Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.395
      1 /*	$NetBSD: kern_sig.c,v 1.395 2020/11/01 18:51:02 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.395 2020/11/01 18:51:02 pgoyette Exp $");
     74 
     75 #include "opt_execfmt.h"
     76 #include "opt_ptrace.h"
     77 #include "opt_dtrace.h"
     78 #include "opt_compat_sunos.h"
     79 #include "opt_compat_netbsd.h"
     80 #include "opt_compat_netbsd32.h"
     81 #include "opt_pax.h"
     82 
     83 #define	SIGPROP		/* include signal properties table */
     84 #include <sys/param.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/proc.h>
     87 #include <sys/ptrace.h>
     88 #include <sys/systm.h>
     89 #include <sys/wait.h>
     90 #include <sys/ktrace.h>
     91 #include <sys/syslog.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/file.h>
     94 #include <sys/pool.h>
     95 #include <sys/ucontext.h>
     96 #include <sys/exec.h>
     97 #include <sys/kauth.h>
     98 #include <sys/acct.h>
     99 #include <sys/callout.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/sdt.h>
    104 #include <sys/exec_elf.h>
    105 #include <sys/compat_stub.h>
    106 
    107 #ifdef PAX_SEGVGUARD
    108 #include <sys/pax.h>
    109 #endif /* PAX_SEGVGUARD */
    110 
    111 #include <uvm/uvm_extern.h>
    112 
    113 #define	SIGQUEUE_MAX	32
    114 static pool_cache_t	sigacts_cache	__read_mostly;
    115 static pool_cache_t	ksiginfo_cache	__read_mostly;
    116 static callout_t	proc_stop_ch	__cacheline_aligned;
    117 
    118 sigset_t		contsigmask	__cacheline_aligned;
    119 sigset_t		stopsigmask	__cacheline_aligned;
    120 static sigset_t		vforksigmask	__cacheline_aligned;
    121 sigset_t		sigcantmask	__cacheline_aligned;
    122 
    123 static void	ksiginfo_exechook(struct proc *, void *);
    124 static void	proc_stop(struct proc *, int);
    125 static void	proc_stop_done(struct proc *, int);
    126 static void	proc_stop_callout(void *);
    127 static int	sigchecktrace(void);
    128 static int	sigpost(struct lwp *, sig_t, int, int);
    129 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    130 static int	sigunwait(struct proc *, const ksiginfo_t *);
    131 static void	sigswitch(int, int, bool);
    132 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    133 
    134 static void	sigacts_poolpage_free(struct pool *, void *);
    135 static void	*sigacts_poolpage_alloc(struct pool *, int);
    136 
    137 /*
    138  * DTrace SDT provider definitions
    139  */
    140 SDT_PROVIDER_DECLARE(proc);
    141 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    142     "struct lwp *", 	/* target thread */
    143     "struct proc *", 	/* target process */
    144     "int");		/* signal */
    145 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    146     "struct lwp *",	/* target thread */
    147     "struct proc *",	/* target process */
    148     "int");  		/* signal */
    149 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    150     "int", 		/* signal */
    151     "ksiginfo_t *", 	/* signal info */
    152     "void (*)(void)");	/* handler address */
    153 
    154 
    155 static struct pool_allocator sigactspool_allocator = {
    156 	.pa_alloc = sigacts_poolpage_alloc,
    157 	.pa_free = sigacts_poolpage_free
    158 };
    159 
    160 #ifdef DEBUG
    161 int	kern_logsigexit = 1;
    162 #else
    163 int	kern_logsigexit = 0;
    164 #endif
    165 
    166 static const char logcoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    168 static const char lognocoredump[] =
    169     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    170 
    171 static kauth_listener_t signal_listener;
    172 
    173 static int
    174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    175     void *arg0, void *arg1, void *arg2, void *arg3)
    176 {
    177 	struct proc *p;
    178 	int result, signum;
    179 
    180 	result = KAUTH_RESULT_DEFER;
    181 	p = arg0;
    182 	signum = (int)(unsigned long)arg1;
    183 
    184 	if (action != KAUTH_PROCESS_SIGNAL)
    185 		return result;
    186 
    187 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    188 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    189 		result = KAUTH_RESULT_ALLOW;
    190 
    191 	return result;
    192 }
    193 
    194 static int
    195 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    196 {
    197 	memset(obj, 0, sizeof(struct sigacts));
    198 	return 0;
    199 }
    200 
    201 /*
    202  * signal_init:
    203  *
    204  *	Initialize global signal-related data structures.
    205  */
    206 void
    207 signal_init(void)
    208 {
    209 
    210 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    211 
    212 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    213 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    214 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    215 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    216 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    217 
    218 	exechook_establish(ksiginfo_exechook, NULL);
    219 
    220 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    221 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    222 
    223 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    224 	    signal_listener_cb, NULL);
    225 }
    226 
    227 /*
    228  * sigacts_poolpage_alloc:
    229  *
    230  *	Allocate a page for the sigacts memory pool.
    231  */
    232 static void *
    233 sigacts_poolpage_alloc(struct pool *pp, int flags)
    234 {
    235 
    236 	return (void *)uvm_km_alloc(kernel_map,
    237 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    238 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    239 	    | UVM_KMF_WIRED);
    240 }
    241 
    242 /*
    243  * sigacts_poolpage_free:
    244  *
    245  *	Free a page on behalf of the sigacts memory pool.
    246  */
    247 static void
    248 sigacts_poolpage_free(struct pool *pp, void *v)
    249 {
    250 
    251 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    252 }
    253 
    254 /*
    255  * sigactsinit:
    256  *
    257  *	Create an initial sigacts structure, using the same signal state
    258  *	as of specified process.  If 'share' is set, share the sigacts by
    259  *	holding a reference, otherwise just copy it from parent.
    260  */
    261 struct sigacts *
    262 sigactsinit(struct proc *pp, int share)
    263 {
    264 	struct sigacts *ps = pp->p_sigacts, *ps2;
    265 
    266 	if (__predict_false(share)) {
    267 		atomic_inc_uint(&ps->sa_refcnt);
    268 		return ps;
    269 	}
    270 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    271 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    272 	ps2->sa_refcnt = 1;
    273 
    274 	mutex_enter(&ps->sa_mutex);
    275 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    276 	mutex_exit(&ps->sa_mutex);
    277 	return ps2;
    278 }
    279 
    280 /*
    281  * sigactsunshare:
    282  *
    283  *	Make this process not share its sigacts, maintaining all signal state.
    284  */
    285 void
    286 sigactsunshare(struct proc *p)
    287 {
    288 	struct sigacts *ps, *oldps = p->p_sigacts;
    289 
    290 	if (__predict_true(oldps->sa_refcnt == 1))
    291 		return;
    292 
    293 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    294 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    295 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    296 	ps->sa_refcnt = 1;
    297 
    298 	p->p_sigacts = ps;
    299 	sigactsfree(oldps);
    300 }
    301 
    302 /*
    303  * sigactsfree;
    304  *
    305  *	Release a sigacts structure.
    306  */
    307 void
    308 sigactsfree(struct sigacts *ps)
    309 {
    310 
    311 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    312 		mutex_destroy(&ps->sa_mutex);
    313 		pool_cache_put(sigacts_cache, ps);
    314 	}
    315 }
    316 
    317 /*
    318  * siginit:
    319  *
    320  *	Initialize signal state for process 0; set to ignore signals that
    321  *	are ignored by default and disable the signal stack.  Locking not
    322  *	required as the system is still cold.
    323  */
    324 void
    325 siginit(struct proc *p)
    326 {
    327 	struct lwp *l;
    328 	struct sigacts *ps;
    329 	int signo, prop;
    330 
    331 	ps = p->p_sigacts;
    332 	sigemptyset(&contsigmask);
    333 	sigemptyset(&stopsigmask);
    334 	sigemptyset(&vforksigmask);
    335 	sigemptyset(&sigcantmask);
    336 	for (signo = 1; signo < NSIG; signo++) {
    337 		prop = sigprop[signo];
    338 		if (prop & SA_CONT)
    339 			sigaddset(&contsigmask, signo);
    340 		if (prop & SA_STOP)
    341 			sigaddset(&stopsigmask, signo);
    342 		if (prop & SA_STOP && signo != SIGSTOP)
    343 			sigaddset(&vforksigmask, signo);
    344 		if (prop & SA_CANTMASK)
    345 			sigaddset(&sigcantmask, signo);
    346 		if (prop & SA_IGNORE && signo != SIGCONT)
    347 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    348 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    349 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    350 	}
    351 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    352 	p->p_sflag &= ~PS_NOCLDSTOP;
    353 
    354 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    355 	sigemptyset(&p->p_sigpend.sp_set);
    356 
    357 	/*
    358 	 * Reset per LWP state.
    359 	 */
    360 	l = LIST_FIRST(&p->p_lwps);
    361 	l->l_sigwaited = NULL;
    362 	l->l_sigstk = SS_INIT;
    363 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    364 	sigemptyset(&l->l_sigpend.sp_set);
    365 
    366 	/* One reference. */
    367 	ps->sa_refcnt = 1;
    368 }
    369 
    370 /*
    371  * execsigs:
    372  *
    373  *	Reset signals for an exec of the specified process.
    374  */
    375 void
    376 execsigs(struct proc *p)
    377 {
    378 	struct sigacts *ps;
    379 	struct lwp *l;
    380 	int signo, prop;
    381 	sigset_t tset;
    382 	ksiginfoq_t kq;
    383 
    384 	KASSERT(p->p_nlwps == 1);
    385 
    386 	sigactsunshare(p);
    387 	ps = p->p_sigacts;
    388 
    389 	/*
    390 	 * Reset caught signals.  Held signals remain held through
    391 	 * l->l_sigmask (unless they were caught, and are now ignored
    392 	 * by default).
    393 	 *
    394 	 * No need to lock yet, the process has only one LWP and
    395 	 * at this point the sigacts are private to the process.
