Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.405
      1 /*	$NetBSD: kern_sig.c,v 1.405 2023/04/09 09:18:09 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.405 2023/04/09 09:18:09 riastradh Exp $");
     74 
     75 #include "opt_execfmt.h"
     76 #include "opt_ptrace.h"
     77 #include "opt_dtrace.h"
     78 #include "opt_compat_sunos.h"
     79 #include "opt_compat_netbsd.h"
     80 #include "opt_compat_netbsd32.h"
     81 #include "opt_pax.h"
     82 
     83 #define	SIGPROP		/* include signal properties table */
     84 #include <sys/param.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/proc.h>
     87 #include <sys/ptrace.h>
     88 #include <sys/systm.h>
     89 #include <sys/wait.h>
     90 #include <sys/ktrace.h>
     91 #include <sys/syslog.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/file.h>
     94 #include <sys/pool.h>
     95 #include <sys/ucontext.h>
     96 #include <sys/exec.h>
     97 #include <sys/kauth.h>
     98 #include <sys/acct.h>
     99 #include <sys/callout.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/sdt.h>
    104 #include <sys/exec_elf.h>
    105 #include <sys/compat_stub.h>
    106 
    107 #ifdef PAX_SEGVGUARD
    108 #include <sys/pax.h>
    109 #endif /* PAX_SEGVGUARD */
    110 
    111 #include <uvm/uvm_extern.h>
    112 
    113 /* Many hard-coded assumptions that there are <= 4 x 32bit signal mask bits */
    114 __CTASSERT(NSIG <= 128);
    115 
    116 #define	SIGQUEUE_MAX	32
    117 static pool_cache_t	sigacts_cache	__read_mostly;
    118 static pool_cache_t	ksiginfo_cache	__read_mostly;
    119 static callout_t	proc_stop_ch	__cacheline_aligned;
    120 
    121 sigset_t		contsigmask	__cacheline_aligned;
    122 sigset_t		stopsigmask	__cacheline_aligned;
    123 static sigset_t		vforksigmask	__cacheline_aligned;
    124 sigset_t		sigcantmask	__cacheline_aligned;
    125 
    126 static void	ksiginfo_exechook(struct proc *, void *);
    127 static void	proc_stop(struct proc *, int);
    128 static void	proc_stop_done(struct proc *, int);
    129 static void	proc_stop_callout(void *);
    130 static int	sigchecktrace(void);
    131 static int	sigpost(struct lwp *, sig_t, int, int);
    132 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    133 static int	sigunwait(struct proc *, const ksiginfo_t *);
    134 static void	sigswitch(int, int, bool);
    135 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    136 
    137 static void	sigacts_poolpage_free(struct pool *, void *);
    138 static void	*sigacts_poolpage_alloc(struct pool *, int);
    139 
    140 /*
    141  * DTrace SDT provider definitions
    142  */
    143 SDT_PROVIDER_DECLARE(proc);
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    145     "struct lwp *", 	/* target thread */
    146     "struct proc *", 	/* target process */
    147     "int");		/* signal */
    148 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    149     "struct lwp *",	/* target thread */
    150     "struct proc *",	/* target process */
    151     "int");  		/* signal */
    152 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    153     "int", 		/* signal */
    154     "ksiginfo_t *", 	/* signal info */
    155     "void (*)(void)");	/* handler address */
    156 
    157 
    158 static struct pool_allocator sigactspool_allocator = {
    159 	.pa_alloc = sigacts_poolpage_alloc,
    160 	.pa_free = sigacts_poolpage_free
    161 };
    162 
    163 #ifdef DEBUG
    164 int	kern_logsigexit = 1;
    165 #else
    166 int	kern_logsigexit = 0;
    167 #endif
    168 
    169 static const char logcoredump[] =
    170     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    171 static const char lognocoredump[] =
    172     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    173 
    174 static kauth_listener_t signal_listener;
    175 
    176 static int
    177 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    178     void *arg0, void *arg1, void *arg2, void *arg3)
    179 {
    180 	struct proc *p;
    181 	int result, signum;
    182 
    183 	result = KAUTH_RESULT_DEFER;
    184 	p = arg0;
    185 	signum = (int)(unsigned long)arg1;
    186 
    187 	if (action != KAUTH_PROCESS_SIGNAL)
    188 		return result;
    189 
    190 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    191 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    192 		result = KAUTH_RESULT_ALLOW;
    193 
    194 	return result;
    195 }
    196 
    197 static int
    198 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    199 {
    200 	memset(obj, 0, sizeof(struct sigacts));
    201 	return 0;
    202 }
    203 
    204 /*
    205  * signal_init:
    206  *
    207  *	Initialize global signal-related data structures.
