Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.399
      1 /*	$NetBSD: kern_sig.c,v 1.399 2021/09/26 17:34:19 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.399 2021/09/26 17:34:19 thorpej Exp $");
     74 
     75 #include "opt_execfmt.h"
     76 #include "opt_ptrace.h"
     77 #include "opt_dtrace.h"
     78 #include "opt_compat_sunos.h"
     79 #include "opt_compat_netbsd.h"
     80 #include "opt_compat_netbsd32.h"
     81 #include "opt_pax.h"
     82 
     83 #define	SIGPROP		/* include signal properties table */
     84 #include <sys/param.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/proc.h>
     87 #include <sys/ptrace.h>
     88 #include <sys/systm.h>
     89 #include <sys/wait.h>
     90 #include <sys/ktrace.h>
     91 #include <sys/syslog.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/file.h>
     94 #include <sys/pool.h>
     95 #include <sys/ucontext.h>
     96 #include <sys/exec.h>
     97 #include <sys/kauth.h>
     98 #include <sys/acct.h>
     99 #include <sys/callout.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/sdt.h>
    104 #include <sys/exec_elf.h>
    105 #include <sys/compat_stub.h>
    106 
    107 #ifdef PAX_SEGVGUARD
    108 #include <sys/pax.h>
    109 #endif /* PAX_SEGVGUARD */
    110 
    111 #include <uvm/uvm_extern.h>
    112 
    113 /* Many hard-coded assumptions that there are <= 4 x 32bit signal mask bits */
    114 __CTASSERT(NSIG <= 128);
    115 
    116 #define	SIGQUEUE_MAX	32
    117 static pool_cache_t	sigacts_cache	__read_mostly;
    118 static pool_cache_t	ksiginfo_cache	__read_mostly;
    119 static callout_t	proc_stop_ch	__cacheline_aligned;
    120 
    121 sigset_t		contsigmask	__cacheline_aligned;
    122 sigset_t		stopsigmask	__cacheline_aligned;
    123 static sigset_t		vforksigmask	__cacheline_aligned;
    124 sigset_t		sigcantmask	__cacheline_aligned;
    125 
    126 static void	ksiginfo_exechook(struct proc *, void *);
    127 static void	proc_stop(struct proc *, int);
    128 static void	proc_stop_done(struct proc *, int);
    129 static void	proc_stop_callout(void *);
    130 static int	sigchecktrace(void);
    131 static int	sigpost(struct lwp *, sig_t, int, int);
    132 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    133 static int	sigunwait(struct proc *, const ksiginfo_t *);
    134 static void	sigswitch(int, int, bool);
    135 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    136 
    137 static void	sigacts_poolpage_free(struct pool *, void *);
    138 static void	*sigacts_poolpage_alloc(struct pool *, int);
    139 
    140 /*
    141  * DTrace SDT provider definitions
    142  */
    143 SDT_PROVIDER_DECLARE(proc);
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    145     "struct lwp *", 	/* target thread */
    146     "struct proc *", 	/* target process */
    147     "int");		/* signal */
    148 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    149     "struct lwp *",	/* target thread */
    150     "struct proc *",	/* target process */
    151     "int");  		/* signal */
    152 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    153     "int", 		/* signal */
    154     "ksiginfo_t *", 	/* signal info */
    155     "void (*)(void)");	/* handler address */
    156 
    157 
    158 static struct pool_allocator sigactspool_allocator = {
    159 	.pa_alloc = sigacts_poolpage_alloc,
    160 	.pa_free = sigacts_poolpage_free
    161 };
    162 
    163 #ifdef DEBUG
    164 int	kern_logsigexit = 1;
    165 #else
    166 int	kern_logsigexit = 0;
    167 #endif
    168 
    169 static const char logcoredump[] =
    170     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    171 static const char lognocoredump[] =
    172     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    173 
    174 static kauth_listener_t signal_listener;
    175 
    176 static int
    177 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    178     void *arg0, void *arg1, void *arg2, void *arg3)
    179 {
    180 	struct proc *p;
    181 	int result, signum;
    182 
    183 	result = KAUTH_RESULT_DEFER;
    184 	p = arg0;
    185 	signum = (int)(unsigned long)arg1;
    186 
    187 	if (action != KAUTH_PROCESS_SIGNAL)
    188 		return result;
    189 
    190 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    191 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    192 		result = KAUTH_RESULT_ALLOW;
    193 
    194 	return result;
    195 }
    196 
    197 static int
    198 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    199 {
    200 	memset(obj, 0, sizeof(struct sigacts));
    201 	return 0;
    202 }
    203 
    204 /*
    205  * signal_init:
    206  *
    207  *	Initialize global signal-related data structures.
    208  */
    209 void
    210 signal_init(void)
    211 {
    212 
    213 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    214 
    215 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    216 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    217 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    218 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    219 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    220 
    221 	exechook_establish(ksiginfo_exechook, NULL);
    222 
    223 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    224 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    225 
    226 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    227 	    signal_listener_cb, NULL);
    228 }
    229 
    230 /*
    231  * sigacts_poolpage_alloc:
    232  *
    233  *	Allocate a page for the sigacts memory pool.
    234  */
    235 static void *
    236 sigacts_poolpage_alloc(struct pool *pp, int flags)
    237 {
    238 
    239 	return (void *)uvm_km_alloc(kernel_map,
    240 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    241 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    242 	    | UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigacts_poolpage_free:
    247  *
    248  *	Free a page on behalf of the sigacts memory pool.
    249  */
    250 static void
    251 sigacts_poolpage_free(struct pool *pp, void *v)
    252 {
    253 
    254 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    255 }
    256 
    257 /*
    258  * sigactsinit:
    259  *
    260  *	Create an initial sigacts structure, using the same signal state
    261  *	as of specified process.  If 'share' is set, share the sigacts by
    262  *	holding a reference, otherwise just copy it from parent.
    263  */
    264 struct sigacts *
    265 sigactsinit(struct proc *pp, int share)
    266 {
    267 	struct sigacts *ps = pp->p_sigacts, *ps2;
    268 
    269 	if (__predict_false(share)) {
    270 		atomic_inc_uint(&ps->sa_refcnt);
    271 		return ps;
    272 	}
    273 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    274 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    275 	ps2->sa_refcnt = 1;
    276 
    277 	mutex_enter(&ps->sa_mutex);
    278 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    279 	mutex_exit(&ps->sa_mutex);
    280 	return ps2;
    281 }
    282 
    283 /*
    284  * sigactsunshare:
    285  *
    286  *	Make this process not share its sigacts, maintaining all signal state.
    287  */
    288 void
    289 sigactsunshare(struct proc *p)
    290 {
    291 	struct sigacts *ps, *oldps = p->p_sigacts;
    292 
    293 	if (__predict_true(oldps->sa_refcnt == 1))
    294 		return;
    295 
    296 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    297 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    298 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    299 	ps->sa_refcnt = 1;
    300 
    301 	p->p_sigacts = ps;
    302 	sigactsfree(oldps);
    303 }
    304 
    305 /*
    306  * sigactsfree;
    307  *
    308  *	Release a sigacts structure.
    309  */
    310 void
    311 sigactsfree(struct sigacts *ps)
    312 {
    313 
    314 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    315 		mutex_destroy(&ps->sa_mutex);
    316 		pool_cache_put(sigacts_cache, ps);
    317 	}
    318 }
    319 
    320 /*
    321  * siginit:
    322  *
    323  *	Initialize signal state for process 0; set to ignore signals that
    324  *	are ignored by default and disable the signal stack.  Locking not
    325  *	required as the system is still cold.
    326  */
    327 void
    328 siginit(struct proc *p)
    329 {
    330 	struct lwp *l;
    331 	struct sigacts *ps;
    332 	int signo, prop;
    333 
    334 	ps = p->p_sigacts;
    335 	sigemptyset(&contsigmask);
    336 	sigemptyset(&stopsigmask);
    337 	sigemptyset(&vforksigmask);
    338 	sigemptyset(&sigcantmask);
    339 	for (signo = 1; signo < NSIG; signo++) {
    340 		prop = sigprop[signo];
    341 		if (prop & SA_CONT)
    342 			sigaddset(&contsigmask, signo);
    343 		if (prop & SA_STOP)
    344 			sigaddset(&stopsigmask, signo);
    345 		if (prop & SA_STOP && signo != SIGSTOP)
    346 			sigaddset(&vforksigmask, signo);
    347 		if (prop & SA_CANTMASK)
    348 			sigaddset(&sigcantmask, signo);
    349 		if (prop & SA_IGNORE && signo != SIGCONT)
    350 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    351 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    352 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    353 	}
    354 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    355 	p->p_sflag &= ~PS_NOCLDSTOP;
    356 
    357 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    358 	sigemptyset(&p->p_sigpend.sp_set);
    359 
    360 	/*
    361 	 * Reset per LWP state.
    362 	 */
    363 	l = LIST_FIRST(&p->p_lwps);
    364 	l->l_sigwaited = NULL;
    365 	l->l_sigstk = SS_INIT;
    366 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    367 	sigemptyset(&l->l_sigpend.sp_set);
    368 
    369 	/* One reference. */
    370 	ps->sa_refcnt = 1;
    371 }
    372 
    373 /*
    374  * execsigs:
    375  *
    376  *	Reset signals for an exec of the specified process.
    377  */
    378 void
    379 execsigs(struct proc *p)
    380 {
    381 	struct sigacts *ps;
    382 	struct lwp *l;
    383 	int signo, prop;
    384 	sigset_t tset;
    385 	ksiginfoq_t kq;
    386 
    387 	KASSERT(p->p_nlwps == 1);
    388 
    389 	sigactsunshare(p);
    390 	ps = p->p_sigacts;
    391 
    392 	/*
    393 	 * Reset caught signals.  Held signals remain held through
    394 	 * l->l_sigmask (unless they were caught, and are now ignored
    395 	 * by default).
    396 	 *
    397 	 * No need to lock yet, the process has only one LWP and
    398 	 * at this point the sigacts are private to the process.