    396 	 */
    397 	sigemptyset(&tset);
    398 	for (signo = 1; signo < NSIG; signo++) {
    399 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    400 			prop = sigprop[signo];
    401 			if (prop & SA_IGNORE) {
    402 				if ((prop & SA_CONT) == 0)
    403 					sigaddset(&p->p_sigctx.ps_sigignore,
    404 					    signo);
    405 				sigaddset(&tset, signo);
    406 			}
    407 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    408 		}
    409 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    410 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    411 	}
    412 	ksiginfo_queue_init(&kq);
    413 
    414 	mutex_enter(p->p_lock);
    415 	sigclearall(p, &tset, &kq);
    416 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    417 
    418 	/*
    419 	 * Reset no zombies if child dies flag as Solaris does.
    420 	 */
    421 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    422 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    423 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    424 
    425 	/*
    426 	 * Reset per-LWP state.
    427 	 */
    428 	l = LIST_FIRST(&p->p_lwps);
    429 	l->l_sigwaited = NULL;
    430 	l->l_sigstk = SS_INIT;
    431 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    432 	sigemptyset(&l->l_sigpend.sp_set);
    433 	mutex_exit(p->p_lock);
    434 
    435 	ksiginfo_queue_drain(&kq);
    436 }
    437 
    438 /*
    439  * ksiginfo_exechook:
    440  *
    441  *	Free all pending ksiginfo entries from a process on exec.
    442  *	Additionally, drain any unused ksiginfo structures in the
    443  *	system back to the pool.
    444  *
    445  *	XXX This should not be a hook, every process has signals.
    446  */
    447 static void
    448 ksiginfo_exechook(struct proc *p, void *v)
    449 {
    450 	ksiginfoq_t kq;
    451 
    452 	ksiginfo_queue_init(&kq);
    453 
    454 	mutex_enter(p->p_lock);
    455 	sigclearall(p, NULL, &kq);
    456 	mutex_exit(p->p_lock);
    457 
    458 	ksiginfo_queue_drain(&kq);
    459 }
    460 
    461 /*
    462  * ksiginfo_alloc:
    463  *
    464  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    465  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    466  *	has not been queued somewhere, then just return it.  Additionally,
    467  *	if the existing ksiginfo_t does not contain any information beyond
    468  *	the signal number, then just return it.
    469  */
    470 ksiginfo_t *
    471 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    472 {
    473 	ksiginfo_t *kp;
    474 
    475 	if (ok != NULL) {
    476 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    477 		    KSI_FROMPOOL)
    478 			return ok;
    479 		if (KSI_EMPTY_P(ok))
    480 			return ok;
    481 	}
    482 
    483 	kp = pool_cache_get(ksiginfo_cache, flags);
    484 	if (kp == NULL) {
    485 #ifdef DIAGNOSTIC
    486 		printf("Out of memory allocating ksiginfo for pid %d\n",
    487 		    p->p_pid);
    488 #endif
    489 		return NULL;
    490 	}
    491 
    492 	if (ok != NULL) {
    493 		memcpy(kp, ok, sizeof(*kp));
    494 		kp->ksi_flags &= ~KSI_QUEUED;
    495 	} else
    496 		KSI_INIT_EMPTY(kp);
    497 
    498 	kp->ksi_flags |= KSI_FROMPOOL;
    499 
    500 	return kp;
    501 }
    502 
    503 /*
    504  * ksiginfo_free:
    505  *
    506  *	If the given ksiginfo_t is from the pool and has not been queued,
    507  *	then free it.
    508  */
    509 void
    510 ksiginfo_free(ksiginfo_t *kp)
    511 {
    512 
    513 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    514 		return;
    515 	pool_cache_put(ksiginfo_cache, kp);
    516 }
    517 
    518 /*
    519  * ksiginfo_queue_drain:
    520  *
    521  *	Drain a non-empty ksiginfo_t queue.
    522  */
    523 void
    524 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    525 {
    526 	ksiginfo_t *ksi;
    527 
    528 	KASSERT(!TAILQ_EMPTY(kq));
    529 
    530 	while (!TAILQ_EMPTY(kq)) {
    531 		ksi = TAILQ_FIRST(kq);
    532 		TAILQ_REMOVE(kq, ksi, ksi_list);
    533 		pool_cache_put(ksiginfo_cache, ksi);
    534 	}
    535 }
    536 
    537 static int
    538 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    539 {
    540 	ksiginfo_t *ksi, *nksi;
    541 
    542 	if (sp == NULL)
    543 		goto out;
    544 
    545 	/* Find siginfo and copy it out. */
    546 	int count = 0;
    547 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    548 		if (ksi->ksi_signo != signo)
    549 			continue;
    550 		if (count++ > 0) /* Only remove the first, count all of them */
    551 			continue;
    552 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    553 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    554 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    555 		ksi->ksi_flags &= ~KSI_QUEUED;
    556 		if (out != NULL) {
    557 			memcpy(out, ksi, sizeof(*out));
    558 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    559 		}
    560 		ksiginfo_free(ksi);
    561 	}
    562 	if (count)
    563 		return count;
    564 
    565 out:
    566 	/* If there is no siginfo, then manufacture it. */
    567 	if (out != NULL) {
    568 		KSI_INIT(out);
    569 		out->ksi_info._signo = signo;
    570 		out->ksi_info._code = SI_NOINFO;
    571 	}
    572 	return 0;
    573 }
    574 
    575 /*
    576  * sigget:
    577  *
    578  *	Fetch the first pending signal from a set.  Optionally, also fetch
    579  *	or manufacture a ksiginfo element.  Returns the number of the first
    580  *	pending signal, or zero.
    581  */
    582 int
    583 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    584 {
    585 	sigset_t tset;
    586 	int count;
    587 
    588 	/* If there's no pending set, the signal is from the debugger. */
    589 	if (sp == NULL)
    590 		goto out;
    591 
    592 	/* Construct mask from signo, and 'mask'. */
    593 	if (signo == 0) {
    594 		if (mask != NULL) {
    595 			tset = *mask;
    596 			__sigandset(&sp->sp_set, &tset);
    597 		} else
    598 			tset = sp->sp_set;
    599 
    600 		/* If there are no signals pending - return. */
    601 		if ((signo = firstsig(&tset)) == 0)
    602 			goto out;
    603 	} else {
    604 		KASSERT(sigismember(&sp->sp_set, signo));
    605 	}
    606 
    607 	sigdelset(&sp->sp_set, signo);
    608 out:
    609 	count = siggetinfo(sp, out, signo);
    610 	if (count > 1)
    611 		sigaddset(&sp->sp_set, signo);
    612 	return signo;
    613 }
    614 
    615 /*
    616  * sigput:
    617  *
    618  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    619  */
    620 static int
    621 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    622 {
    623 	ksiginfo_t *kp;
    624 
    625 	KASSERT(mutex_owned(p->p_lock));
    626 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    627 
    628 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    629 
    630 	/*
    631 	 * If there is no siginfo, we are done.
    632 	 */
    633 	if (KSI_EMPTY_P(ksi))
    634 		return 0;
    635 
    636 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    637 
    638 	size_t count = 0;
    639 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    640 		count++;
    641 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    642 			continue;
    643 		if (kp->ksi_signo == ksi->ksi_signo) {
    644 			KSI_COPY(ksi, kp);
    645 			kp->ksi_flags |= KSI_QUEUED;
    646 			return 0;
    647 		}
    648 	}
    649 
    650 	if (count >= SIGQUEUE_MAX) {
    651 #ifdef DIAGNOSTIC
    652 		printf("%s(%d): Signal queue is full signal=%d\n",
    653 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    654 #endif
    655 		return EAGAIN;
    656 	}
    657 	ksi->ksi_flags |= KSI_QUEUED;
    658 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    659 
    660 	return 0;
    661 }
    662 
    663 /*
    664  * sigclear:
    665  *
    666  *	Clear all pending signals in the specified set.
    667  */
    668 void
    669 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    670 {
    671 	ksiginfo_t *ksi, *next;
    672 
    673 	if (mask == NULL)
    674 		sigemptyset(&sp->sp_set);
    675 	else
    676 		sigminusset(mask, &sp->sp_set);
    677 
    678 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    679 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    680 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    681 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    682 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    683 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    684 		}
    685 	}
    686 }
    687 
    688 /*
    689  * sigclearall:
    690  *
    691  *	Clear all pending signals in the specified set from a process and
    692  *	its LWPs.
    693  */
    694 void
    695 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    696 {
    697 	struct lwp *l;
    698 
    699 	KASSERT(mutex_owned(p->p_lock));
    700 
    701 	sigclear(&p->p_sigpend, mask, kq);
    702 
    703 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    704 		sigclear(&l->l_sigpend, mask, kq);
    705 	}
    706 }
    707 
    708 /*
    709  * sigispending:
    710  *
    711  *	Return the first signal number if there are pending signals for the
    712  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    713  *	and that the signal has been posted to the appopriate queue before
    714  *	LW_PENDSIG is set.
    715  *
    716  *	This should only ever be called with (l == curlwp), unless the
    717  *	result does not matter (procfs, sysctl).
    718  */
    719 int
    720 sigispending(struct lwp *l, int signo)
    721 {
    722 	struct proc *p = l->l_proc;
    723 	sigset_t tset;
    724 
    725 	membar_consumer();
    726 
    727 	tset = l->l_sigpend.sp_set;
    728 	sigplusset(&p->p_sigpend.sp_set, &tset);
    729 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    730 	sigminusset(&l->l_sigmask, &tset);
    731 
    732 	if (signo == 0) {
    733 		return firstsig(&tset);
    734 	}
    735 	return sigismember(&tset, signo) ? signo : 0;
    736 }
    737 
    738 void
    739 getucontext(struct lwp *l, ucontext_t *ucp)
    740 {
    741 	struct proc *p = l->l_proc;
    742 
    743 	KASSERT(mutex_owned(p->p_lock));
    744 
    745 	ucp->uc_flags = 0;
    746 	ucp->uc_link = l->l_ctxlink;
    747 	ucp->uc_sigmask = l->l_sigmask;
    748 	ucp->uc_flags |= _UC_SIGMASK;
    749 
    750 	/*
    751 	 * The (unsupplied) definition of the `current execution stack'
    752 	 * in the System V Interface Definition appears to allow returning
    753 	 * the main context stack.