    208  */
    209 void
    210 signal_init(void)
    211 {
    212 
    213 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    214 
    215 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    216 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    217 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    218 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    219 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    220 
    221 	exechook_establish(ksiginfo_exechook, NULL);
    222 
    223 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    224 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    225 
    226 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    227 	    signal_listener_cb, NULL);
    228 }
    229 
    230 /*
    231  * sigacts_poolpage_alloc:
    232  *
    233  *	Allocate a page for the sigacts memory pool.
    234  */
    235 static void *
    236 sigacts_poolpage_alloc(struct pool *pp, int flags)
    237 {
    238 
    239 	return (void *)uvm_km_alloc(kernel_map,
    240 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    241 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    242 	    | UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigacts_poolpage_free:
    247  *
    248  *	Free a page on behalf of the sigacts memory pool.
    249  */
    250 static void
    251 sigacts_poolpage_free(struct pool *pp, void *v)
    252 {
    253 
    254 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    255 }
    256 
    257 /*
    258  * sigactsinit:
    259  *
    260  *	Create an initial sigacts structure, using the same signal state
    261  *	as of specified process.  If 'share' is set, share the sigacts by
    262  *	holding a reference, otherwise just copy it from parent.
    263  */
    264 struct sigacts *
    265 sigactsinit(struct proc *pp, int share)
    266 {
    267 	struct sigacts *ps = pp->p_sigacts, *ps2;
    268 
    269 	if (__predict_false(share)) {
    270 		atomic_inc_uint(&ps->sa_refcnt);
    271 		return ps;
    272 	}
    273 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    274 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    275 	ps2->sa_refcnt = 1;
    276 
    277 	mutex_enter(&ps->sa_mutex);
    278 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    279 	mutex_exit(&ps->sa_mutex);
    280 	return ps2;
    281 }
    282 
    283 /*
    284  * sigactsunshare:
    285  *
    286  *	Make this process not share its sigacts, maintaining all signal state.
    287  */
    288 void
    289 sigactsunshare(struct proc *p)
    290 {
    291 	struct sigacts *ps, *oldps = p->p_sigacts;
    292 
    293 	if (__predict_true(oldps->sa_refcnt == 1))
    294 		return;
    295 
    296 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    297 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    298 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    299 	ps->sa_refcnt = 1;
    300 
    301 	p->p_sigacts = ps;
    302 	sigactsfree(oldps);
    303 }
    304 
    305 /*
    306  * sigactsfree;
    307  *
    308  *	Release a sigacts structure.
    309  */
    310 void
    311 sigactsfree(struct sigacts *ps)
    312 {
    313 
    314 	membar_release();
    315 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    316 		membar_acquire();
    317 		mutex_destroy(&ps->sa_mutex);
    318 		pool_cache_put(sigacts_cache, ps);
    319 	}
    320 }
    321 
    322 /*
    323  * siginit:
    324  *
    325  *	Initialize signal state for process 0; set to ignore signals that
    326  *	are ignored by default and disable the signal stack.  Locking not
    327  *	required as the system is still cold.
