check for a signal from the debugger.
1871 */
1872 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1873 sigswitch_unlock_and_switch_away(l);
1874 mutex_enter(p->p_lock);
1875 continue;
1876 } else if (p->p_stat == SACTIVE)
1877 signo = sigchecktrace();
1878 else
1879 signo = 0;
1880
1881 /* Signals from the debugger are "out of band". */
1882 sp = NULL;
1883
1884 /*
1885 * If the debugger didn't provide a signal, find a pending
1886 * signal from our set. Check per-LWP signals first, and
1887 * then per-process.
1888 */
1889 if (signo == 0) {
1890 sp = &l->l_sigpend;
1891 ss = sp->sp_set;
1892 siglwp = l->l_lid;
1893 if ((p->p_lflag & PL_PPWAIT) != 0)
1894 sigminusset(&vforksigmask, &ss);
1895 sigminusset(&l->l_sigmask, &ss);
1896
1897 if ((signo = firstsig(&ss)) == 0) {
1898 sp = &p->p_sigpend;
1899 ss = sp->sp_set;
1900 siglwp = 0;
1901 if ((p->p_lflag & PL_PPWAIT) != 0)
1902 sigminusset(&vforksigmask, &ss);
1903 sigminusset(&l->l_sigmask, &ss);
1904
1905 if ((signo = firstsig(&ss)) == 0) {
1906 /*
1907 * No signal pending - clear the
1908 * indicator and bail out.
1909 */
1910 lwp_lock(l);
1911 l->l_flag &= ~LW_PENDSIG;
1912 lwp_unlock(l);
1913 sp = NULL;
1914 break;
1915 }
1916 }
1917 }
1918
1919 traced = ISSET(p->p_slflag, PSL_TRACED) &&
1920 !sigismember(&p->p_sigctx.ps_sigpass, signo);
1921
1922 if (sp) {
1923 /* Overwrite process' signal context to correspond
1924 * to the currently reported LWP. This is necessary
1925 * for PT_GET_SIGINFO to report the correct signal when
1926 * multiple LWPs have pending signals. We do this only
1927 * when the signal comes from the queue, for signals
1928 * created by the debugger we assume it set correct
1929 * siginfo.
1930 */
1931 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1932 if (ksi) {
1933 p->p_sigctx.ps_lwp = ksi->ksi_lid;
1934 p->p_sigctx.ps_info = ksi->ksi_info;
1935 } else {
1936 p->p_sigctx.ps_lwp = siglwp;
1937 memset(&p->p_sigctx.ps_info, 0,
1938 sizeof(p->p_sigctx.ps_info));
1939 p->p_sigctx.ps_info._signo = signo;
1940 p->p_sigctx.ps_info._code = SI_NOINFO;
1941 }
1942 }
1943
1944 /*
1945 * We should see pending but ignored signals only if
1946 * we are being traced.
1947 */
1948 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1949 !traced) {
1950 /* Discard the signal. */
1951 continue;
1952 }
1953
1954 /*
1955 * If traced, always stop, and stay stopped until released
1956 * by the debugger. If the our parent is our debugger waiting
1957 * for us and we vforked, don't hang as we could deadlock.
1958 */
1959 if (traced && signo != SIGKILL &&
1960 !(ISSET(p->p_lflag, PL_PPWAIT) &&
1961 (p->p_pptr == p->p_opptr))) {
1962 /*
1963 * Take the signal, but don't remove it from the
1964 * siginfo queue, because the debugger can send
1965 * it later.
1966 */
1967 if (sp)
1968 sigdelset(&sp->sp_set, signo);
1969 p->p_xsig = signo;
1970
1971 /* Handling of signal trace */
1972 sigswitch(0, signo, false);
1973 mutex_enter(p->p_lock);
1974
1975 /* Check for a signal from the debugger. */
1976 if ((signo = sigchecktrace()) == 0)
1977 continue;
1978
1979 /* Signals from the debugger are "out of band". */
1980 sp = NULL;
1981 }
1982
1983 prop = sigprop[signo];
1984
1985 /*
1986 * Decide whether the signal should be returned.
1987 */
1988 switch ((long)SIGACTION(p, signo).sa_handler) {
1989 case (long)SIG_DFL:
1990 /*
1991 * Don't take default actions on system processes.