    754 	 */
    755 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    756 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    757 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    758 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    759 	} else {
    760 		/* Simply copy alternate signal execution stack. */
    761 		ucp->uc_stack = l->l_sigstk;
    762 	}
    763 	ucp->uc_flags |= _UC_STACK;
    764 	mutex_exit(p->p_lock);
    765 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    766 	mutex_enter(p->p_lock);
    767 }
    768 
    769 int
    770 setucontext(struct lwp *l, const ucontext_t *ucp)
    771 {
    772 	struct proc *p = l->l_proc;
    773 	int error;
    774 
    775 	KASSERT(mutex_owned(p->p_lock));
    776 
    777 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    778 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    779 		if (error != 0)
    780 			return error;
    781 	}
    782 
    783 	mutex_exit(p->p_lock);
    784 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    785 	mutex_enter(p->p_lock);
    786 	if (error != 0)
    787 		return (error);
    788 
    789 	l->l_ctxlink = ucp->uc_link;
    790 
    791 	/*
    792 	 * If there was stack information, update whether or not we are
    793 	 * still running on an alternate signal stack.
    794 	 */
    795 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    796 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    797 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    798 		else
    799 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    800 	}
    801 
    802 	return 0;
    803 }
    804 
    805 /*
    806  * killpg1: common code for kill process group/broadcast kill.
    807  */
    808 int
    809 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    810 {
    811 	struct proc	*p, *cp;
    812 	kauth_cred_t	pc;
    813 	struct pgrp	*pgrp;
    814 	int		nfound;
    815 	int		signo = ksi->ksi_signo;
    816 
    817 	cp = l->l_proc;
    818 	pc = l->l_cred;
    819 	nfound = 0;
    820 
    821 	mutex_enter(&proc_lock);
    822 	if (all) {
    823 		/*
    824 		 * Broadcast.
    825 		 */
    826 		PROCLIST_FOREACH(p, &allproc) {
    827 			if (p->p_pid <= 1 || p == cp ||
    828 			    (p->p_flag & PK_SYSTEM) != 0)
    829 				continue;
    830 			mutex_enter(p->p_lock);
    831 			if (kauth_authorize_process(pc,
    832 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    833 			    NULL) == 0) {
    834 				nfound++;
    835 				if (signo)
    836 					kpsignal2(p, ksi);
    837 			}
    838 			mutex_exit(p->p_lock);
    839 		}
    840 	} else {
    841 		if (pgid == 0)
    842 			/* Zero pgid means send to my process group. */
    843 			pgrp = cp->p_pgrp;
    844 		else {
    845 			pgrp = pgrp_find(pgid);
    846 			if (pgrp == NULL)
    847 				goto out;
    848 		}
    849 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    850 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    851 				continue;
    852 			mutex_enter(p->p_lock);
    853 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    854 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    855 				nfound++;
    856 				if (signo && P_ZOMBIE(p) == 0)
    857 					kpsignal2(p, ksi);
    858 			}
    859 			mutex_exit(p->p_lock);
    860 		}
    861 	}
    862 out:
    863 	mutex_exit(&proc_lock);
    864 	return nfound ? 0 : ESRCH;
    865 }
    866 
    867 /*
    868  * Send a signal to a process group.  If checktty is set, limit to members
    869  * which have a controlling terminal.
    870  */
    871 void
    872 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    873 {
    874 	ksiginfo_t ksi;
    875 
    876 	KASSERT(!cpu_intr_p());
    877 	KASSERT(mutex_owned(&proc_lock));
    878 
    879 	KSI_INIT_EMPTY(&ksi);
    880 	ksi.ksi_signo = sig;
    881 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    882 }
    883 
    884 void
    885 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    886 {
    887 	struct proc *p;
    888 
    889 	KASSERT(!cpu_intr_p());
    890 	KASSERT(mutex_owned(&proc_lock));
    891 	KASSERT(pgrp != NULL);
    892 
    893 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    894 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    895 			kpsignal(p, ksi, data);
    896 }
    897 
    898 /*
    899  * Send a signal caused by a trap to the current LWP.  If it will be caught
    900  * immediately, deliver it with correct code.  Otherwise, post it normally.
    901  */
    902 void
    903 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    904 {
    905 	struct proc	*p;
    906 	struct sigacts	*ps;
    907 	int signo = ksi->ksi_signo;
    908 	sigset_t *mask;
    909 	sig_t action;
    910 
    911 	KASSERT(KSI_TRAP_P(ksi));
    912 
    913 	ksi->ksi_lid = l->l_lid;
    914 	p = l->l_proc;
    915 
    916 	KASSERT(!cpu_intr_p());
    917 	mutex_enter(&proc_lock);
    918 	mutex_enter(p->p_lock);
    919 
    920 repeat:
    921 	/*
    922 	 * If we are exiting, demise now.
    923 	 *
    924 	 * This avoids notifying tracer and deadlocking.
    925 	 */
    926 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    927 		mutex_exit(p->p_lock);
    928 		mutex_exit(&proc_lock);
    929 		lwp_exit(l);
    930 		panic("trapsignal");
    931 		/* NOTREACHED */
    932 	}
    933 
    934 	/*
    935 	 * The process is already stopping.
    936 	 */
    937 	if ((p->p_sflag & PS_STOPPING) != 0) {
    938 		mutex_exit(&proc_lock);
    939 		sigswitch_unlock_and_switch_away(l);
    940 		mutex_enter(&proc_lock);
    941 		mutex_enter(p->p_lock);
    942 		goto repeat;
    943 	}
    944 
    945 	mask = &l->l_sigmask;
    946 	ps = p->p_sigacts;
    947 	action = SIGACTION_PS(ps, signo).sa_handler;
    948 
    949 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    950 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    951 	    p->p_xsig != SIGKILL &&
    952 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    953 		p->p_xsig = signo;
    954 		p->p_sigctx.ps_faked = true;
    955 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    956 		p->p_sigctx.ps_info = ksi->ksi_info;
    957 		sigswitch(0, signo, true);
    958 
    959 		if (ktrpoint(KTR_PSIG)) {
    960 			if (p->p_emul->e_ktrpsig)
    961 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    962 			else
    963 				ktrpsig(signo, action, mask, ksi);
    964 		}
    965 		return;
    966 	}
    967 
    968 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    969 	const bool masked = sigismember(mask, signo);
    970 	if (caught && !masked) {
    971 		mutex_exit(&proc_lock);
    972 		l->l_ru.ru_nsignals++;
    973 		kpsendsig(l, ksi, mask);
    974 		mutex_exit(p->p_lock);
    975 
    976 		if (ktrpoint(KTR_PSIG)) {
    977 			if (p->p_emul->e_ktrpsig)
    978 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    979 			else
    980 				ktrpsig(signo, action, mask, ksi);
    981 		}
    982 		return;
    983 	}
    984 
    985 	/*
    986 	 * If the signal is masked or ignored, then unmask it and
    987 	 * reset it to the default action so that the process or
    988 	 * its tracer will be notified.
    989 	 */
    990 	const bool ignored = action == SIG_IGN;
    991 	if (masked || ignored) {
    992 		mutex_enter(&ps->sa_mutex);
    993 		sigdelset(mask, signo);
    994 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    995 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    996 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    997 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    998 		mutex_exit(&ps->sa_mutex);
    999 	}
   1000 
   1001 	kpsignal2(p, ksi);
   1002 	mutex_exit(p->p_lock);
   1003 	mutex_exit(&proc_lock);
   1004 }
   1005 
   1006 /*
   1007  * Fill in signal information and signal the parent for a child status change.
   1008  */
   1009 void
   1010 child_psignal(struct proc *p, int mask)
   1011 {
   1012 	ksiginfo_t ksi;
   1013 	struct proc *q;
   1014 	int xsig;
   1015 
   1016 	KASSERT(mutex_owned(&proc_lock));
   1017 	KASSERT(mutex_owned(p->p_lock));
   1018 
   1019 	xsig = p->p_xsig;
   1020 
   1021 	KSI_INIT(&ksi);
   1022 	ksi.ksi_signo = SIGCHLD;
   1023 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1024 	ksi.ksi_pid = p->p_pid;
   1025 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1026 	ksi.ksi_status = xsig;
   1027 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1028 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1029 
   1030 	q = p->p_pptr;
   1031 
   1032 	mutex_exit(p->p_lock);
   1033 	mutex_enter(q->p_lock);
   1034 
   1035 	if ((q->p_sflag & mask) == 0)
   1036 		kpsignal2(q, &ksi);
   1037 
   1038 	mutex_exit(q->p_lock);
   1039 	mutex_enter(p->p_lock);
   1040 }
   1041 
   1042 void
   1043 psignal(struct proc *p, int signo)
   1044 {
   1045 	ksiginfo_t ksi;
   1046 
   1047 	KASSERT(!cpu_intr_p());
   1048 	KASSERT(mutex_owned(&proc_lock));
   1049 
   1050 	KSI_INIT_EMPTY(&ksi);
   1051 	ksi.ksi_signo = signo;
   1052 	mutex_enter(p->p_lock);
   1053 	kpsignal2(p, &ksi);
   1054 	mutex_exit(p->p_lock);
   1055 }
   1056 
   1057 void
   1058 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1059 {
   1060 	fdfile_t *ff;
   1061 	file_t *fp;
   1062 	fdtab_t *dt;
   1063 
   1064 	KASSERT(!cpu_intr_p());
   1065 	KASSERT(mutex_owned(&proc_lock));
   1066 
   1067 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1068 		size_t fd;
   1069 		filedesc_t *fdp = p->p_fd;
   1070 
   1071 		/* XXXSMP locking */
   1072 		ksi->ksi_fd = -1;
   1073 		dt = atomic_load_consume(&fdp->fd_dt);
   1074 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1075 			if ((ff = dt->dt_ff[fd]) == NULL)
   1076 				continue;
   1077 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
   1078 				continue;
   1079 			if (fp->f_data == data) {
   1080 				ksi->ksi_fd = fd;
   1081 				break;
   1082 			}
   1083 		}
   1084 	}
   1085 	mutex_enter(p->p_lock);
   1086 	kpsignal2(p, ksi);
   1087 	mutex_exit(p->p_lock);
   1088 }
   1089 
   1090 /*
   1091  * sigismasked:
   1092  *
   1093  *	Returns true if signal is ignored or masked for the specified LWP.