    399 	 */
    400 	sigemptyset(&tset);
    401 	for (signo = 1; signo < NSIG; signo++) {
    402 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    403 			prop = sigprop[signo];
    404 			if (prop & SA_IGNORE) {
    405 				if ((prop & SA_CONT) == 0)
    406 					sigaddset(&p->p_sigctx.ps_sigignore,
    407 					    signo);
    408 				sigaddset(&tset, signo);
    409 			}
    410 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    411 		}
    412 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    413 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    414 	}
    415 	ksiginfo_queue_init(&kq);
    416 
    417 	mutex_enter(p->p_lock);
    418 	sigclearall(p, &tset, &kq);
    419 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    420 
    421 	/*
    422 	 * Reset no zombies if child dies flag as Solaris does.
    423 	 */
    424 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    425 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    426 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    427 
    428 	/*
    429 	 * Reset per-LWP state.
    430 	 */
    431 	l = LIST_FIRST(&p->p_lwps);
    432 	l->l_sigwaited = NULL;
    433 	l->l_sigstk = SS_INIT;
    434 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    435 	sigemptyset(&l->l_sigpend.sp_set);
    436 	mutex_exit(p->p_lock);
    437 
    438 	ksiginfo_queue_drain(&kq);
    439 }
    440 
    441 /*
    442  * ksiginfo_exechook:
    443  *
    444  *	Free all pending ksiginfo entries from a process on exec.
    445  *	Additionally, drain any unused ksiginfo structures in the
    446  *	system back to the pool.
    447  *
    448  *	XXX This should not be a hook, every process has signals.
    449  */
    450 static void
    451 ksiginfo_exechook(struct proc *p, void *v)
    452 {
    453 	ksiginfoq_t kq;
    454 
    455 	ksiginfo_queue_init(&kq);
    456 
    457 	mutex_enter(p->p_lock);
    458 	sigclearall(p, NULL, &kq);
    459 	mutex_exit(p->p_lock);
    460 
    461 	ksiginfo_queue_drain(&kq);
    462 }
    463 
    464 /*
    465  * ksiginfo_alloc:
    466  *
    467  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    468  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    469  *	has not been queued somewhere, then just return it.  Additionally,
    470  *	if the existing ksiginfo_t does not contain any information beyond
    471  *	the signal number, then just return it.
    472  */
    473 ksiginfo_t *
    474 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    475 {
    476 	ksiginfo_t *kp;
    477 
    478 	if (ok != NULL) {
    479 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    480 		    KSI_FROMPOOL)
    481 			return ok;
    482 		if (KSI_EMPTY_P(ok))
    483 			return ok;
    484 	}
    485 
    486 	kp = pool_cache_get(ksiginfo_cache, flags);
    487 	if (kp == NULL) {
    488 #ifdef DIAGNOSTIC
    489 		printf("Out of memory allocating ksiginfo for pid %d\n",
    490 		    p->p_pid);
    491 #endif
    492 		return NULL;
    493 	}
    494 
    495 	if (ok != NULL) {
    496 		memcpy(kp, ok, sizeof(*kp));
    497 		kp->ksi_flags &= ~KSI_QUEUED;
    498 	} else
    499 		KSI_INIT_EMPTY(kp);
    500 
    501 	kp->ksi_flags |= KSI_FROMPOOL;
    502 
    503 	return kp;
    504 }
    505 
    506 /*
    507  * ksiginfo_free:
    508  *
    509  *	If the given ksiginfo_t is from the pool and has not been queued,
    510  *	then free it.
    511  */
    512 void
    513 ksiginfo_free(ksiginfo_t *kp)
    514 {
    515 
    516 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    517 		return;
    518 	pool_cache_put(ksiginfo_cache, kp);
    519 }
    520 
    521 /*
    522  * ksiginfo_queue_drain:
    523  *
    524  *	Drain a non-empty ksiginfo_t queue.
    525  */
    526 void
    527 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    528 {
    529 	ksiginfo_t *ksi;
    530 
    531 	KASSERT(!TAILQ_EMPTY(kq));
    532 
    533 	while (!TAILQ_EMPTY(kq)) {
    534 		ksi = TAILQ_FIRST(kq);
    535 		TAILQ_REMOVE(kq, ksi, ksi_list);
    536 		pool_cache_put(ksiginfo_cache, ksi);
    537 	}
    538 }
    539 
    540 static int
    541 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    542 {
    543 	ksiginfo_t *ksi, *nksi;
    544 
    545 	if (sp == NULL)
    546 		goto out;
    547 
    548 	/* Find siginfo and copy it out. */
    549 	int count = 0;
    550 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    551 		if (ksi->ksi_signo != signo)
    552 			continue;
    553 		if (count++ > 0) /* Only remove the first, count all of them */
    554 			continue;
    555 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    556 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    557 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    558 		ksi->ksi_flags &= ~KSI_QUEUED;
    559 		if (out != NULL) {
    560 			memcpy(out, ksi, sizeof(*out));
    561 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    562 		}
    563 		ksiginfo_free(ksi);
    564 	}
    565 	if (count)
    566 		return count;
    567 
    568 out:
    569 	/* If there is no siginfo, then manufacture it. */
    570 	if (out != NULL) {
    571 		KSI_INIT(out);
    572 		out->ksi_info._signo = signo;
    573 		out->ksi_info._code = SI_NOINFO;
    574 	}
    575 	return 0;
    576 }
    577 
    578 /*
    579  * sigget:
    580  *
    581  *	Fetch the first pending signal from a set.  Optionally, also fetch
    582  *	or manufacture a ksiginfo element.  Returns the number of the first
    583  *	pending signal, or zero.
    584  */
    585 int
    586 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    587 {
    588 	sigset_t tset;
    589 	int count;
    590 
    591 	/* If there's no pending set, the signal is from the debugger. */
    592 	if (sp == NULL)
    593 		goto out;
    594 
    595 	/* Construct mask from signo, and 'mask'. */
    596 	if (signo == 0) {
    597 		if (mask != NULL) {
    598 			tset = *mask;
    599 			__sigandset(&sp->sp_set, &tset);
    600 		} else
    601 			tset = sp->sp_set;
    602 
    603 		/* If there are no signals pending - return. */
    604 		if ((signo = firstsig(&tset)) == 0)
    605 			goto out;
    606 	} else {
    607 		KASSERT(sigismember(&sp->sp_set, signo));
    608 	}
    609 
    610 	sigdelset(&sp->sp_set, signo);
    611 out:
    612 	count = siggetinfo(sp, out, signo);
    613 	if (count > 1)
    614 		sigaddset(&sp->sp_set, signo);
    615 	return signo;
    616 }
    617 
    618 /*
    619  * sigput:
    620  *
    621  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    622  */
    623 static int
    624 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    625 {
    626 	ksiginfo_t *kp;
    627 
    628 	KASSERT(mutex_owned(p->p_lock));
    629 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    630 
    631 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    632 
    633 	/*
    634 	 * If there is no siginfo, we are done.
    635 	 */
    636 	if (KSI_EMPTY_P(ksi))
    637 		return 0;
    638 
    639 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    640 
    641 	size_t count = 0;
    642 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    643 		count++;
    644 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    645 			continue;
    646 		if (kp->ksi_signo == ksi->ksi_signo) {
    647 			KSI_COPY(ksi, kp);
    648 			kp->ksi_flags |= KSI_QUEUED;
    649 			return 0;
    650 		}
    651 	}
    652 
    653 	if (count >= SIGQUEUE_MAX) {
    654 #ifdef DIAGNOSTIC
    655 		printf("%s(%d): Signal queue is full signal=%d\n",
    656 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    657 #endif
    658 		return EAGAIN;
    659 	}
    660 	ksi->ksi_flags |= KSI_QUEUED;
    661 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    662 
    663 	return 0;
    664 }
    665 
    666 /*
    667  * sigclear:
    668  *
    669  *	Clear all pending signals in the specified set.
    670  */
    671 void
    672 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    673 {
    674 	ksiginfo_t *ksi, *next;
    675 
    676 	if (mask == NULL)
    677 		sigemptyset(&sp->sp_set);
    678 	else
    679 		sigminusset(mask, &sp->sp_set);
    680 
    681 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    682 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    683 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    684 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    685 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    686 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    687 		}
    688 	}
    689 }
    690 
    691 /*
    692  * sigclearall:
    693  *
    694  *	Clear all pending signals in the specified set from a process and
    695  *	its LWPs.
    696  */
    697 void
    698 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    699 {
    700 	struct lwp *l;
    701 
    702 	KASSERT(mutex_owned(p->p_lock));
    703 
    704 	sigclear(&p->p_sigpend, mask, kq);
    705 
    706 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    707 		sigclear(&l->l_sigpend, mask, kq);
    708 	}
    709 }
    710 
    711 /*
    712  * sigispending:
    713  *
    714  *	Return the first signal number if there are pending signals for the
    715  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    716  *	and that the signal has been posted to the appopriate queue before
    717  *	LW_PENDSIG is set.
    718  *
    719  *	This should only ever be called with (l == curlwp), unless the
    720  *	result does not matter (procfs, sysctl).
    721  */
    722 int
    723 sigispending(struct lwp *l, int signo)
    724 {
    725 	struct proc *p = l->l_proc;
    726 	sigset_t tset;
    727 
    728 	membar_consumer();
    729 
    730 	tset = l->l_sigpend.sp_set;
    731 	sigplusset(&p->p_sigpend.sp_set, &tset);
    732 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    733 	sigminusset(&l->l_sigmask, &tset);
    734 
    735 	if (signo == 0) {
    736 		return firstsig(&tset);
    737 	}
    738 	return sigismember(&tset, signo) ? signo : 0;
    739 }
    740 
    741 void
    742 getucontext(struct lwp *l, ucontext_t *ucp)
    743 {
    744 	struct proc *p = l->l_proc;
    745 
    746 	KASSERT(mutex_owned(p->p_lock));
    747 
    748 	ucp->uc_flags = 0;
    749 	ucp->uc_link = l->l_ctxlink;
    750 	ucp->uc_sigmask = l->l_sigmask;
    751 	ucp->uc_flags |= _UC_SIGMASK;
    752 
    753 	/*
    754 	 * The (unsupplied) definition of the `current execution stack'
    755 	 * in the System V Interface Definition appears to allow returning
    756 	 * the main context stack.