1992 */
1993 if (p->p_pid <= 1) {
1994 #ifdef DIAGNOSTIC
1995 /*
1996 * Are you sure you want to ignore SIGSEGV
1997 * in init? XXX
1998 */
1999 printf_nolog("Process (pid %d) got sig %d\n",
2000 p->p_pid, signo);
2001 #endif
2002 continue;
2003 }
2004
2005 /*
2006 * If there is a pending stop signal to process with
2007 * default action, stop here, then clear the signal.
2008 * However, if process is member of an orphaned
2009 * process group, ignore tty stop signals.
2010 */
2011 if (prop & SA_STOP) {
2012 /*
2013 * XXX Don't hold proc_lock for p_lflag,
2014 * but it's not a big deal.
2015 */
2016 if ((traced &&
2017 !(ISSET(p->p_lflag, PL_PPWAIT) &&
2018 (p->p_pptr == p->p_opptr))) ||
2019 ((p->p_lflag & PL_ORPHANPG) != 0 &&
2020 prop & SA_TTYSTOP)) {
2021 /* Ignore the signal. */
2022 continue;
2023 }
2024 /* Take the signal. */
2025 (void)sigget(sp, NULL, signo, NULL);
2026 p->p_xsig = signo;
2027 p->p_sflag &= ~PS_CONTINUED;
2028 signo = 0;
2029 sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2030 mutex_enter(p->p_lock);
2031 } else if (prop & SA_IGNORE) {
2032 /*
2033 * Except for SIGCONT, shouldn't get here.
2034 * Default action is to ignore; drop it.
2035 */
2036 continue;
2037 }
2038 break;
2039
2040 case (long)SIG_IGN:
2041 #ifdef DEBUG_ISSIGNAL
2042 /*
2043 * Masking above should prevent us ever trying
2044 * to take action on an ignored signal other
2045 * than SIGCONT, unless process is traced.
2046 */
2047 if ((prop & SA_CONT) == 0 && !traced)
2048 printf_nolog("issignal\n");
2049 #endif
2050 continue;
2051
2052 default:
2053 /*
2054 * This signal has an action, let postsig() process
2055 * it.
2056 */
2057 break;
2058 }
2059
2060 break;
2061 }
2062
2063 l->l_sigpendset = sp;
2064 return signo;
2065 }
2066
2067 /*
2068 * Take the action for the specified signal
2069 * from the current set of pending signals.
2070 */
2071 void
2072 postsig(int signo)
2073 {
2074 struct lwp *l;
2075 struct proc *p;
2076 struct sigacts *ps;
2077 sig_t action;
2078 sigset_t *returnmask;
2079 ksiginfo_t ksi;
2080
2081 l = curlwp;
2082 p = l->l_proc;
2083 ps = p->p_sigacts;
2084
2085 KASSERT(mutex_owned(p->p_lock));
2086 KASSERT(signo > 0);
2087
2088 /*
2089 * Set the new mask value and also defer further occurrences of this
2090 * signal.
2091 *
2092 * Special case: user has done a sigsuspend. Here the current mask is
2093 * not of interest, but rather the mask from before the sigsuspend is
2094 * what we want restored after the signal processing is completed.
2095 */
2096 if (l->l_sigrestore) {
2097 returnmask = &l->l_sigoldmask;
2098 l->l_sigrestore = 0;
2099 } else
2100 returnmask = &l->l_sigmask;
2101
2102 /*
2103 * Commit to taking the signal before releasing the mutex.
2104 */
2105 action = SIGACTION_PS(ps, signo).sa_handler;
2106 l->l_ru.ru_nsignals++;
2107 if (l->l_sigpendset == NULL) {
2108 /* From the debugger */
2109 if (p->p_sigctx.ps_faked &&
2110 signo == p->p_sigctx.ps_info._signo) {
2111 KSI_INIT(&ksi);
2112 ksi.ksi_info = p->p_sigctx.ps_info;
2113 ksi.ksi_lid = p->p_sigctx.ps_lwp;
2114 p->p_sigctx.ps_faked = false;
2115 } else {
2116 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2117 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
2118 }
2119 } else
2120 sigget(l->l_sigpendset, &ksi, signo, NULL);
2121
2122 if (ktrpoint(KTR_PSIG)) {
2123 mutex_exit(p->p_lock);
2124 if (p->p_emul->e_ktrpsig)
2125 p->p_emul->e_ktrpsig(signo, action,
2126 returnmask, &ksi);
2127 else
2128 ktrpsig(signo, action, returnmask, &ksi);
2129 mutex_enter(p->p_lock);
2130 }
2131
2132 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2133
2134 if (action == SIG_DFL) {
2135 /*
2136 * Default action, where the default is to kill
2137 * the process. (Other cases were ignored above.)