   1094  */
   1095 int
   1096 sigismasked(struct lwp *l, int sig)
   1097 {
   1098 	struct proc *p = l->l_proc;
   1099 
   1100 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1101 	    sigismember(&l->l_sigmask, sig);
   1102 }
   1103 
   1104 /*
   1105  * sigpost:
   1106  *
   1107  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1108  *	be able to take the signal.
   1109  */
   1110 static int
   1111 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1112 {
   1113 	int rv, masked;
   1114 	struct proc *p = l->l_proc;
   1115 
   1116 	KASSERT(mutex_owned(p->p_lock));
   1117 
   1118 	/*
   1119 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1120 	 * pending signals.  Don't give it more.
   1121 	 */
   1122 	if (l->l_stat == LSZOMB)
   1123 		return 0;
   1124 
   1125 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1126 
   1127 	lwp_lock(l);
   1128 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1129 		if ((prop & SA_KILL) != 0)
   1130 			l->l_flag &= ~LW_DBGSUSPEND;
   1131 		else {
   1132 			lwp_unlock(l);
   1133 			return 0;
   1134 		}
   1135 	}
   1136 
   1137 	/*
   1138 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1139 	 * is found to take the signal immediately, it should be taken soon.
   1140 	 */
   1141 	signotify(l);
   1142 
   1143 	/*
   1144 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1145 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1146 	 */
   1147 	masked = sigismember(&l->l_sigmask, sig);
   1148 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1149 		lwp_unlock(l);
   1150 		return 0;
   1151 	}
   1152 
   1153 	/*
   1154 	 * If killing the process, make it run fast.
   1155 	 */
   1156 	if (__predict_false((prop & SA_KILL) != 0) &&
   1157 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1158 		KASSERT(l->l_class == SCHED_OTHER);
   1159 		lwp_changepri(l, MAXPRI_USER);
   1160 	}
   1161 
   1162 	/*
   1163 	 * If the LWP is running or on a run queue, then we win.  If it's
   1164 	 * sleeping interruptably, wake it and make it take the signal.  If
   1165 	 * the sleep isn't interruptable, then the chances are it will get
   1166 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1167 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1168 	 * for later; otherwise punt.
   1169 	 */
   1170 	rv = 0;
   1171 
   1172 	switch (l->l_stat) {
   1173 	case LSRUN:
   1174 	case LSONPROC:
   1175 		rv = 1;
   1176 		break;
   1177 
   1178 	case LSSLEEP:
   1179 		if ((l->l_flag & LW_SINTR) != 0) {
   1180 			/* setrunnable() will release the lock. */
   1181 			setrunnable(l);
   1182 			return 1;
   1183 		}
   1184 		break;
   1185 
   1186 	case LSSUSPENDED:
   1187 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1188 			/* lwp_continue() will release the lock. */
   1189 			lwp_continue(l);
   1190 			return 1;
   1191 		}
   1192 		break;
   1193 
   1194 	case LSSTOP:
   1195 		if ((prop & SA_STOP) != 0)
   1196 			break;
   1197 
   1198 		/*
   1199 		 * If the LWP is stopped and we are sending a continue
   1200 		 * signal, then start it again.
   1201 		 */
   1202 		if ((prop & SA_CONT) != 0) {
   1203 			if (l->l_wchan != NULL) {
   1204 				l->l_stat = LSSLEEP;
   1205 				p->p_nrlwps++;
   1206 				rv = 1;
   1207 				break;
   1208 			}
   1209 			/* setrunnable() will release the lock. */
   1210 			setrunnable(l);
   1211 			return 1;
   1212 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1213 			/* setrunnable() will release the lock. */
   1214 			setrunnable(l);
   1215 			return 1;
   1216 		}
   1217 		break;
   1218 
   1219 	default:
   1220 		break;
   1221 	}
   1222 
   1223 	lwp_unlock(l);
   1224 	return rv;
   1225 }
   1226 
   1227 /*
   1228  * Notify an LWP that it has a pending signal.
   1229  */
   1230 void
   1231 signotify(struct lwp *l)
   1232 {
   1233 	KASSERT(lwp_locked(l, NULL));
   1234 
   1235 	l->l_flag |= LW_PENDSIG;
   1236 	lwp_need_userret(l);
   1237 }
   1238 
   1239 /*
   1240  * Find an LWP within process p that is waiting on signal ksi, and hand
   1241  * it on.
   1242  */
   1243 static int
   1244 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1245 {
   1246 	struct lwp *l;
   1247 	int signo;
   1248 
   1249 	KASSERT(mutex_owned(p->p_lock));
   1250 
   1251 	signo = ksi->ksi_signo;
   1252 
   1253 	if (ksi->ksi_lid != 0) {
   1254 		/*
   1255 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1256 		 * it's interested.
   1257 		 */
   1258 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1259 			return 0;
   1260 		if (l->l_sigwaited == NULL ||
   1261 		    !sigismember(&l->l_sigwaitset, signo))
   1262 			return 0;
   1263 	} else {
   1264 		/*
   1265 		 * Look for any LWP that may be interested.
   1266 		 */
   1267 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1268 			KASSERT(l->l_sigwaited != NULL);
   1269 			if (sigismember(&l->l_sigwaitset, signo))
   1270 				break;
   1271 		}
   1272 	}
   1273 
   1274 	if (l != NULL) {
   1275 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1276 		l->l_sigwaited = NULL;
   1277 		LIST_REMOVE(l, l_sigwaiter);
   1278 		cv_signal(&l->l_sigcv);
   1279 		return 1;
   1280 	}
   1281 
   1282 	return 0;
   1283 }
   1284 
   1285 /*
   1286  * Send the signal to the process.  If the signal has an action, the action
   1287  * is usually performed by the target process rather than the caller; we add
   1288  * the signal to the set of pending signals for the process.
   1289  *
   1290  * Exceptions:
   1291  *   o When a stop signal is sent to a sleeping process that takes the
   1292  *     default action, the process is stopped without awakening it.
   1293  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1294  *     regardless of the signal action (eg, blocked or ignored).
   1295  *
   1296  * Other ignored signals are discarded immediately.
   1297  */
   1298 int
   1299 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1300 {
   1301 	int prop, signo = ksi->ksi_signo;
   1302 	struct lwp *l = NULL;
   1303 	ksiginfo_t *kp;
   1304 	lwpid_t lid;
   1305 	sig_t action;
   1306 	bool toall;
   1307 	bool traced;
   1308 	int error = 0;
   1309 
   1310 	KASSERT(!cpu_intr_p());
   1311 	KASSERT(mutex_owned(&proc_lock));
   1312 	KASSERT(mutex_owned(p->p_lock));
   1313 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1314 	KASSERT(signo > 0 && signo < NSIG);
   1315 
   1316 	/*
   1317 	 * If the process is being created by fork, is a zombie or is
   1318 	 * exiting, then just drop the signal here and bail out.
   1319 	 */
   1320 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1321 		return 0;
   1322 
   1323 	/*
   1324 	 * Notify any interested parties of the signal.
   1325 	 */
   1326 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1327 
   1328 	/*
   1329 	 * Some signals including SIGKILL must act on the entire process.
   1330 	 */
   1331 	kp = NULL;
   1332 	prop = sigprop[signo];
   1333 	toall = ((prop & SA_TOALL) != 0);
   1334 	lid = toall ? 0 : ksi->ksi_lid;
   1335 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1336 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1337 
   1338 	/*
   1339 	 * If proc is traced, always give parent a chance.
   1340 	 */
   1341 	if (traced) {
   1342 		action = SIG_DFL;
   1343 
   1344 		if (lid == 0) {
   1345 			/*
   1346 			 * If the process is being traced and the signal
   1347 			 * is being caught, make sure to save any ksiginfo.
   1348 			 */
   1349 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1350 				goto discard;
   1351 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1352 				goto out;
   1353 		}
   1354 	} else {
   1355 
   1356 		/*
   1357 		 * If the signal is being ignored, then drop it.  Note: we
   1358 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1359 		 * SIG_IGN, action will be SIG_DFL here.
   1360 		 */
   1361 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1362 			goto discard;
   1363 
   1364 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1365 			action = SIG_CATCH;
   1366 		else {
   1367 			action = SIG_DFL;
   1368 
   1369 			/*
   1370 			 * If sending a tty stop signal to a member of an
   1371 			 * orphaned process group, discard the signal here if
   1372 			 * the action is default; don't stop the process below
   1373 			 * if sleeping, and don't clear any pending SIGCONT.
   1374 			 */
   1375 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1376 				goto discard;
   1377 
   1378 			if (prop & SA_KILL && p->p_nice > NZERO)
   1379 				p->p_nice = NZERO;
   1380 		}
   1381 	}
   1382 
   1383 	/*
   1384 	 * If stopping or continuing a process, discard any pending
   1385 	 * signals that would do the inverse.
   1386 	 */
   1387 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1388 		ksiginfoq_t kq;
   1389 
   1390 		ksiginfo_queue_init(&kq);
   1391 		if ((prop & SA_CONT) != 0)
   1392 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1393 		if ((prop & SA_STOP) != 0)
   1394 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1395 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1396 	}
   1397 
   1398 	/*
   1399 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1400 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1401 	 * the signal info.  The signal won't be processed further here.
   1402 	 */
   1403 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1404 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1405 	    sigunwait(p, ksi))
   1406 		goto discard;
   1407 
   1408 	/*
   1409 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1410 	 * here.
   1411 	 */
   1412 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1413 		goto discard;
   1414 
   1415 	/*
   1416 	 * LWP private signals are easy - just find the LWP and post
   1417 	 * the signal to it.
   1418 	 */
   1419 	if (lid != 0) {
   1420 		l = lwp_find(p, lid);
   1421 		if (l != NULL) {
   1422 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1423 				goto out;
   1424 			membar_producer();
   1425 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1426 				signo = -1;
   1427 		}
   1428 		goto out;
   1429 	}
   1430 
   1431 	/*
   1432 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1433 	 * or for an SA process.
   1434 	 */
   1435 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1436 		if (traced)
   1437 			goto deliver;
   1438 
   1439 		/*
   1440 		 * If SIGCONT is default (or ignored) and process is
   1441 		 * asleep, we are finished; the process should not
   1442 		 * be awakened.