    757 	 */
    758 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    759 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    760 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    761 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    762 	} else {
    763 		/* Simply copy alternate signal execution stack. */
    764 		ucp->uc_stack = l->l_sigstk;
    765 	}
    766 	ucp->uc_flags |= _UC_STACK;
    767 	mutex_exit(p->p_lock);
    768 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    769 	mutex_enter(p->p_lock);
    770 }
    771 
    772 int
    773 setucontext(struct lwp *l, const ucontext_t *ucp)
    774 {
    775 	struct proc *p = l->l_proc;
    776 	int error;
    777 
    778 	KASSERT(mutex_owned(p->p_lock));
    779 
    780 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    781 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    782 		if (error != 0)
    783 			return error;
    784 	}
    785 
    786 	mutex_exit(p->p_lock);
    787 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    788 	mutex_enter(p->p_lock);
    789 	if (error != 0)
    790 		return (error);
    791 
    792 	l->l_ctxlink = ucp->uc_link;
    793 
    794 	/*
    795 	 * If there was stack information, update whether or not we are
    796 	 * still running on an alternate signal stack.
    797 	 */
    798 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    799 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    800 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    801 		else
    802 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    803 	}
    804 
    805 	return 0;
    806 }
    807 
    808 /*
    809  * killpg1: common code for kill process group/broadcast kill.
    810  */
    811 int
    812 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    813 {
    814 	struct proc	*p, *cp;
    815 	kauth_cred_t	pc;
    816 	struct pgrp	*pgrp;
    817 	int		nfound;
    818 	int		signo = ksi->ksi_signo;
    819 
    820 	cp = l->l_proc;
    821 	pc = l->l_cred;
    822 	nfound = 0;
    823 
    824 	mutex_enter(&proc_lock);
    825 	if (all) {
    826 		/*
    827 		 * Broadcast.
    828 		 */
    829 		PROCLIST_FOREACH(p, &allproc) {
    830 			if (p->p_pid <= 1 || p == cp ||
    831 			    (p->p_flag & PK_SYSTEM) != 0)
    832 				continue;
    833 			mutex_enter(p->p_lock);
    834 			if (kauth_authorize_process(pc,
    835 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    836 			    NULL) == 0) {
    837 				nfound++;
    838 				if (signo)
    839 					kpsignal2(p, ksi);
    840 			}
    841 			mutex_exit(p->p_lock);
    842 		}
    843 	} else {
    844 		if (pgid == 0)
    845 			/* Zero pgid means send to my process group. */
    846 			pgrp = cp->p_pgrp;
    847 		else {
    848 			pgrp = pgrp_find(pgid);
    849 			if (pgrp == NULL)
    850 				goto out;
    851 		}
    852 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    853 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    854 				continue;
    855 			mutex_enter(p->p_lock);
    856 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    857 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    858 				nfound++;
    859 				if (signo && P_ZOMBIE(p) == 0)
    860 					kpsignal2(p, ksi);
    861 			}
    862 			mutex_exit(p->p_lock);
    863 		}
    864 	}
    865 out:
    866 	mutex_exit(&proc_lock);
    867 	return nfound ? 0 : ESRCH;
    868 }
    869 
    870 /*
    871  * Send a signal to a process group.  If checktty is set, limit to members
    872  * which have a controlling terminal.
    873  */
    874 void
    875 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    876 {
    877 	ksiginfo_t ksi;
    878 
    879 	KASSERT(!cpu_intr_p());
    880 	KASSERT(mutex_owned(&proc_lock));
    881 
    882 	KSI_INIT_EMPTY(&ksi);
    883 	ksi.ksi_signo = sig;
    884 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    885 }
    886 
    887 void
    888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    889 {
    890 	struct proc *p;
    891 
    892 	KASSERT(!cpu_intr_p());
    893 	KASSERT(mutex_owned(&proc_lock));
    894 	KASSERT(pgrp != NULL);
    895 
    896 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    897 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    898 			kpsignal(p, ksi, data);
    899 }
    900 
    901 /*
    902  * Send a signal caused by a trap to the current LWP.  If it will be caught
    903  * immediately, deliver it with correct code.  Otherwise, post it normally.
    904  */
    905 void
    906 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    907 {
    908 	struct proc	*p;
    909 	struct sigacts	*ps;
    910 	int signo = ksi->ksi_signo;
    911 	sigset_t *mask;
    912 	sig_t action;
    913 
    914 	KASSERT(KSI_TRAP_P(ksi));
    915 
    916 	ksi->ksi_lid = l->l_lid;
    917 	p = l->l_proc;
    918 
    919 	KASSERT(!cpu_intr_p());
    920 	mutex_enter(&proc_lock);
    921 	mutex_enter(p->p_lock);
    922 
    923 repeat:
    924 	/*
    925 	 * If we are exiting, demise now.
    926 	 *
    927 	 * This avoids notifying tracer and deadlocking.
    928 	 */
    929 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    930 		mutex_exit(p->p_lock);
    931 		mutex_exit(&proc_lock);
    932 		lwp_exit(l);
    933 		panic("trapsignal");
    934 		/* NOTREACHED */
    935 	}
    936 
    937 	/*
    938 	 * The process is already stopping.
    939 	 */
    940 	if ((p->p_sflag & PS_STOPPING) != 0) {
    941 		mutex_exit(&proc_lock);
    942 		sigswitch_unlock_and_switch_away(l);
    943 		mutex_enter(&proc_lock);
    944 		mutex_enter(p->p_lock);
    945 		goto repeat;
    946 	}
    947 
    948 	mask = &l->l_sigmask;
    949 	ps = p->p_sigacts;
    950 	action = SIGACTION_PS(ps, signo).sa_handler;
    951 
    952 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    953 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    954 	    p->p_xsig != SIGKILL &&
    955 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    956 		p->p_xsig = signo;
    957 		p->p_sigctx.ps_faked = true;
    958 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    959 		p->p_sigctx.ps_info = ksi->ksi_info;
    960 		sigswitch(0, signo, true);
    961 
    962 		if (ktrpoint(KTR_PSIG)) {
    963 			if (p->p_emul->e_ktrpsig)
    964 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    965 			else
    966 				ktrpsig(signo, action, mask, ksi);
    967 		}
    968 		return;
    969 	}
    970 
    971 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    972 	const bool masked = sigismember(mask, signo);
    973 	if (caught && !masked) {
    974 		mutex_exit(&proc_lock);
    975 		l->l_ru.ru_nsignals++;
    976 		kpsendsig(l, ksi, mask);
    977 		mutex_exit(p->p_lock);
    978 
    979 		if (ktrpoint(KTR_PSIG)) {
    980 			if (p->p_emul->e_ktrpsig)
    981 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    982 			else
    983 				ktrpsig(signo, action, mask, ksi);
    984 		}
    985 		return;
    986 	}
    987 
    988 	/*
    989 	 * If the signal is masked or ignored, then unmask it and
    990 	 * reset it to the default action so that the process or
    991 	 * its tracer will be notified.
    992 	 */
    993 	const bool ignored = action == SIG_IGN;
    994 	if (masked || ignored) {
    995 		mutex_enter(&ps->sa_mutex);
    996 		sigdelset(mask, signo);
    997 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    998 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    999 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
   1000 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1001 		mutex_exit(&ps->sa_mutex);
   1002 	}
   1003 
   1004 	kpsignal2(p, ksi);
   1005 	mutex_exit(p->p_lock);
   1006 	mutex_exit(&proc_lock);
   1007 }
   1008 
   1009 /*
   1010  * Fill in signal information and signal the parent for a child status change.
   1011  */
   1012 void
   1013 child_psignal(struct proc *p, int mask)
   1014 {
   1015 	ksiginfo_t ksi;
   1016 	struct proc *q;
   1017 	int xsig;
   1018 
   1019 	KASSERT(mutex_owned(&proc_lock));
   1020 	KASSERT(mutex_owned(p->p_lock));
   1021 
   1022 	xsig = p->p_xsig;
   1023 
   1024 	KSI_INIT(&ksi);
   1025 	ksi.ksi_signo = SIGCHLD;
   1026 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1027 	ksi.ksi_pid = p->p_pid;
   1028 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1029 	ksi.ksi_status = xsig;
   1030 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1031 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1032 
   1033 	q = p->p_pptr;
   1034 
   1035 	mutex_exit(p->p_lock);
   1036 	mutex_enter(q->p_lock);
   1037 
   1038 	if ((q->p_sflag & mask) == 0)
   1039 		kpsignal2(q, &ksi);
   1040 
   1041 	mutex_exit(q->p_lock);
   1042 	mutex_enter(p->p_lock);
   1043 }
   1044 
   1045 void
   1046 psignal(struct proc *p, int signo)
   1047 {
   1048 	ksiginfo_t ksi;
   1049 
   1050 	KASSERT(!cpu_intr_p());
   1051 	KASSERT(mutex_owned(&proc_lock));
   1052 
   1053 	KSI_INIT_EMPTY(&ksi);
   1054 	ksi.ksi_signo = signo;
   1055 	mutex_enter(p->p_lock);
   1056 	kpsignal2(p, &ksi);
   1057 	mutex_exit(p->p_lock);
   1058 }
   1059 
   1060 void
   1061 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1062 {
   1063 	fdfile_t *ff;
   1064 	file_t *fp;
   1065 	fdtab_t *dt;
   1066 
   1067 	KASSERT(!cpu_intr_p());
   1068 	KASSERT(mutex_owned(&proc_lock));
   1069 
   1070 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1071 		size_t fd;
   1072 		filedesc_t *fdp = p->p_fd;
   1073 
   1074 		/* XXXSMP locking */
   1075 		ksi->ksi_fd = -1;
   1076 		dt = atomic_load_consume(&fdp->fd_dt);
   1077 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1078 			if ((ff = dt->dt_ff[fd]) == NULL)
   1079 				continue;
   1080 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
   1081 				continue;
   1082 			if (fp->f_data == data) {
   1083 				ksi->ksi_fd = fd;
   1084 				break;
   1085 			}
   1086 		}
   1087 	}
   1088 	mutex_enter(p->p_lock);
   1089 	kpsignal2(p, ksi);
   1090 	mutex_exit(p->p_lock);
   1091 }
   1092 
   1093 /*
   1094  * sigismasked:
   1095  *
   1096  *	Returns true if signal is ignored or masked for the specified LWP.