2138 */
2139 sigexit(l, signo);
2140 return;
2141 }
2142
2143 /*
2144 * If we get here, the signal must be caught.
2145 */
2146 #ifdef DIAGNOSTIC
2147 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2148 panic("postsig action");
2149 #endif
2150
2151 kpsendsig(l, &ksi, returnmask);
2152 }
2153
2154 /*
2155 * sendsig:
2156 *
2157 * Default signal delivery method for NetBSD.
2158 */
2159 void
2160 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2161 {
2162 struct sigacts *sa;
2163 int sig;
2164
2165 sig = ksi->ksi_signo;
2166 sa = curproc->p_sigacts;
2167
2168 switch (sa->sa_sigdesc[sig].sd_vers) {
2169 case 0:
2170 case 1:
2171 /* Compat for 1.6 and earlier. */
2172 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2173 break);
2174 return;
2175 case 2:
2176 case 3:
2177 sendsig_siginfo(ksi, mask);
2178 return;
2179 default:
2180 break;
2181 }
2182
2183 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2184 sigexit(curlwp, SIGILL);
2185 }
2186
2187 /*
2188 * sendsig_reset:
2189 *
2190 * Reset the signal action. Called from emulation specific sendsig()
2191 * before unlocking to deliver the signal.
2192 */
2193 void
2194 sendsig_reset(struct lwp *l, int signo)
2195 {
2196 struct proc *p = l->l_proc;
2197 struct sigacts *ps = p->p_sigacts;
2198
2199 KASSERT(mutex_owned(p->p_lock));
2200
2201 p->p_sigctx.ps_lwp = 0;
2202 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2203
2204 mutex_enter(&ps->sa_mutex);
2205 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2206 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2207 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2208 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2209 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2210 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2211 }
2212 mutex_exit(&ps->sa_mutex);
2213 }
2214
2215 /*
2216 * Kill the current process for stated reason.
2217 */
2218 void
2219 killproc(struct proc *p, const char *why)
2220 {
2221
2222 KASSERT(mutex_owned(&proc_lock));
2223
2224 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2225 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2226 psignal(p, SIGKILL);
2227 }
2228
2229 /*
2230 * Force the current process to exit with the specified signal, dumping core
2231 * if appropriate. We bypass the normal tests for masked and caught
2232 * signals, allowing unrecoverable failures to terminate the process without
2233 * changing signal state. Mark the accounting record with the signal
2234 * termination. If dumping core, save the signal number for the debugger.
2235 * Calls exit and does not return.
2236 */
2237 void
2238 sigexit(struct lwp *l, int signo)
2239 {
2240 int exitsig, error, docore;
2241 struct proc *p;
2242 struct lwp *t;
2243
2244 p = l->l_proc;
2245
2246 KASSERT(mutex_owned(p->p_lock));
2247 KERNEL_UNLOCK_ALL(l, NULL);
2248
2249 /*
2250 * Don't permit coredump() multiple times in the same process.
2251 * Call back into sigexit, where we will be suspended until
2252 * the deed is done. Note that this is a recursive call, but
2253 * LW_WCORE will prevent us from coming back this way.
2254 */
2255 if ((p->p_sflag & PS_WCORE) != 0) {
2256 lwp_lock(l);
2257 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2258 lwp_unlock(l);
2259 mutex_exit(p->p_lock);
2260 lwp_userret(l);
2261 panic("sigexit 1");
2262 /* NOTREACHED */
2263 }
2264
2265 /* If process is already on the way out, then bail now. */
2266 if ((p->p_sflag & PS_WEXIT) != 0) {
2267 mutex_exit(p->p_lock);
2268 lwp_exit(l);
2269 panic("sigexit 2");
2270 /* NOTREACHED */
2271 }
2272
2273 /*
2274 * Prepare all other LWPs for exit. If dumping core, suspend them
2275 * so that their registers are available long enough to be dumped.