    328  */
    329 void
    330 siginit(struct proc *p)
    331 {
    332 	struct lwp *l;
    333 	struct sigacts *ps;
    334 	int signo, prop;
    335 
    336 	ps = p->p_sigacts;
    337 	sigemptyset(&contsigmask);
    338 	sigemptyset(&stopsigmask);
    339 	sigemptyset(&vforksigmask);
    340 	sigemptyset(&sigcantmask);
    341 	for (signo = 1; signo < NSIG; signo++) {
    342 		prop = sigprop[signo];
    343 		if (prop & SA_CONT)
    344 			sigaddset(&contsigmask, signo);
    345 		if (prop & SA_STOP)
    346 			sigaddset(&stopsigmask, signo);
    347 		if (prop & SA_STOP && signo != SIGSTOP)
    348 			sigaddset(&vforksigmask, signo);
    349 		if (prop & SA_CANTMASK)
    350 			sigaddset(&sigcantmask, signo);
    351 		if (prop & SA_IGNORE && signo != SIGCONT)
    352 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    353 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    354 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    355 	}
    356 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    357 	p->p_sflag &= ~PS_NOCLDSTOP;
    358 
    359 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    360 	sigemptyset(&p->p_sigpend.sp_set);
    361 
    362 	/*
    363 	 * Reset per LWP state.
    364 	 */
    365 	l = LIST_FIRST(&p->p_lwps);
    366 	l->l_sigwaited = NULL;
    367 	l->l_sigstk = SS_INIT;
    368 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    369 	sigemptyset(&l->l_sigpend.sp_set);
    370 
    371 	/* One reference. */
    372 	ps->sa_refcnt = 1;
    373 }
    374 
    375 /*
    376  * execsigs:
    377  *
    378  *	Reset signals for an exec of the specified process.
    379  */
    380 void
    381 execsigs(struct proc *p)
    382 {
    383 	struct sigacts *ps;
    384 	struct lwp *l;
    385 	int signo, prop;
    386 	sigset_t tset;
    387 	ksiginfoq_t kq;
    388 
    389 	KASSERT(p->p_nlwps == 1);
    390 
    391 	sigactsunshare(p);
    392 	ps = p->p_sigacts;
    393 
    394 	/*
    395 	 * Reset caught signals.  Held signals remain held through
    396 	 * l->l_sigmask (unless they were caught, and are now ignored
    397 	 * by default).
    398 	 *
    399 	 * No need to lock yet, the process has only one LWP and
    400 	 * at this point the sigacts are private to the process.
    401 	 */
    402 	sigemptyset(&tset);
    403 	for (signo = 1; signo < NSIG; signo++) {
    404 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    405 			prop = sigprop[signo];
    406 			if (prop & SA_IGNORE) {
    407 				if ((prop & SA_CONT) == 0)
    408 					sigaddset(&p->p_sigctx.ps_sigignore,
    409 					    signo);
    410 				sigaddset(&tset, signo);
    411 			}
    412 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    413 		}
    414 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    415 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    416 	}
    417 	ksiginfo_queue_init(&kq);
    418 
    419 	mutex_enter(p->p_lock);
    420 	sigclearall(p, &tset, &kq);
    421 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    422 
    423 	/*
    424 	 * Reset no zombies if child dies flag as Solaris does.
    425 	 */
    426 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    427 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    428 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    429 
    430 	/*
    431 	 * Reset per-LWP state.
    432 	 */
    433 	l = LIST_FIRST(&p->p_lwps);
    434 	l->l_sigwaited = NULL;
    435 	l->l_sigstk = SS_INIT;
    436 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    437 	sigemptyset(&l->l_sigpend.sp_set);
    438 	mutex_exit(p->p_lock);
    439 
    440 	ksiginfo_queue_drain(&kq);
    441 }
    442 
    443 /*
    444  * ksiginfo_exechook:
    445  *
    446  *	Free all pending ksiginfo entries from a process on exec.
    447  *	Additionally, drain any unused ksiginfo structures in the
    448  *	system back to the pool.
    449  *
    450  *	XXX This should not be a hook, every process has signals.