   1097  */
   1098 int
   1099 sigismasked(struct lwp *l, int sig)
   1100 {
   1101 	struct proc *p = l->l_proc;
   1102 
   1103 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1104 	    sigismember(&l->l_sigmask, sig);
   1105 }
   1106 
   1107 /*
   1108  * sigpost:
   1109  *
   1110  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1111  *	be able to take the signal.
   1112  */
   1113 static int
   1114 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1115 {
   1116 	int rv, masked;
   1117 	struct proc *p = l->l_proc;
   1118 
   1119 	KASSERT(mutex_owned(p->p_lock));
   1120 
   1121 	/*
   1122 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1123 	 * pending signals.  Don't give it more.
   1124 	 */
   1125 	if (l->l_stat == LSZOMB)
   1126 		return 0;
   1127 
   1128 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1129 
   1130 	lwp_lock(l);
   1131 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1132 		if ((prop & SA_KILL) != 0)
   1133 			l->l_flag &= ~LW_DBGSUSPEND;
   1134 		else {
   1135 			lwp_unlock(l);
   1136 			return 0;
   1137 		}
   1138 	}
   1139 
   1140 	/*
   1141 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1142 	 * is found to take the signal immediately, it should be taken soon.
   1143 	 */
   1144 	signotify(l);
   1145 
   1146 	/*
   1147 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1148 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1149 	 */
   1150 	masked = sigismember(&l->l_sigmask, sig);
   1151 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1152 		lwp_unlock(l);
   1153 		return 0;
   1154 	}
   1155 
   1156 	/*
   1157 	 * If killing the process, make it run fast.
   1158 	 */
   1159 	if (__predict_false((prop & SA_KILL) != 0) &&
   1160 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1161 		KASSERT(l->l_class == SCHED_OTHER);
   1162 		lwp_changepri(l, MAXPRI_USER);
   1163 	}
   1164 
   1165 	/*
   1166 	 * If the LWP is running or on a run queue, then we win.  If it's
   1167 	 * sleeping interruptably, wake it and make it take the signal.  If
   1168 	 * the sleep isn't interruptable, then the chances are it will get
   1169 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1170 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1171 	 * for later; otherwise punt.
   1172 	 */
   1173 	rv = 0;
   1174 
   1175 	switch (l->l_stat) {
   1176 	case LSRUN:
   1177 	case LSONPROC:
   1178 		rv = 1;
   1179 		break;
   1180 
   1181 	case LSSLEEP:
   1182 		if ((l->l_flag & LW_SINTR) != 0) {
   1183 			/* setrunnable() will release the lock. */
   1184 			setrunnable(l);
   1185 			return 1;
   1186 		}
   1187 		break;
   1188 
   1189 	case LSSUSPENDED:
   1190 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1191 			/* lwp_continue() will release the lock. */
   1192 			lwp_continue(l);
   1193 			return 1;
   1194 		}
   1195 		break;
   1196 
   1197 	case LSSTOP:
   1198 		if ((prop & SA_STOP) != 0)
   1199 			break;
   1200 
   1201 		/*
   1202 		 * If the LWP is stopped and we are sending a continue
   1203 		 * signal, then start it again.
   1204 		 */
   1205 		if ((prop & SA_CONT) != 0) {
   1206 			if (l->l_wchan != NULL) {
   1207 				l->l_stat = LSSLEEP;
   1208 				p->p_nrlwps++;
   1209 				rv = 1;
   1210 				break;
   1211 			}
   1212 			/* setrunnable() will release the lock. */
   1213 			setrunnable(l);
   1214 			return 1;
   1215 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1216 			/* setrunnable() will release the lock. */
   1217 			setrunnable(l);
   1218 			return 1;
   1219 		}
   1220 		break;
   1221 
   1222 	default:
   1223 		break;
   1224 	}
   1225 
   1226 	lwp_unlock(l);
   1227 	return rv;
   1228 }
   1229 
   1230 /*
   1231  * Notify an LWP that it has a pending signal.
   1232  */
   1233 void
   1234 signotify(struct lwp *l)
   1235 {
   1236 	KASSERT(lwp_locked(l, NULL));
   1237 
   1238 	l->l_flag |= LW_PENDSIG;
   1239 	lwp_need_userret(l);
   1240 }
   1241 
   1242 /*
   1243  * Find an LWP within process p that is waiting on signal ksi, and hand
   1244  * it on.
   1245  */
   1246 static int
   1247 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1248 {
   1249 	struct lwp *l;
   1250 	int signo;
   1251 
   1252 	KASSERT(mutex_owned(p->p_lock));
   1253 
   1254 	signo = ksi->ksi_signo;
   1255 
   1256 	if (ksi->ksi_lid != 0) {
   1257 		/*
   1258 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1259 		 * it's interested.
   1260 		 */
   1261 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1262 			return 0;
   1263 		if (l->l_sigwaited == NULL ||
   1264 		    !sigismember(&l->l_sigwaitset, signo))
   1265 			return 0;
   1266 	} else {
   1267 		/*
   1268 		 * Look for any LWP that may be interested.
   1269 		 */
   1270 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1271 			KASSERT(l->l_sigwaited != NULL);
   1272 			if (sigismember(&l->l_sigwaitset, signo))
   1273 				break;
   1274 		}
   1275 	}
   1276 
   1277 	if (l != NULL) {
   1278 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1279 		l->l_sigwaited = NULL;
   1280 		LIST_REMOVE(l, l_sigwaiter);
   1281 		cv_signal(&l->l_sigcv);
   1282 		return 1;
   1283 	}
   1284 
   1285 	return 0;
   1286 }
   1287 
   1288 /*
   1289  * Send the signal to the process.  If the signal has an action, the action
   1290  * is usually performed by the target process rather than the caller; we add
   1291  * the signal to the set of pending signals for the process.
   1292  *
   1293  * Exceptions:
   1294  *   o When a stop signal is sent to a sleeping process that takes the
   1295  *     default action, the process is stopped without awakening it.
   1296  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1297  *     regardless of the signal action (eg, blocked or ignored).
   1298  *
   1299  * Other ignored signals are discarded immediately.
   1300  */
   1301 int
   1302 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1303 {
   1304 	int prop, signo = ksi->ksi_signo;
   1305 	struct lwp *l = NULL;
   1306 	ksiginfo_t *kp;
   1307 	lwpid_t lid;
   1308 	sig_t action;
   1309 	bool toall;
   1310 	bool traced;
   1311 	int error = 0;
   1312 
   1313 	KASSERT(!cpu_intr_p());
   1314 	KASSERT(mutex_owned(&proc_lock));
   1315 	KASSERT(mutex_owned(p->p_lock));
   1316 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1317 	KASSERT(signo > 0 && signo < NSIG);
   1318 
   1319 	/*
   1320 	 * If the process is being created by fork, is a zombie or is
   1321 	 * exiting, then just drop the signal here and bail out.
   1322 	 */
   1323 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1324 		return 0;
   1325 
   1326 	/*
   1327 	 * Notify any interested parties of the signal.
   1328 	 */
   1329 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1330 
   1331 	/*
   1332 	 * Some signals including SIGKILL must act on the entire process.
   1333 	 */
   1334 	kp = NULL;
   1335 	prop = sigprop[signo];
   1336 	toall = ((prop & SA_TOALL) != 0);
   1337 	lid = toall ? 0 : ksi->ksi_lid;
   1338 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1339 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1340 
   1341 	/*
   1342 	 * If proc is traced, always give parent a chance.
   1343 	 */
   1344 	if (traced) {
   1345 		action = SIG_DFL;
   1346 
   1347 		if (lid == 0) {
   1348 			/*
   1349 			 * If the process is being traced and the signal
   1350 			 * is being caught, make sure to save any ksiginfo.
   1351 			 */
   1352 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1353 				goto discard;
   1354 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1355 				goto out;
   1356 		}
   1357 	} else {
   1358 
   1359 		/*
   1360 		 * If the signal is being ignored, then drop it.  Note: we
   1361 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1362 		 * SIG_IGN, action will be SIG_DFL here.
   1363 		 */
   1364 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1365 			goto discard;
   1366 
   1367 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1368 			action = SIG_CATCH;
   1369 		else {
   1370 			action = SIG_DFL;
   1371 
   1372 			/*
   1373 			 * If sending a tty stop signal to a member of an
   1374 			 * orphaned process group, discard the signal here if
   1375 			 * the action is default; don't stop the process below
   1376 			 * if sleeping, and don't clear any pending SIGCONT.
   1377 			 */
   1378 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1379 				goto discard;
   1380 
   1381 			if (prop & SA_KILL && p->p_nice > NZERO)
   1382 				p->p_nice = NZERO;
   1383 		}
   1384 	}
   1385 
   1386 	/*
   1387 	 * If stopping or continuing a process, discard any pending
   1388 	 * signals that would do the inverse.
   1389 	 */
   1390 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1391 		ksiginfoq_t kq;
   1392 
   1393 		ksiginfo_queue_init(&kq);
   1394 		if ((prop & SA_CONT) != 0)
   1395 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1396 		if ((prop & SA_STOP) != 0)
   1397 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1398 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1399 	}
   1400 
   1401 	/*
   1402 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1403 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1404 	 * the signal info.  The signal won't be processed further here.
   1405 	 */
   1406 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1407 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1408 	    sigunwait(p, ksi))
   1409 		goto discard;
   1410 
   1411 	/*
   1412 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1413 	 * here.
   1414 	 */
   1415 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1416 		goto discard;
   1417 
   1418 	/*
   1419 	 * LWP private signals are easy - just find the LWP and post
   1420 	 * the signal to it.
   1421 	 */
   1422 	if (lid != 0) {
   1423 		l = lwp_find(p, lid);
   1424 		if (l != NULL) {
   1425 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1426 				goto out;
   1427 			membar_producer();
   1428 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1429 				signo = -1;
   1430 		}
   1431 		goto out;
   1432 	}
   1433 
   1434 	/*
   1435 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1436 	 * or for an SA process.
   1437 	 */
   1438 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1439 		if (traced)
   1440 			goto deliver;
   1441 
   1442 		/*
   1443 		 * If SIGCONT is default (or ignored) and process is
   1444 		 * asleep, we are finished; the process should not
   1445 		 * be awakened.