2276 */
2277 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2278 p->p_sflag |= PS_WCORE;
2279 for (;;) {
2280 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2281 lwp_lock(t);
2282 if (t == l) {
2283 t->l_flag &=
2284 ~(LW_WSUSPEND | LW_DBGSUSPEND);
2285 lwp_unlock(t);
2286 continue;
2287 }
2288 t->l_flag |= (LW_WCORE | LW_WEXIT);
2289 lwp_suspend(l, t);
2290 }
2291
2292 if (p->p_nrlwps == 1)
2293 break;
2294
2295 /*
2296 * Kick any LWPs sitting in lwp_wait1(), and wait
2297 * for everyone else to stop before proceeding.
2298 */
2299 p->p_nlwpwait++;
2300 cv_broadcast(&p->p_lwpcv);
2301 cv_wait(&p->p_lwpcv, p->p_lock);
2302 p->p_nlwpwait--;
2303 }
2304 }
2305
2306 exitsig = signo;
2307 p->p_acflag |= AXSIG;
2308 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2309 p->p_sigctx.ps_info._signo = signo;
2310 p->p_sigctx.ps_info._code = SI_NOINFO;
2311
2312 if (docore) {
2313 mutex_exit(p->p_lock);
2314 MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2315
2316 if (kern_logsigexit) {
2317 int uid = l->l_cred ?
2318 (int)kauth_cred_geteuid(l->l_cred) : -1;
2319
2320 if (error)
2321 log(LOG_INFO, lognocoredump, p->p_pid,
2322 p->p_comm, uid, signo, error);
2323 else
2324 log(LOG_INFO, logcoredump, p->p_pid,
2325 p->p_comm, uid, signo);
2326 }
2327
2328 #ifdef PAX_SEGVGUARD
2329 rw_enter(&exec_lock, RW_WRITER);
2330 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2331 rw_exit(&exec_lock);
2332 #endif /* PAX_SEGVGUARD */
2333
2334 /* Acquire the sched state mutex. exit1() will release it. */
2335 mutex_enter(p->p_lock);
2336 if (error == 0)
2337 p->p_sflag |= PS_COREDUMP;
2338 }
2339
2340 /* No longer dumping core. */
2341 p->p_sflag &= ~PS_WCORE;
2342
2343 exit1(l, 0, exitsig);
2344 /* NOTREACHED */
2345 }
2346
2347 /*
2348 * Since the "real" code may (or may not) be present in loadable module,
2349 * we provide routines here which calls the module hooks.
2350 */
2351
2352 int
2353 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2354 {
2355
2356 int retval;
2357
2358 MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2359 return retval;
2360 }
2361
2362 int
2363 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
2364 {
2365
2366 int retval;
2367
2368 MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
2369 return retval;
2370 }
2371
2372 int
2373 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
2374 {
2375 int retval;
2376
2377 MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
2378 return retval;
2379 }
2380
2381 int
2382 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
2383 {
2384 int retval;
2385
2386 MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
2387 return retval;
2388 }
2389
2390 /*
2391 * Put process 'p' into the stopped state and optionally, notify the parent.
2392 */
2393 void
2394 proc_stop(struct proc *p, int signo)
2395 {
2396 struct lwp *l;
2397
2398 KASSERT(mutex_owned(p->p_lock));
2399
2400 /*
2401 * First off, set the stopping indicator and bring all sleeping
2402 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2403 * unlock between here and the p->p_nrlwps check below.
2404 */
2405 p->p_sflag |= PS_STOPPING;
2406 membar_producer();
2407
2408 proc_stop_lwps(p);
2409
2410 /*
2411 * If there are no LWPs available to take the signal, then we
2412 * signal the parent process immediately. Otherwise, the last
2413 * LWP to stop will take care of it.
2414 */
2415
2416 if (p->p_nrlwps == 0) {
2417 proc_stop_done(p, PS_NOCLDSTOP);
2418 } else {
2419 /*
2420 * Have the remaining LWPs come to a halt, and trigger
2421 * proc_stop_callout() to ensure that they do.