    451  */
    452 static void
    453 ksiginfo_exechook(struct proc *p, void *v)
    454 {
    455 	ksiginfoq_t kq;
    456 
    457 	ksiginfo_queue_init(&kq);
    458 
    459 	mutex_enter(p->p_lock);
    460 	sigclearall(p, NULL, &kq);
    461 	mutex_exit(p->p_lock);
    462 
    463 	ksiginfo_queue_drain(&kq);
    464 }
    465 
    466 /*
    467  * ksiginfo_alloc:
    468  *
    469  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    470  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    471  *	has not been queued somewhere, then just return it.  Additionally,
    472  *	if the existing ksiginfo_t does not contain any information beyond
    473  *	the signal number, then just return it.
    474  */
    475 ksiginfo_t *
    476 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    477 {
    478 	ksiginfo_t *kp;
    479 
    480 	if (ok != NULL) {
    481 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    482 		    KSI_FROMPOOL)
    483 			return ok;
    484 		if (KSI_EMPTY_P(ok))
    485 			return ok;
    486 	}
    487 
    488 	kp = pool_cache_get(ksiginfo_cache, flags);
    489 	if (kp == NULL) {
    490 #ifdef DIAGNOSTIC
    491 		printf("Out of memory allocating ksiginfo for pid %d\n",
    492 		    p->p_pid);
    493 #endif
    494 		return NULL;
    495 	}
    496 
    497 	if (ok != NULL) {
    498 		memcpy(kp, ok, sizeof(*kp));
    499 		kp->ksi_flags &= ~KSI_QUEUED;
    500 	} else
    501 		KSI_INIT_EMPTY(kp);
    502 
    503 	kp->ksi_flags |= KSI_FROMPOOL;
    504 
    505 	return kp;
    506 }
    507 
    508 /*
    509  * ksiginfo_free:
    510  *
    511  *	If the given ksiginfo_t is from the pool and has not been queued,
    512  *	then free it.
    513  */
    514 void
    515 ksiginfo_free(ksiginfo_t *kp)
    516 {
    517 
    518 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    519 		return;
    520 	pool_cache_put(ksiginfo_cache, kp);
    521 }
    522 
    523 /*
    524  * ksiginfo_queue_drain:
    525  *
    526  *	Drain a non-empty ksiginfo_t queue.
    527  */
    528 void
    529 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    530 {
    531 	ksiginfo_t *ksi;
    532 
    533 	KASSERT(!TAILQ_EMPTY(kq));
    534 
    535 	while (!TAILQ_EMPTY(kq)) {
    536 		ksi = TAILQ_FIRST(kq);
    537 		TAILQ_REMOVE(kq, ksi, ksi_list);
    538 		pool_cache_put(ksiginfo_cache, ksi);
    539 	}
    540 }
    541 
    542 static int
    543 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    544 {
    545 	ksiginfo_t *ksi, *nksi;
    546 
    547 	if (sp == NULL)
    548 		goto out;
    549 
    550 	/* Find siginfo and copy it out. */
    551 	int count = 0;
    552 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    553 		if (ksi->ksi_signo != signo)
    554 			continue;
    555 		if (count++ > 0) /* Only remove the first, count all of them */
    556 			continue;
    557 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    558 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    559 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    560 		ksi->ksi_flags &= ~KSI_QUEUED;
    561 		if (out != NULL) {
    562 			memcpy(out, ksi, sizeof(*out));
    563 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    564 		}
    565 		ksiginfo_free(ksi);
    566 	}
    567 	if (count)
    568 		return count;
    569 
    570 out:
    571 	/* If there is no siginfo, then manufacture it. */
    572 	if (out != NULL) {
    573 		KSI_INIT(out);
    574 		out->ksi_info._signo = signo;
    575 		out->ksi_info._code = SI_NOINFO;
    576 	}
    577 	return 0;
    578 }
    579 
    580 /*
    581  * sigget:
    582  *
    583  *	Fetch the first pending signal from a set.  Optionally, also fetch
    584  *	or manufacture a ksiginfo element.  Returns the number of the first
    585  *	pending signal, or zero.