   1446 		 */
   1447 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1448 			goto out;
   1449 	} else {
   1450 		/*
   1451 		 * Process is stopped or stopping.
   1452 		 * - If traced, then no action is needed, unless killing.
   1453 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1454 		 */
   1455 		if (traced && signo != SIGKILL) {
   1456 			goto out;
   1457 		}
   1458 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1459 			/*
   1460 			 * Re-adjust p_nstopchild if the process was
   1461 			 * stopped but not yet collected by its parent.
   1462 			 */
   1463 			if (p->p_stat == SSTOP && !p->p_waited)
   1464 				p->p_pptr->p_nstopchild--;
   1465 			p->p_stat = SACTIVE;
   1466 			p->p_sflag &= ~PS_STOPPING;
   1467 			if (traced) {
   1468 				KASSERT(signo == SIGKILL);
   1469 				goto deliver;
   1470 			}
   1471 			/*
   1472 			 * Do not make signal pending if SIGCONT is default.
   1473 			 *
   1474 			 * If the process catches SIGCONT, let it handle the
   1475 			 * signal itself (if waiting on event - process runs,
   1476 			 * otherwise continues sleeping).
   1477 			 */
   1478 			if ((prop & SA_CONT) != 0) {
   1479 				p->p_xsig = SIGCONT;
   1480 				p->p_sflag |= PS_CONTINUED;
   1481 				child_psignal(p, 0);
   1482 				if (action == SIG_DFL) {
   1483 					KASSERT(signo != SIGKILL);
   1484 					goto deliver;
   1485 				}
   1486 			}
   1487 		} else if ((prop & SA_STOP) != 0) {
   1488 			/*
   1489 			 * Already stopped, don't need to stop again.
   1490 			 * (If we did the shell could get confused.)
   1491 			 */
   1492 			goto out;
   1493 		}
   1494 	}
   1495 	/*
   1496 	 * Make signal pending.
   1497 	 */
   1498 	KASSERT(!traced);
   1499 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1500 		goto out;
   1501 deliver:
   1502 	/*
   1503 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1504 	 * visible on the per process list (for sigispending()).  This
   1505 	 * is unlikely to be needed in practice, but...
   1506 	 */
   1507 	membar_producer();
   1508 
   1509 	/*
   1510 	 * Try to find an LWP that can take the signal.
   1511 	 */
   1512 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1513 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1514 			break;
   1515 	}
   1516 	signo = -1;
   1517 out:
   1518 	/*
   1519 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1520 	 * with locks held.  The caller should take care of this.
   1521 	 */
   1522 	ksiginfo_free(kp);
   1523 	if (signo == -1)
   1524 		return error;
   1525 discard:
   1526 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1527 	return error;
   1528 }
   1529 
   1530 void
   1531 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1532 {
   1533 	struct proc *p = l->l_proc;
   1534 
   1535 	KASSERT(mutex_owned(p->p_lock));
   1536 	(*p->p_emul->e_sendsig)(ksi, mask);
   1537 }
   1538 
   1539 /*
   1540  * Stop any LWPs sleeping interruptably.
   1541  */
   1542 static void
   1543 proc_stop_lwps(struct proc *p)
   1544 {
   1545 	struct lwp *l;
   1546 
   1547 	KASSERT(mutex_owned(p->p_lock));
   1548 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1549 
   1550 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1551 		lwp_lock(l);
   1552 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1553 			l->l_stat = LSSTOP;
   1554 			p->p_nrlwps--;
   1555 		}
   1556 		lwp_unlock(l);
   1557 	}
   1558 }
   1559 
   1560 /*
   1561  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1562  *
   1563  * Drop p_lock briefly if ppsig is true.
   1564  */
   1565 static void
   1566 proc_stop_done(struct proc *p, int ppmask)
   1567 {
   1568 
   1569 	KASSERT(mutex_owned(&proc_lock));
   1570 	KASSERT(mutex_owned(p->p_lock));
   1571 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1572 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1573 
   1574 	p->p_sflag &= ~PS_STOPPING;
   1575 	p->p_stat = SSTOP;
   1576 	p->p_waited = 0;
   1577 	p->p_pptr->p_nstopchild++;
   1578 
   1579 	/* child_psignal drops p_lock briefly. */
   1580 	child_psignal(p, ppmask);
   1581 	cv_broadcast(&p->p_pptr->p_waitcv);
   1582 }
   1583 
   1584 /*
   1585  * Stop the current process and switch away to the debugger notifying
   1586  * an event specific to a traced process only.
   1587  */
   1588 void
   1589 eventswitch(int code, int pe_report_event, int entity)
   1590 {
   1591 	struct lwp *l = curlwp;
   1592 	struct proc *p = l->l_proc;
   1593 	struct sigacts *ps;
   1594 	sigset_t *mask;
   1595 	sig_t action;
   1596 	ksiginfo_t ksi;
   1597 	const int signo = SIGTRAP;
   1598 
   1599 	KASSERT(mutex_owned(&proc_lock));
   1600 	KASSERT(mutex_owned(p->p_lock));
   1601 	KASSERT(p->p_pptr != initproc);
   1602 	KASSERT(l->l_stat == LSONPROC);
   1603 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1604 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1605 	KASSERT(p->p_nrlwps > 0);
   1606 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1607 	        (code == TRAP_EXEC));
   1608 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1609 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1610 
   1611 repeat:
   1612 	/*
   1613 	 * If we are exiting, demise now.
   1614 	 *
   1615 	 * This avoids notifying tracer and deadlocking.
   1616 	 */
   1617 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1618 		mutex_exit(p->p_lock);
   1619 		mutex_exit(&proc_lock);
   1620 
   1621 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1622 			/* Avoid double lwp_exit() and panic. */
   1623 			return;
   1624 		}
   1625 
   1626 		lwp_exit(l);
   1627 		panic("eventswitch");
   1628 		/* NOTREACHED */
   1629 	}
   1630 
   1631 	/*
   1632 	 * If we are no longer traced, abandon this event signal.
   1633 	 *
   1634 	 * This avoids killing a process after detaching the debugger.
   1635 	 */
   1636 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1637 		mutex_exit(p->p_lock);
   1638 		mutex_exit(&proc_lock);
   1639 		return;
   1640 	}
   1641 
   1642 	/*
   1643 	 * If there's a pending SIGKILL process it immediately.
   1644 	 */
   1645 	if (p->p_xsig == SIGKILL ||
   1646 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1647 		mutex_exit(p->p_lock);
   1648 		mutex_exit(&proc_lock);
   1649 		return;
   1650 	}
   1651 
   1652 	/*
   1653 	 * The process is already stopping.
   1654 	 */
   1655 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1656 		mutex_exit(&proc_lock);
   1657 		sigswitch_unlock_and_switch_away(l);
   1658 		mutex_enter(&proc_lock);
   1659 		mutex_enter(p->p_lock);
   1660 		goto repeat;
   1661 	}
   1662 
   1663 	KSI_INIT_TRAP(&ksi);
   1664 	ksi.ksi_lid = l->l_lid;
   1665 	ksi.ksi_signo = signo;
   1666 	ksi.ksi_code = code;
   1667 	ksi.ksi_pe_report_event = pe_report_event;
   1668 
   1669 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1670 	ksi.ksi_pe_other_pid = entity;
   1671 
   1672 	/* Needed for ktrace */
   1673 	ps = p->p_sigacts;
   1674 	action = SIGACTION_PS(ps, signo).sa_handler;
   1675 	mask = &l->l_sigmask;
   1676 
   1677 	p->p_xsig = signo;
   1678 	p->p_sigctx.ps_faked = true;
   1679 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1680 	p->p_sigctx.ps_info = ksi.ksi_info;
   1681 
   1682 	sigswitch(0, signo, true);
   1683 
   1684 	if (code == TRAP_CHLD) {
   1685 		mutex_enter(&proc_lock);
   1686 		while (l->l_vforkwaiting)
   1687 			cv_wait(&l->l_waitcv, &proc_lock);
   1688 		mutex_exit(&proc_lock);
   1689 	}
   1690 
   1691 	if (ktrpoint(KTR_PSIG)) {
   1692 		if (p->p_emul->e_ktrpsig)
   1693 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1694 		else
   1695 			ktrpsig(signo, action, mask, &ksi);
   1696 	}
   1697 }
   1698 
   1699 void
   1700 eventswitchchild(struct proc *p, int code, int pe_report_event)
   1701 {
   1702 	mutex_enter(&proc_lock);
   1703 	mutex_enter(p->p_lock);
   1704 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
   1705 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   1706 		mutex_exit(p->p_lock);
   1707 		mutex_exit(&proc_lock);
   1708 		return;
   1709 	}
   1710 	eventswitch(code, pe_report_event, p->p_oppid);
   1711 }
   1712 
   1713 /*
   1714  * Stop the current process and switch away when being stopped or traced.
   1715  */
   1716 static void
   1717 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1718 {
   1719 	struct lwp *l = curlwp;
   1720 	struct proc *p = l->l_proc;
   1721 
   1722 	KASSERT(mutex_owned(p->p_lock));
   1723 	KASSERT(l->l_stat == LSONPROC);
   1724 	KASSERT(p->p_nrlwps > 0);
   1725 
   1726 	if (proc_lock_held) {
   1727 		KASSERT(mutex_owned(&proc_lock));
   1728 	} else {
   1729 		KASSERT(!mutex_owned(&proc_lock));
   1730 	}
   1731 
   1732 	/*
   1733 	 * On entry we know that the process needs to stop.  If it's
   1734 	 * the result of a 'sideways' stop signal that has been sourced
   1735 	 * through issignal(), then stop other LWPs in the process too.
   1736 	 */
   1737 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1738 		KASSERT(signo != 0);
   1739 		proc_stop(p, signo);
   1740 		KASSERT(p->p_nrlwps > 0);
   1741 	}
   1742 
   1743 	/*
   1744 	 * If we are the last live LWP, and the stop was a result of
   1745 	 * a new signal, then signal the parent.
   1746 	 */
   1747 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1748 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
   1749 			mutex_exit(p->p_lock);
   1750 			mutex_enter(&proc_lock);
   1751 			mutex_enter(p->p_lock);
   1752 		}
   1753 
   1754 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1755 			/*
   1756 			 * Note that proc_stop_done() can drop
   1757 			 * p->p_lock briefly.