   1443 		 */
   1444 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1445 			goto out;
   1446 	} else {
   1447 		/*
   1448 		 * Process is stopped or stopping.
   1449 		 * - If traced, then no action is needed, unless killing.
   1450 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1451 		 */
   1452 		if (traced && signo != SIGKILL) {
   1453 			goto out;
   1454 		}
   1455 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1456 			/*
   1457 			 * Re-adjust p_nstopchild if the process was
   1458 			 * stopped but not yet collected by its parent.
   1459 			 */
   1460 			if (p->p_stat == SSTOP && !p->p_waited)
   1461 				p->p_pptr->p_nstopchild--;
   1462 			p->p_stat = SACTIVE;
   1463 			p->p_sflag &= ~PS_STOPPING;
   1464 			if (traced) {
   1465 				KASSERT(signo == SIGKILL);
   1466 				goto deliver;
   1467 			}
   1468 			/*
   1469 			 * Do not make signal pending if SIGCONT is default.
   1470 			 *
   1471 			 * If the process catches SIGCONT, let it handle the
   1472 			 * signal itself (if waiting on event - process runs,
   1473 			 * otherwise continues sleeping).
   1474 			 */
   1475 			if ((prop & SA_CONT) != 0) {
   1476 				p->p_xsig = SIGCONT;
   1477 				p->p_sflag |= PS_CONTINUED;
   1478 				child_psignal(p, 0);
   1479 				if (action == SIG_DFL) {
   1480 					KASSERT(signo != SIGKILL);
   1481 					goto deliver;
   1482 				}
   1483 			}
   1484 		} else if ((prop & SA_STOP) != 0) {
   1485 			/*
   1486 			 * Already stopped, don't need to stop again.
   1487 			 * (If we did the shell could get confused.)
   1488 			 */
   1489 			goto out;
   1490 		}
   1491 	}
   1492 	/*
   1493 	 * Make signal pending.
   1494 	 */
   1495 	KASSERT(!traced);
   1496 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1497 		goto out;
   1498 deliver:
   1499 	/*
   1500 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1501 	 * visible on the per process list (for sigispending()).  This
   1502 	 * is unlikely to be needed in practice, but...
   1503 	 */
   1504 	membar_producer();
   1505 
   1506 	/*
   1507 	 * Try to find an LWP that can take the signal.
   1508 	 */
   1509 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1510 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1511 			break;
   1512 	}
   1513 	signo = -1;
   1514 out:
   1515 	/*
   1516 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1517 	 * with locks held.  The caller should take care of this.
   1518 	 */
   1519 	ksiginfo_free(kp);
   1520 	if (signo == -1)
   1521 		return error;
   1522 discard:
   1523 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1524 	return error;
   1525 }
   1526 
   1527 void
   1528 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1529 {
   1530 	struct proc *p = l->l_proc;
   1531 
   1532 	KASSERT(mutex_owned(p->p_lock));
   1533 	(*p->p_emul->e_sendsig)(ksi, mask);
   1534 }
   1535 
   1536 /*
   1537  * Stop any LWPs sleeping interruptably.
   1538  */
   1539 static void
   1540 proc_stop_lwps(struct proc *p)
   1541 {
   1542 	struct lwp *l;
   1543 
   1544 	KASSERT(mutex_owned(p->p_lock));
   1545 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1546 
   1547 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1548 		lwp_lock(l);
   1549 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1550 			l->l_stat = LSSTOP;
   1551 			p->p_nrlwps--;
   1552 		}
   1553 		lwp_unlock(l);
   1554 	}
   1555 }
   1556 
   1557 /*
   1558  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1559  *
   1560  * Drop p_lock briefly if ppsig is true.
   1561  */
   1562 static void
   1563 proc_stop_done(struct proc *p, int ppmask)
   1564 {
   1565 
   1566 	KASSERT(mutex_owned(&proc_lock));
   1567 	KASSERT(mutex_owned(p->p_lock));
   1568 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1569 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1570 
   1571 	p->p_sflag &= ~PS_STOPPING;
   1572 	p->p_stat = SSTOP;
   1573 	p->p_waited = 0;
   1574 	p->p_pptr->p_nstopchild++;
   1575 
   1576 	/* child_psignal drops p_lock briefly. */
   1577 	child_psignal(p, ppmask);
   1578 	cv_broadcast(&p->p_pptr->p_waitcv);
   1579 }
   1580 
   1581 /*
   1582  * Stop the current process and switch away to the debugger notifying
   1583  * an event specific to a traced process only.
   1584  */
   1585 void
   1586 eventswitch(int code, int pe_report_event, int entity)
   1587 {
   1588 	struct lwp *l = curlwp;
   1589 	struct proc *p = l->l_proc;
   1590 	struct sigacts *ps;
   1591 	sigset_t *mask;
   1592 	sig_t action;
   1593 	ksiginfo_t ksi;
   1594 	const int signo = SIGTRAP;
   1595 
   1596 	KASSERT(mutex_owned(&proc_lock));
   1597 	KASSERT(mutex_owned(p->p_lock));
   1598 	KASSERT(p->p_pptr != initproc);
   1599 	KASSERT(l->l_stat == LSONPROC);
   1600 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1601 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1602 	KASSERT(p->p_nrlwps > 0);
   1603 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1604 	        (code == TRAP_EXEC));
   1605 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1606 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1607 
   1608 repeat:
   1609 	/*
   1610 	 * If we are exiting, demise now.
   1611 	 *
   1612 	 * This avoids notifying tracer and deadlocking.
   1613 	 */
   1614 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1615 		mutex_exit(p->p_lock);
   1616 		mutex_exit(&proc_lock);
   1617 
   1618 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1619 			/* Avoid double lwp_exit() and panic. */
   1620 			return;
   1621 		}
   1622 
   1623 		lwp_exit(l);
   1624 		panic("eventswitch");
   1625 		/* NOTREACHED */
   1626 	}
   1627 
   1628 	/*
   1629 	 * If we are no longer traced, abandon this event signal.
   1630 	 *
   1631 	 * This avoids killing a process after detaching the debugger.
   1632 	 */
   1633 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1634 		mutex_exit(p->p_lock);
   1635 		mutex_exit(&proc_lock);
   1636 		return;
   1637 	}
   1638 
   1639 	/*
   1640 	 * If there's a pending SIGKILL process it immediately.
   1641 	 */
   1642 	if (p->p_xsig == SIGKILL ||
   1643 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1644 		mutex_exit(p->p_lock);
   1645 		mutex_exit(&proc_lock);
   1646 		return;
   1647 	}
   1648 
   1649 	/*
   1650 	 * The process is already stopping.
   1651 	 */
   1652 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1653 		mutex_exit(&proc_lock);
   1654 		sigswitch_unlock_and_switch_away(l);
   1655 		mutex_enter(&proc_lock);
   1656 		mutex_enter(p->p_lock);
   1657 		goto repeat;
   1658 	}
   1659 
   1660 	KSI_INIT_TRAP(&ksi);
   1661 	ksi.ksi_lid = l->l_lid;
   1662 	ksi.ksi_signo = signo;
   1663 	ksi.ksi_code = code;
   1664 	ksi.ksi_pe_report_event = pe_report_event;
   1665 
   1666 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1667 	ksi.ksi_pe_other_pid = entity;
   1668 
   1669 	/* Needed for ktrace */
   1670 	ps = p->p_sigacts;
   1671 	action = SIGACTION_PS(ps, signo).sa_handler;
   1672 	mask = &l->l_sigmask;
   1673 
   1674 	p->p_xsig = signo;
   1675 	p->p_sigctx.ps_faked = true;
   1676 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1677 	p->p_sigctx.ps_info = ksi.ksi_info;
   1678 
   1679 	sigswitch(0, signo, true);
   1680 
   1681 	if (code == TRAP_CHLD) {
   1682 		mutex_enter(&proc_lock);
   1683 		while (l->l_vforkwaiting)
   1684 			cv_wait(&l->l_waitcv, &proc_lock);
   1685 		mutex_exit(&proc_lock);
   1686 	}
   1687 
   1688 	if (ktrpoint(KTR_PSIG)) {
   1689 		if (p->p_emul->e_ktrpsig)
   1690 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1691 		else
   1692 			ktrpsig(signo, action, mask, &ksi);
   1693 	}
   1694 }
   1695 
   1696 void
   1697 eventswitchchild(struct proc *p, int code, int pe_report_event)
   1698 {
   1699 	mutex_enter(&proc_lock);
   1700 	mutex_enter(p->p_lock);
   1701 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
   1702 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   1703 		mutex_exit(p->p_lock);
   1704 		mutex_exit(&proc_lock);
   1705 		return;
   1706 	}
   1707 	eventswitch(code, pe_report_event, p->p_oppid);
   1708 }
   1709 
   1710 /*
   1711  * Stop the current process and switch away when being stopped or traced.
   1712  */
   1713 static void
   1714 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1715 {
   1716 	struct lwp *l = curlwp;
   1717 	struct proc *p = l->l_proc;
   1718 
   1719 	KASSERT(mutex_owned(p->p_lock));
   1720 	KASSERT(l->l_stat == LSONPROC);
   1721 	KASSERT(p->p_nrlwps > 0);
   1722 
   1723 	if (proc_lock_held) {
   1724 		KASSERT(mutex_owned(&proc_lock));
   1725 	} else {
   1726 		KASSERT(!mutex_owned(&proc_lock));
   1727 	}
   1728 
   1729 	/*
   1730 	 * On entry we know that the process needs to stop.  If it's
   1731 	 * the result of a 'sideways' stop signal that has been sourced
   1732 	 * through issignal(), then stop other LWPs in the process too.
   1733 	 */
   1734 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1735 		KASSERT(signo != 0);
   1736 		proc_stop(p, signo);
   1737 		KASSERT(p->p_nrlwps > 0);
   1738 	}
   1739 
   1740 	/*
   1741 	 * If we are the last live LWP, and the stop was a result of
   1742 	 * a new signal, then signal the parent.
   1743 	 */
   1744 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1745 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
   1746 			mutex_exit(p->p_lock);
   1747 			mutex_enter(&proc_lock);
   1748 			mutex_enter(p->p_lock);
   1749 		}
   1750 
   1751 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1752 			/*
   1753 			 * Note that proc_stop_done() can drop
   1754 			 * p->p_lock briefly.