2422 */
2423 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2424 sigpost(l, SIG_DFL, SA_STOP, signo);
2425 }
2426 callout_schedule(&proc_stop_ch, 1);
2427 }
2428 }
2429
2430 /*
2431 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2432 * but wait for them to come to a halt at the kernel-user boundary. This is
2433 * to allow LWPs to release any locks that they may hold before stopping.
2434 *
2435 * Non-interruptable sleeps can be long, and there is the potential for an
2436 * LWP to begin sleeping interruptably soon after the process has been set
2437 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2438 * stopping, and so complete halt of the process and the return of status
2439 * information to the parent could be delayed indefinitely.
2440 *
2441 * To handle this race, proc_stop_callout() runs once per tick while there
2442 * are stopping processes in the system. It sets LWPs that are sleeping
2443 * interruptably into the LSSTOP state.
2444 *
2445 * Note that we are not concerned about keeping all LWPs stopped while the
2446 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2447 * What we do need to ensure is that all LWPs in a stopping process have
2448 * stopped at least once, so that notification can be sent to the parent
2449 * process.
2450 */
2451 static void
2452 proc_stop_callout(void *cookie)
2453 {
2454 bool more, restart;
2455 struct proc *p;
2456
2457 (void)cookie;
2458
2459 do {
2460 restart = false;
2461 more = false;
2462
2463 mutex_enter(&proc_lock);
2464 PROCLIST_FOREACH(p, &allproc) {
2465 mutex_enter(p->p_lock);
2466
2467 if ((p->p_sflag & PS_STOPPING) == 0) {
2468 mutex_exit(p->p_lock);
2469 continue;
2470 }
2471
2472 /* Stop any LWPs sleeping interruptably. */
2473 proc_stop_lwps(p);
2474 if (p->p_nrlwps == 0) {
2475 /*
2476 * We brought the process to a halt.
2477 * Mark it as stopped and notify the
2478 * parent.
2479 *
2480 * Note that proc_stop_done() will
2481 * drop p->p_lock briefly.
2482 * Arrange to restart and check
2483 * all processes again.
2484 */
2485 restart = true;
2486 proc_stop_done(p, PS_NOCLDSTOP);
2487 } else
2488 more = true;
2489
2490 mutex_exit(p->p_lock);
2491 if (restart)
2492 break;
2493 }
2494 mutex_exit(&proc_lock);
2495 } while (restart);
2496
2497 /*
2498 * If we noted processes that are stopping but still have
2499 * running LWPs, then arrange to check again in 1 tick.
2500 */
2501 if (more)
2502 callout_schedule(&proc_stop_ch, 1);
2503 }
2504
2505 /*
2506 * Given a process in state SSTOP, set the state back to SACTIVE and
2507 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2508 */
2509 void
2510 proc_unstop(struct proc *p)
2511 {
2512 struct lwp *l;
2513 int sig;
2514
2515 KASSERT(mutex_owned(&proc_lock));
2516 KASSERT(mutex_owned(p->p_lock));
2517
2518 p->p_stat = SACTIVE;
2519 p->p_sflag &= ~PS_STOPPING;
2520 sig = p->p_xsig;
2521
2522 if (!p->p_waited)
2523 p->p_pptr->p_nstopchild--;
2524
2525 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2526 lwp_lock(l);
2527 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2528 lwp_unlock(l);
2529 continue;
2530 }
2531 if (l->l_wchan == NULL) {
2532 setrunnable(l);
2533 continue;
2534 }
2535 if (sig && (l->l_flag & LW_SINTR) != 0) {
2536 setrunnable(l);
2537 sig = 0;
2538 } else {
2539 l->l_stat = LSSLEEP;
2540 p->p_nrlwps++;
2541 lwp_unlock(l);
2542 }
2543 }
2544 }
2545
2546 void
2547 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2548 const register_t *ret, int error)
2549 {
2550 struct lwp *l = curlwp;
2551 struct proc *p = l->l_proc;
2552 struct sigacts *ps;
2553 sigset_t *mask;
2554 sig_t action;
2555 ksiginfo_t ksi;
2556 size_t i, sy_narg;
2557 const int signo = SIGTRAP;
2558
2559 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2560 KASSERT(p->p_pptr != initproc);
2561 KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2562 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2563
2564 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2565
2566 KSI_INIT_TRAP(&ksi);
2567 ksi.ksi_lid = l->l_lid;
2568 ksi.ksi_signo = signo;
2569 ksi.ksi_code = trapno;
2570
2571 ksi.ksi_sysnum = sysnum;
2572 if (trapno == TRAP_SCE) {
2573 ksi.ksi_retval[0] = 0;
2574 ksi.ksi_retval[1] = 0;
2575 ksi.ksi_error = 0;
2576 } else {
2577 ksi.ksi_retval[0] = ret[0];
2578 ksi.ksi_retval[1] = ret[1];
2579 ksi.ksi_error = error;
2580 }
2581
2582 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2583
2584 for (i = 0; i < sy_narg; i++)
2585 ksi.ksi_args[i] = args[i];
2586
2587 mutex_enter(p->p_lock);
2588
2589 repeat:
2590 /*
2591 * If we are exiting, demise now.