   1758 			 */
   1759 			proc_stop_done(p, ppmask);
   1760 		}
   1761 
   1762 		mutex_exit(&proc_lock);
   1763 	}
   1764 
   1765 	sigswitch_unlock_and_switch_away(l);
   1766 }
   1767 
   1768 /*
   1769  * Unlock and switch away.
   1770  */
   1771 static void
   1772 sigswitch_unlock_and_switch_away(struct lwp *l)
   1773 {
   1774 	struct proc *p;
   1775 	int biglocks;
   1776 
   1777 	p = l->l_proc;
   1778 
   1779 	KASSERT(mutex_owned(p->p_lock));
   1780 	KASSERT(!mutex_owned(&proc_lock));
   1781 
   1782 	KASSERT(l->l_stat == LSONPROC);
   1783 	KASSERT(p->p_nrlwps > 0);
   1784 
   1785 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1786 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1787 		p->p_nrlwps--;
   1788 		lwp_lock(l);
   1789 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1790 		l->l_stat = LSSTOP;
   1791 		lwp_unlock(l);
   1792 	}
   1793 
   1794 	mutex_exit(p->p_lock);
   1795 	lwp_lock(l);
   1796 	spc_lock(l->l_cpu);
   1797 	mi_switch(l);
   1798 	KERNEL_LOCK(biglocks, l);
   1799 }
   1800 
   1801 /*
   1802  * Check for a signal from the debugger.
   1803  */
   1804 static int
   1805 sigchecktrace(void)
   1806 {
   1807 	struct lwp *l = curlwp;
   1808 	struct proc *p = l->l_proc;
   1809 	int signo;
   1810 
   1811 	KASSERT(mutex_owned(p->p_lock));
   1812 
   1813 	/* If there's a pending SIGKILL, process it immediately. */
   1814 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1815 		return 0;
   1816 
   1817 	/*
   1818 	 * If we are no longer being traced, or the parent didn't
   1819 	 * give us a signal, or we're stopping, look for more signals.
   1820 	 */
   1821 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1822 	    (p->p_sflag & PS_STOPPING) != 0)
   1823 		return 0;
   1824 
   1825 	/*
   1826 	 * If the new signal is being masked, look for other signals.
   1827 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1828 	 */
   1829 	signo = p->p_xsig;
   1830 	p->p_xsig = 0;
   1831 	if (sigismember(&l->l_sigmask, signo)) {
   1832 		signo = 0;
   1833 	}
   1834 	return signo;
   1835 }
   1836 
   1837 /*
   1838  * If the current process has received a signal (should be caught or cause
   1839  * termination, should interrupt current syscall), return the signal number.
   1840  *
   1841  * Stop signals with default action are processed immediately, then cleared;
   1842  * they aren't returned.  This is checked after each entry to the system for
   1843  * a syscall or trap.
   1844  *
   1845  * We will also return -1 if the process is exiting and the current LWP must
   1846  * follow suit.
   1847  */
   1848 int
   1849 issignal(struct lwp *l)
   1850 {
   1851 	struct proc *p;
   1852 	int siglwp, signo, prop;
   1853 	sigpend_t *sp;
   1854 	sigset_t ss;
   1855 	bool traced;
   1856 
   1857 	p = l->l_proc;
   1858 	sp = NULL;
   1859 	signo = 0;
   1860 
   1861 	KASSERT(p == curproc);
   1862 	KASSERT(mutex_owned(p->p_lock));
   1863 
   1864 	for (;;) {
   1865 		/* Discard any signals that we have decided not to take. */
   1866 		if (signo != 0) {
   1867 			(void)sigget(sp, NULL, signo, NULL);
   1868 		}
   1869 
   1870 		/*
   1871 		 * If the process is stopped/stopping, then stop ourselves
   1872 		 * now that we're on the kernel/userspace boundary.  When
   1873 		 * we awaken, check for a signal from the debugger.
   1874 		 */
   1875 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1876 			sigswitch_unlock_and_switch_away(l);
   1877 			mutex_enter(p->p_lock);
   1878 			continue;
   1879 		} else if (p->p_stat == SACTIVE)
   1880 			signo = sigchecktrace();
   1881 		else
   1882 			signo = 0;
   1883 
   1884 		/* Signals from the debugger are "out of band". */
   1885 		sp = NULL;
   1886 
   1887 		/*
   1888 		 * If the debugger didn't provide a signal, find a pending
   1889 		 * signal from our set.  Check per-LWP signals first, and
   1890 		 * then per-process.
   1891 		 */
   1892 		if (signo == 0) {
   1893 			sp = &l->l_sigpend;
   1894 			ss = sp->sp_set;
   1895 			siglwp = l->l_lid;
   1896 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1897 				sigminusset(&vforksigmask, &ss);
   1898 			sigminusset(&l->l_sigmask, &ss);
   1899 
   1900 			if ((signo = firstsig(&ss)) == 0) {
   1901 				sp = &p->p_sigpend;
   1902 				ss = sp->sp_set;
   1903 				siglwp = 0;
   1904 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1905 					sigminusset(&vforksigmask, &ss);
   1906 				sigminusset(&l->l_sigmask, &ss);
   1907 
   1908 				if ((signo = firstsig(&ss)) == 0) {
   1909 					/*
   1910 					 * No signal pending - clear the
   1911 					 * indicator and bail out.
   1912 					 */
   1913 					lwp_lock(l);
   1914 					l->l_flag &= ~LW_PENDSIG;
   1915 					lwp_unlock(l);
   1916 					sp = NULL;
   1917 					break;
   1918 				}
   1919 			}
   1920 		}
   1921 
   1922 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1923 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1924 
   1925 		if (sp) {
   1926 			/* Overwrite process' signal context to correspond
   1927 			 * to the currently reported LWP.  This is necessary
   1928 			 * for PT_GET_SIGINFO to report the correct signal when
   1929 			 * multiple LWPs have pending signals.  We do this only
   1930 			 * when the signal comes from the queue, for signals
   1931 			 * created by the debugger we assume it set correct
   1932 			 * siginfo.
   1933 			 */
   1934 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1935 			if (ksi) {
   1936 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1937 				p->p_sigctx.ps_info = ksi->ksi_info;
   1938 			} else {
   1939 				p->p_sigctx.ps_lwp = siglwp;
   1940 				memset(&p->p_sigctx.ps_info, 0,
   1941 				    sizeof(p->p_sigctx.ps_info));
   1942 				p->p_sigctx.ps_info._signo = signo;
   1943 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1944 			}
   1945 		}
   1946 
   1947 		/*
   1948 		 * We should see pending but ignored signals only if
   1949 		 * we are being traced.
   1950 		 */
   1951 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1952 		    !traced) {
   1953 			/* Discard the signal. */
   1954 			continue;
   1955 		}
   1956 
   1957 		/*
   1958 		 * If traced, always stop, and stay stopped until released
   1959 		 * by the debugger.  If the our parent is our debugger waiting
   1960 		 * for us and we vforked, don't hang as we could deadlock.
   1961 		 */
   1962 		if (traced && signo != SIGKILL &&
   1963 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1964 		     (p->p_pptr == p->p_opptr))) {
   1965 			/*
   1966 			 * Take the signal, but don't remove it from the
   1967 			 * siginfo queue, because the debugger can send
   1968 			 * it later.
   1969 			 */
   1970 			if (sp)
   1971 				sigdelset(&sp->sp_set, signo);
   1972 			p->p_xsig = signo;
   1973 
   1974 			/* Handling of signal trace */
   1975 			sigswitch(0, signo, false);
   1976 			mutex_enter(p->p_lock);
   1977 
   1978 			/* Check for a signal from the debugger. */
   1979 			if ((signo = sigchecktrace()) == 0)
   1980 				continue;
   1981 
   1982 			/* Signals from the debugger are "out of band". */
   1983 			sp = NULL;
   1984 		}
   1985 
   1986 		prop = sigprop[signo];
   1987 
   1988 		/*
   1989 		 * Decide whether the signal should be returned.
   1990 		 */
   1991 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1992 		case (long)SIG_DFL:
   1993 			/*
   1994 			 * Don't take default actions on system processes.
   1995 			 */
   1996 			if (p->p_pid <= 1) {
   1997 #ifdef DIAGNOSTIC
   1998 				/*
   1999 				 * Are you sure you want to ignore SIGSEGV
   2000 				 * in init? XXX
   2001 				 */
   2002 				printf_nolog("Process (pid %d) got sig %d\n",
   2003 				    p->p_pid, signo);
   2004 #endif
   2005 				continue;
   2006 			}
   2007 
   2008 			/*
   2009 			 * If there is a pending stop signal to process with
   2010 			 * default action, stop here, then clear the signal.
   2011 			 * However, if process is member of an orphaned
   2012 			 * process group, ignore tty stop signals.
   2013 			 */
   2014 			if (prop & SA_STOP) {
   2015 				/*
   2016 				 * XXX Don't hold proc_lock for p_lflag,
   2017 				 * but it's not a big deal.
   2018 				 */
   2019 				if ((traced &&
   2020 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   2021 				     (p->p_pptr == p->p_opptr))) ||
   2022 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   2023 				    prop & SA_TTYSTOP)) {
   2024 					/* Ignore the signal. */
   2025 					continue;
   2026 				}
   2027 				/* Take the signal. */
   2028 				(void)sigget(sp, NULL, signo, NULL);
   2029 				p->p_xsig = signo;
   2030 				p->p_sflag &= ~PS_CONTINUED;
   2031 				signo = 0;
   2032 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2033 				mutex_enter(p->p_lock);
   2034 			} else if (prop & SA_IGNORE) {
   2035 				/*
   2036 				 * Except for SIGCONT, shouldn't get here.
   2037 				 * Default action is to ignore; drop it.
   2038 				 */
   2039 				continue;
   2040 			}
   2041 			break;
   2042 
   2043 		case (long)SIG_IGN:
   2044 #ifdef DEBUG_ISSIGNAL
   2045 			/*
   2046 			 * Masking above should prevent us ever trying
   2047 			 * to take action on an ignored signal other
   2048 			 * than SIGCONT, unless process is traced.