   1755 			 */
   1756 			proc_stop_done(p, ppmask);
   1757 		}
   1758 
   1759 		mutex_exit(&proc_lock);
   1760 	}
   1761 
   1762 	sigswitch_unlock_and_switch_away(l);
   1763 }
   1764 
   1765 /*
   1766  * Unlock and switch away.
   1767  */
   1768 static void
   1769 sigswitch_unlock_and_switch_away(struct lwp *l)
   1770 {
   1771 	struct proc *p;
   1772 	int biglocks;
   1773 
   1774 	p = l->l_proc;
   1775 
   1776 	KASSERT(mutex_owned(p->p_lock));
   1777 	KASSERT(!mutex_owned(&proc_lock));
   1778 
   1779 	KASSERT(l->l_stat == LSONPROC);
   1780 	KASSERT(p->p_nrlwps > 0);
   1781 
   1782 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1783 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1784 		p->p_nrlwps--;
   1785 		lwp_lock(l);
   1786 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1787 		l->l_stat = LSSTOP;
   1788 		lwp_unlock(l);
   1789 	}
   1790 
   1791 	mutex_exit(p->p_lock);
   1792 	lwp_lock(l);
   1793 	spc_lock(l->l_cpu);
   1794 	mi_switch(l);
   1795 	KERNEL_LOCK(biglocks, l);
   1796 }
   1797 
   1798 /*
   1799  * Check for a signal from the debugger.
   1800  */
   1801 static int
   1802 sigchecktrace(void)
   1803 {
   1804 	struct lwp *l = curlwp;
   1805 	struct proc *p = l->l_proc;
   1806 	int signo;
   1807 
   1808 	KASSERT(mutex_owned(p->p_lock));
   1809 
   1810 	/* If there's a pending SIGKILL, process it immediately. */
   1811 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1812 		return 0;
   1813 
   1814 	/*
   1815 	 * If we are no longer being traced, or the parent didn't
   1816 	 * give us a signal, or we're stopping, look for more signals.
   1817 	 */
   1818 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1819 	    (p->p_sflag & PS_STOPPING) != 0)
   1820 		return 0;
   1821 
   1822 	/*
   1823 	 * If the new signal is being masked, look for other signals.
   1824 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1825 	 */
   1826 	signo = p->p_xsig;
   1827 	p->p_xsig = 0;
   1828 	if (sigismember(&l->l_sigmask, signo)) {
   1829 		signo = 0;
   1830 	}
   1831 	return signo;
   1832 }
   1833 
   1834 /*
   1835  * If the current process has received a signal (should be caught or cause
   1836  * termination, should interrupt current syscall), return the signal number.
   1837  *
   1838  * Stop signals with default action are processed immediately, then cleared;
   1839  * they aren't returned.  This is checked after each entry to the system for
   1840  * a syscall or trap.
   1841  *
   1842  * We will also return -1 if the process is exiting and the current LWP must
   1843  * follow suit.
   1844  */
   1845 int
   1846 issignal(struct lwp *l)
   1847 {
   1848 	struct proc *p;
   1849 	int siglwp, signo, prop;
   1850 	sigpend_t *sp;
   1851 	sigset_t ss;
   1852 	bool traced;
   1853 
   1854 	p = l->l_proc;
   1855 	sp = NULL;
   1856 	signo = 0;
   1857 
   1858 	KASSERT(p == curproc);
   1859 	KASSERT(mutex_owned(p->p_lock));
   1860 
   1861 	for (;;) {
   1862 		/* Discard any signals that we have decided not to take. */
   1863 		if (signo != 0) {
   1864 			(void)sigget(sp, NULL, signo, NULL);
   1865 		}
   1866 
   1867 		/*
   1868 		 * If the process is stopped/stopping, then stop ourselves
   1869 		 * now that we're on the kernel/userspace boundary.  When
   1870 		 * we awaken, check for a signal from the debugger.
   1871 		 */
   1872 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1873 			sigswitch_unlock_and_switch_away(l);
   1874 			mutex_enter(p->p_lock);
   1875 			continue;
   1876 		} else if (p->p_stat == SACTIVE)
   1877 			signo = sigchecktrace();
   1878 		else
   1879 			signo = 0;
   1880 
   1881 		/* Signals from the debugger are "out of band". */
   1882 		sp = NULL;
   1883 
   1884 		/*
   1885 		 * If the debugger didn't provide a signal, find a pending
   1886 		 * signal from our set.  Check per-LWP signals first, and
   1887 		 * then per-process.
   1888 		 */
   1889 		if (signo == 0) {
   1890 			sp = &l->l_sigpend;
   1891 			ss = sp->sp_set;
   1892 			siglwp = l->l_lid;
   1893 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1894 				sigminusset(&vforksigmask, &ss);
   1895 			sigminusset(&l->l_sigmask, &ss);
   1896 
   1897 			if ((signo = firstsig(&ss)) == 0) {
   1898 				sp = &p->p_sigpend;
   1899 				ss = sp->sp_set;
   1900 				siglwp = 0;
   1901 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1902 					sigminusset(&vforksigmask, &ss);
   1903 				sigminusset(&l->l_sigmask, &ss);
   1904 
   1905 				if ((signo = firstsig(&ss)) == 0) {
   1906 					/*
   1907 					 * No signal pending - clear the
   1908 					 * indicator and bail out.
   1909 					 */
   1910 					lwp_lock(l);
   1911 					l->l_flag &= ~LW_PENDSIG;
   1912 					lwp_unlock(l);
   1913 					sp = NULL;
   1914 					break;
   1915 				}
   1916 			}
   1917 		}
   1918 
   1919 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1920 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1921 
   1922 		if (sp) {
   1923 			/* Overwrite process' signal context to correspond
   1924 			 * to the currently reported LWP.  This is necessary
   1925 			 * for PT_GET_SIGINFO to report the correct signal when
   1926 			 * multiple LWPs have pending signals.  We do this only
   1927 			 * when the signal comes from the queue, for signals
   1928 			 * created by the debugger we assume it set correct
   1929 			 * siginfo.
   1930 			 */
   1931 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1932 			if (ksi) {
   1933 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1934 				p->p_sigctx.ps_info = ksi->ksi_info;
   1935 			} else {
   1936 				p->p_sigctx.ps_lwp = siglwp;
   1937 				memset(&p->p_sigctx.ps_info, 0,
   1938 				    sizeof(p->p_sigctx.ps_info));
   1939 				p->p_sigctx.ps_info._signo = signo;
   1940 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1941 			}
   1942 		}
   1943 
   1944 		/*
   1945 		 * We should see pending but ignored signals only if
   1946 		 * we are being traced.
   1947 		 */
   1948 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1949 		    !traced) {
   1950 			/* Discard the signal. */
   1951 			continue;
   1952 		}
   1953 
   1954 		/*
   1955 		 * If traced, always stop, and stay stopped until released
   1956 		 * by the debugger.  If the our parent is our debugger waiting
   1957 		 * for us and we vforked, don't hang as we could deadlock.
   1958 		 */
   1959 		if (traced && signo != SIGKILL &&
   1960 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1961 		     (p->p_pptr == p->p_opptr))) {
   1962 			/*
   1963 			 * Take the signal, but don't remove it from the
   1964 			 * siginfo queue, because the debugger can send
   1965 			 * it later.
   1966 			 */
   1967 			if (sp)
   1968 				sigdelset(&sp->sp_set, signo);
   1969 			p->p_xsig = signo;
   1970 
   1971 			/* Handling of signal trace */
   1972 			sigswitch(0, signo, false);
   1973 			mutex_enter(p->p_lock);
   1974 
   1975 			/* Check for a signal from the debugger. */
   1976 			if ((signo = sigchecktrace()) == 0)
   1977 				continue;
   1978 
   1979 			/* Signals from the debugger are "out of band". */
   1980 			sp = NULL;
   1981 		}
   1982 
   1983 		prop = sigprop[signo];
   1984 
   1985 		/*
   1986 		 * Decide whether the signal should be returned.
   1987 		 */
   1988 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1989 		case (long)SIG_DFL:
   1990 			/*
   1991 			 * Don't take default actions on system processes.
   1992 			 */
   1993 			if (p->p_pid <= 1) {
   1994 #ifdef DIAGNOSTIC
   1995 				/*
   1996 				 * Are you sure you want to ignore SIGSEGV
   1997 				 * in init? XXX
   1998 				 */
   1999 				printf_nolog("Process (pid %d) got sig %d\n",
   2000 				    p->p_pid, signo);
   2001 #endif
   2002 				continue;
   2003 			}
   2004 
   2005 			/*
   2006 			 * If there is a pending stop signal to process with
   2007 			 * default action, stop here, then clear the signal.
   2008 			 * However, if process is member of an orphaned
   2009 			 * process group, ignore tty stop signals.
   2010 			 */
   2011 			if (prop & SA_STOP) {
   2012 				/*
   2013 				 * XXX Don't hold proc_lock for p_lflag,
   2014 				 * but it's not a big deal.
   2015 				 */
   2016 				if ((traced &&
   2017 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   2018 				     (p->p_pptr == p->p_opptr))) ||
   2019 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   2020 				    prop & SA_TTYSTOP)) {
   2021 					/* Ignore the signal. */
   2022 					continue;
   2023 				}
   2024 				/* Take the signal. */
   2025 				(void)sigget(sp, NULL, signo, NULL);
   2026 				p->p_xsig = signo;
   2027 				p->p_sflag &= ~PS_CONTINUED;
   2028 				signo = 0;
   2029 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2030 				mutex_enter(p->p_lock);
   2031 			} else if (prop & SA_IGNORE) {
   2032 				/*
   2033 				 * Except for SIGCONT, shouldn't get here.
   2034 				 * Default action is to ignore; drop it.
   2035 				 */
   2036 				continue;
   2037 			}
   2038 			break;
   2039 
   2040 		case (long)SIG_IGN:
   2041 #ifdef DEBUG_ISSIGNAL
   2042 			/*
   2043 			 * Masking above should prevent us ever trying
   2044 			 * to take action on an ignored signal other
   2045 			 * than SIGCONT, unless process is traced.