2592 *
2593 * This avoids notifying tracer and deadlocking.
2594 */
2595 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2596 mutex_exit(p->p_lock);
2597 lwp_exit(l);
2598 panic("proc_stoptrace");
2599 /* NOTREACHED */
2600 }
2601
2602 /*
2603 * If there's a pending SIGKILL process it immediately.
2604 */
2605 if (p->p_xsig == SIGKILL ||
2606 sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2607 mutex_exit(p->p_lock);
2608 return;
2609 }
2610
2611 /*
2612 * If we are no longer traced, abandon this event signal.
2613 *
2614 * This avoids killing a process after detaching the debugger.
2615 */
2616 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2617 mutex_exit(p->p_lock);
2618 return;
2619 }
2620
2621 /*
2622 * The process is already stopping.
2623 */
2624 if ((p->p_sflag & PS_STOPPING) != 0) {
2625 sigswitch_unlock_and_switch_away(l);
2626 mutex_enter(p->p_lock);
2627 goto repeat;
2628 }
2629
2630 /* Needed for ktrace */
2631 ps = p->p_sigacts;
2632 action = SIGACTION_PS(ps, signo).sa_handler;
2633 mask = &l->l_sigmask;
2634
2635 p->p_xsig = signo;
2636 p->p_sigctx.ps_lwp = ksi.ksi_lid;
2637 p->p_sigctx.ps_info = ksi.ksi_info;
2638 sigswitch(0, signo, false);
2639
2640 if (ktrpoint(KTR_PSIG)) {
2641 if (p->p_emul->e_ktrpsig)
2642 p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2643 else
2644 ktrpsig(signo, action, mask, &ksi);
2645 }
2646 }
2647
2648 static int
2649 filt_sigattach(struct knote *kn)
2650 {
2651 struct proc *p = curproc;
2652
2653 kn->kn_obj = p;
2654 kn->kn_flags |= EV_CLEAR; /* automatically set */
2655
2656 mutex_enter(p->p_lock);
2657 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2658 mutex_exit(p->p_lock);
2659
2660 return 0;
2661 }
2662
2663 static void
2664 filt_sigdetach(struct knote *kn)
2665 {
2666 struct proc *p = kn->kn_obj;
2667
2668 mutex_enter(p->p_lock);
2669 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2670 mutex_exit(p->p_lock);
2671 }
2672
2673 /*
2674 * Signal knotes are shared with proc knotes, so we apply a mask to
2675 * the hint in order to differentiate them from process hints. This
2676 * could be avoided by using a signal-specific knote list, but probably
2677 * isn't worth the trouble.
2678 */
2679 static int
2680 filt_signal(struct knote *kn, long hint)
2681 {
2682
2683 if (hint & NOTE_SIGNAL) {
2684 hint &= ~NOTE_SIGNAL;
2685
2686 if (kn->kn_id == hint)
2687 kn->kn_data++;
2688 }
2689 return (kn->kn_data != 0);
2690 }
2691
2692 const struct filterops sig_filtops = {
2693 .f_isfd = 0,
2694 .f_attach = filt_sigattach,
2695 .f_detach = filt_sigdetach,
2696 .f_event = filt_signal,
2697 };
2698