   2049 			 */
   2050 			if ((prop & SA_CONT) == 0 && !traced)
   2051 				printf_nolog("issignal\n");
   2052 #endif
   2053 			continue;
   2054 
   2055 		default:
   2056 			/*
   2057 			 * This signal has an action, let postsig() process
   2058 			 * it.
   2059 			 */
   2060 			break;
   2061 		}
   2062 
   2063 		break;
   2064 	}
   2065 
   2066 	l->l_sigpendset = sp;
   2067 	return signo;
   2068 }
   2069 
   2070 /*
   2071  * Take the action for the specified signal
   2072  * from the current set of pending signals.
   2073  */
   2074 void
   2075 postsig(int signo)
   2076 {
   2077 	struct lwp	*l;
   2078 	struct proc	*p;
   2079 	struct sigacts	*ps;
   2080 	sig_t		action;
   2081 	sigset_t	*returnmask;
   2082 	ksiginfo_t	ksi;
   2083 
   2084 	l = curlwp;
   2085 	p = l->l_proc;
   2086 	ps = p->p_sigacts;
   2087 
   2088 	KASSERT(mutex_owned(p->p_lock));
   2089 	KASSERT(signo > 0);
   2090 
   2091 	/*
   2092 	 * Set the new mask value and also defer further occurrences of this
   2093 	 * signal.
   2094 	 *
   2095 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2096 	 * not of interest, but rather the mask from before the sigsuspend is
   2097 	 * what we want restored after the signal processing is completed.
   2098 	 */
   2099 	if (l->l_sigrestore) {
   2100 		returnmask = &l->l_sigoldmask;
   2101 		l->l_sigrestore = 0;
   2102 	} else
   2103 		returnmask = &l->l_sigmask;
   2104 
   2105 	/*
   2106 	 * Commit to taking the signal before releasing the mutex.
   2107 	 */
   2108 	action = SIGACTION_PS(ps, signo).sa_handler;
   2109 	l->l_ru.ru_nsignals++;
   2110 	if (l->l_sigpendset == NULL) {
   2111 		/* From the debugger */
   2112 		if (p->p_sigctx.ps_faked &&
   2113 		    signo == p->p_sigctx.ps_info._signo) {
   2114 			KSI_INIT(&ksi);
   2115 			ksi.ksi_info = p->p_sigctx.ps_info;
   2116 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2117 			p->p_sigctx.ps_faked = false;
   2118 		} else {
   2119 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2120 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2121 		}
   2122 	} else
   2123 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2124 
   2125 	if (ktrpoint(KTR_PSIG)) {
   2126 		mutex_exit(p->p_lock);
   2127 		if (p->p_emul->e_ktrpsig)
   2128 			p->p_emul->e_ktrpsig(signo, action,
   2129 			    returnmask, &ksi);
   2130 		else
   2131 			ktrpsig(signo, action, returnmask, &ksi);
   2132 		mutex_enter(p->p_lock);
   2133 	}
   2134 
   2135 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2136 
   2137 	if (action == SIG_DFL) {
   2138 		/*
   2139 		 * Default action, where the default is to kill
   2140 		 * the process.  (Other cases were ignored above.)
   2141 		 */
   2142 		sigexit(l, signo);
   2143 		return;
   2144 	}
   2145 
   2146 	/*
   2147 	 * If we get here, the signal must be caught.
   2148 	 */
   2149 #ifdef DIAGNOSTIC
   2150 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2151 		panic("postsig action");
   2152 #endif
   2153 
   2154 	kpsendsig(l, &ksi, returnmask);
   2155 }
   2156 
   2157 /*
   2158  * sendsig:
   2159  *
   2160  *	Default signal delivery method for NetBSD.
   2161  */
   2162 void
   2163 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2164 {
   2165 	struct sigacts *sa;
   2166 	int sig;
   2167 
   2168 	sig = ksi->ksi_signo;
   2169 	sa = curproc->p_sigacts;
   2170 
   2171 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2172 	case 0:
   2173 	case 1:
   2174 		/* Compat for 1.6 and earlier. */
   2175 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2176 		    break);
   2177 		return;
   2178 	case 2:
   2179 	case 3:
   2180 		sendsig_siginfo(ksi, mask);
   2181 		return;
   2182 	default:
   2183 		break;
   2184 	}
   2185 
   2186 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2187 	sigexit(curlwp, SIGILL);
   2188 }
   2189 
   2190 /*
   2191  * sendsig_reset:
   2192  *
   2193  *	Reset the signal action.  Called from emulation specific sendsig()
   2194  *	before unlocking to deliver the signal.
   2195  */
   2196 void
   2197 sendsig_reset(struct lwp *l, int signo)
   2198 {
   2199 	struct proc *p = l->l_proc;
   2200 	struct sigacts *ps = p->p_sigacts;
   2201 
   2202 	KASSERT(mutex_owned(p->p_lock));
   2203 
   2204 	p->p_sigctx.ps_lwp = 0;
   2205 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2206 
   2207 	mutex_enter(&ps->sa_mutex);
   2208 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2209 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2210 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2211 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2212 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2213 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2214 	}
   2215 	mutex_exit(&ps->sa_mutex);
   2216 }
   2217 
   2218 /*
   2219  * Kill the current process for stated reason.
   2220  */
   2221 void
   2222 killproc(struct proc *p, const char *why)
   2223 {
   2224 
   2225 	KASSERT(mutex_owned(&proc_lock));
   2226 
   2227 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2228 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2229 	psignal(p, SIGKILL);
   2230 }
   2231 
   2232 /*
   2233  * Force the current process to exit with the specified signal, dumping core
   2234  * if appropriate.  We bypass the normal tests for masked and caught
   2235  * signals, allowing unrecoverable failures to terminate the process without
   2236  * changing signal state.  Mark the accounting record with the signal
   2237  * termination.  If dumping core, save the signal number for the debugger.
   2238  * Calls exit and does not return.
   2239  */
   2240 void
   2241 sigexit(struct lwp *l, int signo)
   2242 {
   2243 	int exitsig, error, docore;
   2244 	struct proc *p;
   2245 	struct lwp *t;
   2246 
   2247 	p = l->l_proc;
   2248 
   2249 	KASSERT(mutex_owned(p->p_lock));
   2250 	KERNEL_UNLOCK_ALL(l, NULL);
   2251 
   2252 	/*
   2253 	 * Don't permit coredump() multiple times in the same process.
   2254 	 * Call back into sigexit, where we will be suspended until
   2255 	 * the deed is done.  Note that this is a recursive call, but
   2256 	 * LW_WCORE will prevent us from coming back this way.
   2257 	 */
   2258 	if ((p->p_sflag & PS_WCORE) != 0) {
   2259 		lwp_lock(l);
   2260 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2261 		lwp_unlock(l);
   2262 		mutex_exit(p->p_lock);
   2263 		lwp_userret(l);
   2264 		panic("sigexit 1");
   2265 		/* NOTREACHED */
   2266 	}
   2267 
   2268 	/* If process is already on the way out, then bail now. */
   2269 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2270 		mutex_exit(p->p_lock);
   2271 		lwp_exit(l);
   2272 		panic("sigexit 2");
   2273 		/* NOTREACHED */
   2274 	}
   2275 
   2276 	/*
   2277 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2278 	 * so that their registers are available long enough to be dumped.
   2279  	 */
   2280 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2281 		p->p_sflag |= PS_WCORE;
   2282 		for (;;) {
   2283 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2284 				lwp_lock(t);
   2285 				if (t == l) {
   2286 					t->l_flag &=
   2287 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2288 					lwp_unlock(t);
   2289 					continue;
   2290 				}
   2291 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2292 				lwp_suspend(l, t);
   2293 			}
   2294 
   2295 			if (p->p_nrlwps == 1)
   2296 				break;
   2297 
   2298 			/*
   2299 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2300 			 * for everyone else to stop before proceeding.
   2301 			 */
   2302 			p->p_nlwpwait++;
   2303 			cv_broadcast(&p->p_lwpcv);
   2304 			cv_wait(&p->p_lwpcv, p->p_lock);
   2305 			p->p_nlwpwait--;
   2306 		}
   2307 	}
   2308 
   2309 	exitsig = signo;
   2310 	p->p_acflag |= AXSIG;
   2311 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2312 	p->p_sigctx.ps_info._signo = signo;
   2313 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2314 
   2315 	if (docore) {
   2316 		mutex_exit(p->p_lock);
   2317 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2318 
   2319 		if (kern_logsigexit) {
   2320 			int uid = l->l_cred ?
   2321 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2322 
   2323 			if (error)
   2324 				log(LOG_INFO, lognocoredump, p->p_pid,
   2325 				    p->p_comm, uid, signo, error);
   2326 			else
   2327 				log(LOG_INFO, logcoredump, p->p_pid,
   2328 				    p->p_comm, uid, signo);
   2329 		}
   2330 
   2331 #ifdef PAX_SEGVGUARD
   2332 		rw_enter(&exec_lock, RW_WRITER);
   2333 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2334 		rw_exit(&exec_lock);
   2335 #endif /* PAX_SEGVGUARD */
   2336 
   2337 		/* Acquire the sched state mutex.  exit1() will release it. */
   2338 		mutex_enter(p->p_lock);
   2339 		if (error == 0)
   2340 			p->p_sflag |= PS_COREDUMP;
   2341 	}
   2342 
   2343 	/* No longer dumping core. */
   2344 	p->p_sflag &= ~PS_WCORE;
   2345 
   2346 	exit1(l, 0, exitsig);
   2347 	/* NOTREACHED */
   2348 }
   2349 
   2350 /*
   2351  * Since the "real" code may (or may not) be present in loadable module,
   2352  * we provide routines here which calls the module hooks.
   2353  */
   2354 
   2355 int
   2356 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2357 {
   2358 
   2359 	int retval;
   2360 
   2361 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
   2362 	return retval;
   2363 }
   2364 
   2365 int
   2366 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
   2367 {
   2368 
   2369 	int retval;
   2370 
   2371 	MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
   2372 	return retval;
   2373 }
   2374 
   2375 int
   2376 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
   2377 {
   2378 	int retval;
   2379 
   2380 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
   2381 	return retval;
   2382 }
   2383 
   2384 int
   2385 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
   2386 {
   2387 	int retval;
   2388 
   2389 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
   2390 	return retval;
   2391 }
   2392 
   2393 /*
   2394  * Put process 'p' into the stopped state and optionally, notify the parent.