   2046 			 */
   2047 			if ((prop & SA_CONT) == 0 && !traced)
   2048 				printf_nolog("issignal\n");
   2049 #endif
   2050 			continue;
   2051 
   2052 		default:
   2053 			/*
   2054 			 * This signal has an action, let postsig() process
   2055 			 * it.
   2056 			 */
   2057 			break;
   2058 		}
   2059 
   2060 		break;
   2061 	}
   2062 
   2063 	l->l_sigpendset = sp;
   2064 	return signo;
   2065 }
   2066 
   2067 /*
   2068  * Take the action for the specified signal
   2069  * from the current set of pending signals.
   2070  */
   2071 void
   2072 postsig(int signo)
   2073 {
   2074 	struct lwp	*l;
   2075 	struct proc	*p;
   2076 	struct sigacts	*ps;
   2077 	sig_t		action;
   2078 	sigset_t	*returnmask;
   2079 	ksiginfo_t	ksi;
   2080 
   2081 	l = curlwp;
   2082 	p = l->l_proc;
   2083 	ps = p->p_sigacts;
   2084 
   2085 	KASSERT(mutex_owned(p->p_lock));
   2086 	KASSERT(signo > 0);
   2087 
   2088 	/*
   2089 	 * Set the new mask value and also defer further occurrences of this
   2090 	 * signal.
   2091 	 *
   2092 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2093 	 * not of interest, but rather the mask from before the sigsuspend is
   2094 	 * what we want restored after the signal processing is completed.
   2095 	 */
   2096 	if (l->l_sigrestore) {
   2097 		returnmask = &l->l_sigoldmask;
   2098 		l->l_sigrestore = 0;
   2099 	} else
   2100 		returnmask = &l->l_sigmask;
   2101 
   2102 	/*
   2103 	 * Commit to taking the signal before releasing the mutex.
   2104 	 */
   2105 	action = SIGACTION_PS(ps, signo).sa_handler;
   2106 	l->l_ru.ru_nsignals++;
   2107 	if (l->l_sigpendset == NULL) {
   2108 		/* From the debugger */
   2109 		if (p->p_sigctx.ps_faked &&
   2110 		    signo == p->p_sigctx.ps_info._signo) {
   2111 			KSI_INIT(&ksi);
   2112 			ksi.ksi_info = p->p_sigctx.ps_info;
   2113 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2114 			p->p_sigctx.ps_faked = false;
   2115 		} else {
   2116 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2117 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2118 		}
   2119 	} else
   2120 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2121 
   2122 	if (ktrpoint(KTR_PSIG)) {
   2123 		mutex_exit(p->p_lock);
   2124 		if (p->p_emul->e_ktrpsig)
   2125 			p->p_emul->e_ktrpsig(signo, action,
   2126 			    returnmask, &ksi);
   2127 		else
   2128 			ktrpsig(signo, action, returnmask, &ksi);
   2129 		mutex_enter(p->p_lock);
   2130 	}
   2131 
   2132 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2133 
   2134 	if (action == SIG_DFL) {
   2135 		/*
   2136 		 * Default action, where the default is to kill
   2137 		 * the process.  (Other cases were ignored above.)
   2138 		 */
   2139 		sigexit(l, signo);
   2140 		return;
   2141 	}
   2142 
   2143 	/*
   2144 	 * If we get here, the signal must be caught.
   2145 	 */
   2146 #ifdef DIAGNOSTIC
   2147 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2148 		panic("postsig action");
   2149 #endif
   2150 
   2151 	kpsendsig(l, &ksi, returnmask);
   2152 }
   2153 
   2154 /*
   2155  * sendsig:
   2156  *
   2157  *	Default signal delivery method for NetBSD.
   2158  */
   2159 void
   2160 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2161 {
   2162 	struct sigacts *sa;
   2163 	int sig;
   2164 
   2165 	sig = ksi->ksi_signo;
   2166 	sa = curproc->p_sigacts;
   2167 
   2168 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2169 	case 0:
   2170 	case 1:
   2171 		/* Compat for 1.6 and earlier. */
   2172 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2173 		    break);
   2174 		return;
   2175 	case 2:
   2176 	case 3:
   2177 		sendsig_siginfo(ksi, mask);
   2178 		return;
   2179 	default:
   2180 		break;
   2181 	}
   2182 
   2183 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2184 	sigexit(curlwp, SIGILL);
   2185 }
   2186 
   2187 /*
   2188  * sendsig_reset:
   2189  *
   2190  *	Reset the signal action.  Called from emulation specific sendsig()
   2191  *	before unlocking to deliver the signal.
   2192  */
   2193 void
   2194 sendsig_reset(struct lwp *l, int signo)
   2195 {
   2196 	struct proc *p = l->l_proc;
   2197 	struct sigacts *ps = p->p_sigacts;
   2198 
   2199 	KASSERT(mutex_owned(p->p_lock));
   2200 
   2201 	p->p_sigctx.ps_lwp = 0;
   2202 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2203 
   2204 	mutex_enter(&ps->sa_mutex);
   2205 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2206 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2207 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2208 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2209 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2210 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2211 	}
   2212 	mutex_exit(&ps->sa_mutex);
   2213 }
   2214 
   2215 /*
   2216  * Kill the current process for stated reason.
   2217  */
   2218 void
   2219 killproc(struct proc *p, const char *why)
   2220 {
   2221 
   2222 	KASSERT(mutex_owned(&proc_lock));
   2223 
   2224 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2225 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2226 	psignal(p, SIGKILL);
   2227 }
   2228 
   2229 /*
   2230  * Force the current process to exit with the specified signal, dumping core
   2231  * if appropriate.  We bypass the normal tests for masked and caught
   2232  * signals, allowing unrecoverable failures to terminate the process without
   2233  * changing signal state.  Mark the accounting record with the signal
   2234  * termination.  If dumping core, save the signal number for the debugger.
   2235  * Calls exit and does not return.
   2236  */
   2237 void
   2238 sigexit(struct lwp *l, int signo)
   2239 {
   2240 	int exitsig, error, docore;
   2241 	struct proc *p;
   2242 	struct lwp *t;
   2243 
   2244 	p = l->l_proc;
   2245 
   2246 	KASSERT(mutex_owned(p->p_lock));
   2247 	KERNEL_UNLOCK_ALL(l, NULL);
   2248 
   2249 	/*
   2250 	 * Don't permit coredump() multiple times in the same process.
   2251 	 * Call back into sigexit, where we will be suspended until
   2252 	 * the deed is done.  Note that this is a recursive call, but
   2253 	 * LW_WCORE will prevent us from coming back this way.
   2254 	 */
   2255 	if ((p->p_sflag & PS_WCORE) != 0) {
   2256 		lwp_lock(l);
   2257 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2258 		lwp_unlock(l);
   2259 		mutex_exit(p->p_lock);
   2260 		lwp_userret(l);
   2261 		panic("sigexit 1");
   2262 		/* NOTREACHED */
   2263 	}
   2264 
   2265 	/* If process is already on the way out, then bail now. */
   2266 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2267 		mutex_exit(p->p_lock);
   2268 		lwp_exit(l);
   2269 		panic("sigexit 2");
   2270 		/* NOTREACHED */
   2271 	}
   2272 
   2273 	/*
   2274 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2275 	 * so that their registers are available long enough to be dumped.
   2276  	 */
   2277 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2278 		p->p_sflag |= PS_WCORE;
   2279 		for (;;) {
   2280 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2281 				lwp_lock(t);
   2282 				if (t == l) {
   2283 					t->l_flag &=
   2284 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2285 					lwp_unlock(t);
   2286 					continue;
   2287 				}
   2288 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2289 				lwp_suspend(l, t);
   2290 			}
   2291 
   2292 			if (p->p_nrlwps == 1)
   2293 				break;
   2294 
   2295 			/*
   2296 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2297 			 * for everyone else to stop before proceeding.
   2298 			 */
   2299 			p->p_nlwpwait++;
   2300 			cv_broadcast(&p->p_lwpcv);
   2301 			cv_wait(&p->p_lwpcv, p->p_lock);
   2302 			p->p_nlwpwait--;
   2303 		}
   2304 	}
   2305 
   2306 	exitsig = signo;
   2307 	p->p_acflag |= AXSIG;
   2308 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2309 	p->p_sigctx.ps_info._signo = signo;
   2310 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2311 
   2312 	if (docore) {
   2313 		mutex_exit(p->p_lock);
   2314 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2315 
   2316 		if (kern_logsigexit) {
   2317 			int uid = l->l_cred ?
   2318 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2319 
   2320 			if (error)
   2321 				log(LOG_INFO, lognocoredump, p->p_pid,
   2322 				    p->p_comm, uid, signo, error);
   2323 			else
   2324 				log(LOG_INFO, logcoredump, p->p_pid,
   2325 				    p->p_comm, uid, signo);
   2326 		}
   2327 
   2328 #ifdef PAX_SEGVGUARD
   2329 		rw_enter(&exec_lock, RW_WRITER);
   2330 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2331 		rw_exit(&exec_lock);
   2332 #endif /* PAX_SEGVGUARD */
   2333 
   2334 		/* Acquire the sched state mutex.  exit1() will release it. */
   2335 		mutex_enter(p->p_lock);
   2336 		if (error == 0)
   2337 			p->p_sflag |= PS_COREDUMP;
   2338 	}
   2339 
   2340 	/* No longer dumping core. */
   2341 	p->p_sflag &= ~PS_WCORE;
   2342 
   2343 	exit1(l, 0, exitsig);
   2344 	/* NOTREACHED */
   2345 }
   2346 
   2347 /*
   2348  * Since the "real" code may (or may not) be present in loadable module,
   2349  * we provide routines here which calls the module hooks.
   2350  */
   2351 
   2352 int
   2353 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2354 {
   2355 
   2356 	int retval;
   2357 
   2358 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
   2359 	return retval;
   2360 }
   2361 
   2362 int
   2363 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
   2364 {
   2365 
   2366 	int retval;
   2367 
   2368 	MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
   2369 	return retval;
   2370 }
   2371 
   2372 int
   2373 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
   2374 {
   2375 	int retval;
   2376 
   2377 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
   2378 	return retval;
   2379 }
   2380 
   2381 int
   2382 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
   2383 {
   2384 	int retval;
   2385 
   2386 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
   2387 	return retval;
   2388 }
   2389 
   2390 /*
   2391  * Put process 'p' into the stopped state and optionally, notify the parent.