   2395  */
   2396 void
   2397 proc_stop(struct proc *p, int signo)
   2398 {
   2399 	struct lwp *l;
   2400 
   2401 	KASSERT(mutex_owned(p->p_lock));
   2402 
   2403 	/*
   2404 	 * First off, set the stopping indicator and bring all sleeping
   2405 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2406 	 * unlock between here and the p->p_nrlwps check below.
   2407 	 */
   2408 	p->p_sflag |= PS_STOPPING;
   2409 	membar_producer();
   2410 
   2411 	proc_stop_lwps(p);
   2412 
   2413 	/*
   2414 	 * If there are no LWPs available to take the signal, then we
   2415 	 * signal the parent process immediately.  Otherwise, the last
   2416 	 * LWP to stop will take care of it.
   2417 	 */
   2418 
   2419 	if (p->p_nrlwps == 0) {
   2420 		proc_stop_done(p, PS_NOCLDSTOP);
   2421 	} else {
   2422 		/*
   2423 		 * Have the remaining LWPs come to a halt, and trigger
   2424 		 * proc_stop_callout() to ensure that they do.
   2425 		 */
   2426 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2427 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2428 		}
   2429 		callout_schedule(&proc_stop_ch, 1);
   2430 	}
   2431 }
   2432 
   2433 /*
   2434  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2435  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2436  * to allow LWPs to release any locks that they may hold before stopping.
   2437  *
   2438  * Non-interruptable sleeps can be long, and there is the potential for an
   2439  * LWP to begin sleeping interruptably soon after the process has been set
   2440  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2441  * stopping, and so complete halt of the process and the return of status
   2442  * information to the parent could be delayed indefinitely.
   2443  *
   2444  * To handle this race, proc_stop_callout() runs once per tick while there
   2445  * are stopping processes in the system.  It sets LWPs that are sleeping
   2446  * interruptably into the LSSTOP state.
   2447  *
   2448  * Note that we are not concerned about keeping all LWPs stopped while the
   2449  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2450  * What we do need to ensure is that all LWPs in a stopping process have
   2451  * stopped at least once, so that notification can be sent to the parent
   2452  * process.
   2453  */
   2454 static void
   2455 proc_stop_callout(void *cookie)
   2456 {
   2457 	bool more, restart;
   2458 	struct proc *p;
   2459 
   2460 	(void)cookie;
   2461 
   2462 	do {
   2463 		restart = false;
   2464 		more = false;
   2465 
   2466 		mutex_enter(&proc_lock);
   2467 		PROCLIST_FOREACH(p, &allproc) {
   2468 			mutex_enter(p->p_lock);
   2469 
   2470 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2471 				mutex_exit(p->p_lock);
   2472 				continue;
   2473 			}
   2474 
   2475 			/* Stop any LWPs sleeping interruptably. */
   2476 			proc_stop_lwps(p);
   2477 			if (p->p_nrlwps == 0) {
   2478 				/*
   2479 				 * We brought the process to a halt.
   2480 				 * Mark it as stopped and notify the
   2481 				 * parent.
   2482 				 *
   2483 				 * Note that proc_stop_done() will
   2484 				 * drop p->p_lock briefly.
   2485 				 * Arrange to restart and check
   2486 				 * all processes again.
   2487 				 */
   2488 				restart = true;
   2489 				proc_stop_done(p, PS_NOCLDSTOP);
   2490 			} else
   2491 				more = true;
   2492 
   2493 			mutex_exit(p->p_lock);
   2494 			if (restart)
   2495 				break;
   2496 		}
   2497 		mutex_exit(&proc_lock);
   2498 	} while (restart);
   2499 
   2500 	/*
   2501 	 * If we noted processes that are stopping but still have
   2502 	 * running LWPs, then arrange to check again in 1 tick.
   2503 	 */
   2504 	if (more)
   2505 		callout_schedule(&proc_stop_ch, 1);
   2506 }
   2507 
   2508 /*
   2509  * Given a process in state SSTOP, set the state back to SACTIVE and
   2510  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2511  */
   2512 void
   2513 proc_unstop(struct proc *p)
   2514 {
   2515 	struct lwp *l;
   2516 	int sig;
   2517 
   2518 	KASSERT(mutex_owned(&proc_lock));
   2519 	KASSERT(mutex_owned(p->p_lock));
   2520 
   2521 	p->p_stat = SACTIVE;
   2522 	p->p_sflag &= ~PS_STOPPING;
   2523 	sig = p->p_xsig;
   2524 
   2525 	if (!p->p_waited)
   2526 		p->p_pptr->p_nstopchild--;
   2527 
   2528 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2529 		lwp_lock(l);
   2530 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2531 			lwp_unlock(l);
   2532 			continue;
   2533 		}
   2534 		if (l->l_wchan == NULL) {
   2535 			setrunnable(l);
   2536 			continue;
   2537 		}
   2538 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2539 			setrunnable(l);
   2540 			sig = 0;
   2541 		} else {
   2542 			l->l_stat = LSSLEEP;
   2543 			p->p_nrlwps++;
   2544 			lwp_unlock(l);
   2545 		}
   2546 	}
   2547 }
   2548 
   2549 void
   2550 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2551                const register_t *ret, int error)
   2552 {
   2553 	struct lwp *l = curlwp;
   2554 	struct proc *p = l->l_proc;
   2555 	struct sigacts *ps;
   2556 	sigset_t *mask;
   2557 	sig_t action;
   2558 	ksiginfo_t ksi;
   2559 	size_t i, sy_narg;
   2560 	const int signo = SIGTRAP;
   2561 
   2562 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2563 	KASSERT(p->p_pptr != initproc);
   2564 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2565 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2566 
   2567 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2568 
   2569 	KSI_INIT_TRAP(&ksi);
   2570 	ksi.ksi_lid = l->l_lid;
   2571 	ksi.ksi_signo = signo;
   2572 	ksi.ksi_code = trapno;
   2573 
   2574 	ksi.ksi_sysnum = sysnum;
   2575 	if (trapno == TRAP_SCE) {
   2576 		ksi.ksi_retval[0] = 0;
   2577 		ksi.ksi_retval[1] = 0;
   2578 		ksi.ksi_error = 0;
   2579 	} else {
   2580 		ksi.ksi_retval[0] = ret[0];
   2581 		ksi.ksi_retval[1] = ret[1];
   2582 		ksi.ksi_error = error;
   2583 	}
   2584 
   2585 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2586 
   2587 	for (i = 0; i < sy_narg; i++)
   2588 		ksi.ksi_args[i] = args[i];
   2589 
   2590 	mutex_enter(p->p_lock);
   2591 
   2592 repeat:
   2593 	/*
   2594 	 * If we are exiting, demise now.
   2595 	 *
   2596 	 * This avoids notifying tracer and deadlocking.
   2597 	 */
   2598 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2599 		mutex_exit(p->p_lock);
   2600 		lwp_exit(l);
   2601 		panic("proc_stoptrace");
   2602 		/* NOTREACHED */
   2603 	}
   2604 
   2605 	/*
   2606 	 * If there's a pending SIGKILL process it immediately.
   2607 	 */
   2608 	if (p->p_xsig == SIGKILL ||
   2609 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2610 		mutex_exit(p->p_lock);
   2611 		return;
   2612 	}
   2613 
   2614 	/*
   2615 	 * If we are no longer traced, abandon this event signal.
   2616 	 *
   2617 	 * This avoids killing a process after detaching the debugger.
   2618 	 */
   2619 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2620 		mutex_exit(p->p_lock);
   2621 		return;
   2622 	}
   2623 
   2624 	/*
   2625 	 * The process is already stopping.
   2626 	 */
   2627 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2628 		sigswitch_unlock_and_switch_away(l);
   2629 		mutex_enter(p->p_lock);
   2630 		goto repeat;
   2631 	}
   2632 
   2633 	/* Needed for ktrace */
   2634 	ps = p->p_sigacts;
   2635 	action = SIGACTION_PS(ps, signo).sa_handler;
   2636 	mask = &l->l_sigmask;
   2637 
   2638 	p->p_xsig = signo;
   2639 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2640 	p->p_sigctx.ps_info = ksi.ksi_info;
   2641 	sigswitch(0, signo, false);
   2642 
   2643 	if (ktrpoint(KTR_PSIG)) {
   2644 		if (p->p_emul->e_ktrpsig)
   2645 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2646 		else
   2647 			ktrpsig(signo, action, mask, &ksi);
   2648 	}
   2649 }
   2650 
   2651 static int
   2652 filt_sigattach(struct knote *kn)
   2653 {
   2654 	struct proc *p = curproc;
   2655 
   2656 	kn->kn_obj = p;
   2657 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2658 
   2659 	mutex_enter(p->p_lock);
   2660 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2661 	mutex_exit(p->p_lock);
   2662 
   2663 	return 0;
   2664 }
   2665 
   2666 static void
   2667 filt_sigdetach(struct knote *kn)
   2668 {
   2669 	struct proc *p = kn->kn_obj;
   2670 
   2671 	mutex_enter(p->p_lock);
   2672 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2673 	mutex_exit(p->p_lock);
   2674 }
   2675 
   2676 /*
   2677  * Signal knotes are shared with proc knotes, so we apply a mask to
   2678  * the hint in order to differentiate them from process hints.  This
   2679  * could be avoided by using a signal-specific knote list, but probably
   2680  * isn't worth the trouble.
   2681  */
   2682 static int
   2683 filt_signal(struct knote *kn, long hint)
   2684 {
   2685 
   2686 	if (hint & NOTE_SIGNAL) {
   2687 		hint &= ~NOTE_SIGNAL;
   2688 
   2689 		if (kn->kn_id == hint)
   2690 			kn->kn_data++;
   2691 	}
   2692 	return (kn->kn_data != 0);
   2693 }
   2694 
   2695 const struct filterops sig_filtops = {
   2696 	.f_flags = FILTEROP_MPSAFE,
   2697 	.f_attach = filt_sigattach,
   2698 	.f_detach = filt_sigdetach,
   2699 	.f_event = filt_signal,
   2700 };
   2701