   2392  */
   2393 void
   2394 proc_stop(struct proc *p, int signo)
   2395 {
   2396 	struct lwp *l;
   2397 
   2398 	KASSERT(mutex_owned(p->p_lock));
   2399 
   2400 	/*
   2401 	 * First off, set the stopping indicator and bring all sleeping
   2402 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2403 	 * unlock between here and the p->p_nrlwps check below.
   2404 	 */
   2405 	p->p_sflag |= PS_STOPPING;
   2406 	membar_producer();
   2407 
   2408 	proc_stop_lwps(p);
   2409 
   2410 	/*
   2411 	 * If there are no LWPs available to take the signal, then we
   2412 	 * signal the parent process immediately.  Otherwise, the last
   2413 	 * LWP to stop will take care of it.
   2414 	 */
   2415 
   2416 	if (p->p_nrlwps == 0) {
   2417 		proc_stop_done(p, PS_NOCLDSTOP);
   2418 	} else {
   2419 		/*
   2420 		 * Have the remaining LWPs come to a halt, and trigger
   2421 		 * proc_stop_callout() to ensure that they do.
   2422 		 */
   2423 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2424 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2425 		}
   2426 		callout_schedule(&proc_stop_ch, 1);
   2427 	}
   2428 }
   2429 
   2430 /*
   2431  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2432  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2433  * to allow LWPs to release any locks that they may hold before stopping.
   2434  *
   2435  * Non-interruptable sleeps can be long, and there is the potential for an
   2436  * LWP to begin sleeping interruptably soon after the process has been set
   2437  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2438  * stopping, and so complete halt of the process and the return of status
   2439  * information to the parent could be delayed indefinitely.
   2440  *
   2441  * To handle this race, proc_stop_callout() runs once per tick while there
   2442  * are stopping processes in the system.  It sets LWPs that are sleeping
   2443  * interruptably into the LSSTOP state.
   2444  *
   2445  * Note that we are not concerned about keeping all LWPs stopped while the
   2446  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2447  * What we do need to ensure is that all LWPs in a stopping process have
   2448  * stopped at least once, so that notification can be sent to the parent
   2449  * process.
   2450  */
   2451 static void
   2452 proc_stop_callout(void *cookie)
   2453 {
   2454 	bool more, restart;
   2455 	struct proc *p;
   2456 
   2457 	(void)cookie;
   2458 
   2459 	do {
   2460 		restart = false;
   2461 		more = false;
   2462 
   2463 		mutex_enter(&proc_lock);
   2464 		PROCLIST_FOREACH(p, &allproc) {
   2465 			mutex_enter(p->p_lock);
   2466 
   2467 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2468 				mutex_exit(p->p_lock);
   2469 				continue;
   2470 			}
   2471 
   2472 			/* Stop any LWPs sleeping interruptably. */
   2473 			proc_stop_lwps(p);
   2474 			if (p->p_nrlwps == 0) {
   2475 				/*
   2476 				 * We brought the process to a halt.
   2477 				 * Mark it as stopped and notify the
   2478 				 * parent.
   2479 				 *
   2480 				 * Note that proc_stop_done() will
   2481 				 * drop p->p_lock briefly.
   2482 				 * Arrange to restart and check
   2483 				 * all processes again.
   2484 				 */
   2485 				restart = true;
   2486 				proc_stop_done(p, PS_NOCLDSTOP);
   2487 			} else
   2488 				more = true;
   2489 
   2490 			mutex_exit(p->p_lock);
   2491 			if (restart)
   2492 				break;
   2493 		}
   2494 		mutex_exit(&proc_lock);
   2495 	} while (restart);
   2496 
   2497 	/*
   2498 	 * If we noted processes that are stopping but still have
   2499 	 * running LWPs, then arrange to check again in 1 tick.
   2500 	 */
   2501 	if (more)
   2502 		callout_schedule(&proc_stop_ch, 1);
   2503 }
   2504 
   2505 /*
   2506  * Given a process in state SSTOP, set the state back to SACTIVE and
   2507  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2508  */
   2509 void
   2510 proc_unstop(struct proc *p)
   2511 {
   2512 	struct lwp *l;
   2513 	int sig;
   2514 
   2515 	KASSERT(mutex_owned(&proc_lock));
   2516 	KASSERT(mutex_owned(p->p_lock));
   2517 
   2518 	p->p_stat = SACTIVE;
   2519 	p->p_sflag &= ~PS_STOPPING;
   2520 	sig = p->p_xsig;
   2521 
   2522 	if (!p->p_waited)
   2523 		p->p_pptr->p_nstopchild--;
   2524 
   2525 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2526 		lwp_lock(l);
   2527 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2528 			lwp_unlock(l);
   2529 			continue;
   2530 		}
   2531 		if (l->l_wchan == NULL) {
   2532 			setrunnable(l);
   2533 			continue;
   2534 		}
   2535 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2536 			setrunnable(l);
   2537 			sig = 0;
   2538 		} else {
   2539 			l->l_stat = LSSLEEP;
   2540 			p->p_nrlwps++;
   2541 			lwp_unlock(l);
   2542 		}
   2543 	}
   2544 }
   2545 
   2546 void
   2547 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2548                const register_t *ret, int error)
   2549 {
   2550 	struct lwp *l = curlwp;
   2551 	struct proc *p = l->l_proc;
   2552 	struct sigacts *ps;
   2553 	sigset_t *mask;
   2554 	sig_t action;
   2555 	ksiginfo_t ksi;
   2556 	size_t i, sy_narg;
   2557 	const int signo = SIGTRAP;
   2558 
   2559 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2560 	KASSERT(p->p_pptr != initproc);
   2561 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2562 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2563 
   2564 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2565 
   2566 	KSI_INIT_TRAP(&ksi);
   2567 	ksi.ksi_lid = l->l_lid;
   2568 	ksi.ksi_signo = signo;
   2569 	ksi.ksi_code = trapno;
   2570 
   2571 	ksi.ksi_sysnum = sysnum;
   2572 	if (trapno == TRAP_SCE) {
   2573 		ksi.ksi_retval[0] = 0;
   2574 		ksi.ksi_retval[1] = 0;
   2575 		ksi.ksi_error = 0;
   2576 	} else {
   2577 		ksi.ksi_retval[0] = ret[0];
   2578 		ksi.ksi_retval[1] = ret[1];
   2579 		ksi.ksi_error = error;
   2580 	}
   2581 
   2582 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2583 
   2584 	for (i = 0; i < sy_narg; i++)
   2585 		ksi.ksi_args[i] = args[i];
   2586 
   2587 	mutex_enter(p->p_lock);
   2588 
   2589 repeat:
   2590 	/*
   2591 	 * If we are exiting, demise now.
   2592 	 *
   2593 	 * This avoids notifying tracer and deadlocking.
   2594 	 */
   2595 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2596 		mutex_exit(p->p_lock);
   2597 		lwp_exit(l);
   2598 		panic("proc_stoptrace");
   2599 		/* NOTREACHED */
   2600 	}
   2601 
   2602 	/*
   2603 	 * If there's a pending SIGKILL process it immediately.
   2604 	 */
   2605 	if (p->p_xsig == SIGKILL ||
   2606 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2607 		mutex_exit(p->p_lock);
   2608 		return;
   2609 	}
   2610 
   2611 	/*
   2612 	 * If we are no longer traced, abandon this event signal.
   2613 	 *
   2614 	 * This avoids killing a process after detaching the debugger.
   2615 	 */
   2616 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2617 		mutex_exit(p->p_lock);
   2618 		return;
   2619 	}
   2620 
   2621 	/*
   2622 	 * The process is already stopping.
   2623 	 */
   2624 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2625 		sigswitch_unlock_and_switch_away(l);
   2626 		mutex_enter(p->p_lock);
   2627 		goto repeat;
   2628 	}
   2629 
   2630 	/* Needed for ktrace */
   2631 	ps = p->p_sigacts;
   2632 	action = SIGACTION_PS(ps, signo).sa_handler;
   2633 	mask = &l->l_sigmask;
   2634 
   2635 	p->p_xsig = signo;
   2636 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2637 	p->p_sigctx.ps_info = ksi.ksi_info;
   2638 	sigswitch(0, signo, false);
   2639 
   2640 	if (ktrpoint(KTR_PSIG)) {
   2641 		if (p->p_emul->e_ktrpsig)
   2642 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2643 		else
   2644 			ktrpsig(signo, action, mask, &ksi);
   2645 	}
   2646 }
   2647 
   2648 static int
   2649 filt_sigattach(struct knote *kn)
   2650 {
   2651 	struct proc *p = curproc;
   2652 
   2653 	kn->kn_obj = p;
   2654 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2655 
   2656 	mutex_enter(p->p_lock);
   2657 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2658 	mutex_exit(p->p_lock);
   2659 
   2660 	return 0;
   2661 }
   2662 
   2663 static void
   2664 filt_sigdetach(struct knote *kn)
   2665 {
   2666 	struct proc *p = kn->kn_obj;
   2667 
   2668 	mutex_enter(p->p_lock);
   2669 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2670 	mutex_exit(p->p_lock);
   2671 }
   2672 
   2673 /*
   2674  * Signal knotes are shared with proc knotes, so we apply a mask to
   2675  * the hint in order to differentiate them from process hints.  This
   2676  * could be avoided by using a signal-specific knote list, but probably
   2677  * isn't worth the trouble.
   2678  */
   2679 static int
   2680 filt_signal(struct knote *kn, long hint)
   2681 {
   2682 
   2683 	if (hint & NOTE_SIGNAL) {
   2684 		hint &= ~NOTE_SIGNAL;
   2685 
   2686 		if (kn->kn_id == hint)
   2687 			kn->kn_data++;
   2688 	}
   2689 	return (kn->kn_data != 0);
   2690 }
   2691 
   2692 const struct filterops sig_filtops = {
   2693 	.f_isfd = 0,
   2694 	.f_attach = filt_sigattach,
   2695 	.f_detach = filt_sigdetach,
   2696 	.f_event = filt_signal,
   2697 };
   2698