    586  */
    587 int
    588 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    589 {
    590 	sigset_t tset;
    591 	int count;
    592 
    593 	/* If there's no pending set, the signal is from the debugger. */
    594 	if (sp == NULL)
    595 		goto out;
    596 
    597 	/* Construct mask from signo, and 'mask'. */
    598 	if (signo == 0) {
    599 		if (mask != NULL) {
    600 			tset = *mask;
    601 			__sigandset(&sp->sp_set, &tset);
    602 		} else
    603 			tset = sp->sp_set;
    604 
    605 		/* If there are no signals pending - return. */
    606 		if ((signo = firstsig(&tset)) == 0)
    607 			goto out;
    608 	} else {
    609 		KASSERT(sigismember(&sp->sp_set, signo));
    610 	}
    611 
    612 	sigdelset(&sp->sp_set, signo);
    613 out:
    614 	count = siggetinfo(sp, out, signo);
    615 	if (count > 1)
    616 		sigaddset(&sp->sp_set, signo);
    617 	return signo;
    618 }
    619 
    620 /*
    621  * sigput:
    622  *
    623  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    624  */
    625 static int
    626 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    627 {
    628 	ksiginfo_t *kp;
    629 
    630 	KASSERT(mutex_owned(p->p_lock));
    631 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    632 
    633 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    634 
    635 	/*
    636 	 * If there is no siginfo, we are done.
    637 	 */
    638 	if (KSI_EMPTY_P(ksi))
    639 		return 0;
    640 
    641 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    642 
    643 	size_t count = 0;
    644 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    645 		count++;
    646 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    647 			continue;
    648 		if (kp->ksi_signo == ksi->ksi_signo) {
    649 			KSI_COPY(ksi, kp);
    650 			kp->ksi_flags |= KSI_QUEUED;
    651 			return 0;
    652 		}
    653 	}
    654 
    655 	if (count >= SIGQUEUE_MAX) {
    656 #ifdef DIAGNOSTIC
    657 		printf("%s(%d): Signal queue is full signal=%d\n",
    658 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    659 #endif
    660 		return EAGAIN;
    661 	}
    662 	ksi->ksi_flags |= KSI_QUEUED;
    663 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    664 
    665 	return 0;
    666 }
    667 
    668 /*
    669  * sigclear:
    670  *
    671  *	Clear all pending signals in the specified set.
    672  */
    673 void
    674 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    675 {
    676 	ksiginfo_t *ksi, *next;
    677 
    678 	if (mask == NULL)
    679 		sigemptyset(&sp->sp_set);
    680 	else
    681 		sigminusset(mask, &sp->sp_set);
    682 
    683 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    684 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    685 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    686 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    687 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    688 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    689 		}
    690 	}
    691 }
    692 
    693 /*
    694  * sigclearall:
    695  *
    696  *	Clear all pending signals in the specified set from a process and
    697  *	its LWPs.
    698  */
    699 void
    700 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    701 {
    702 	struct lwp *l;
    703 
    704 	KASSERT(mutex_owned(p->p_lock));
    705 
    706 	sigclear(&p->p_sigpend, mask, kq);
    707 
    708 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    709 		sigclear(&l->l_sigpend, mask, kq);
    710 	}
    711 }
    712 
    713 /*
    714  * sigispending:
    715  *
    716  *	Return the first signal number if there are pending signals for the
    717  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    718  *	and that the signal has been posted to the appopriate queue before
    719  *	LW_PENDSIG is set.
    720  *
    721  *	This should only ever be called with (l == curlwp), unless the
    722  *	result does not matter (procfs, sysctl).
    723  */
    724 int
    725 sigispending(struct lwp *l, int signo)
    726 {
    727 	struct proc *p = l->l_proc;
    728 	sigset_t tset;
    729 
    730 	membar_consumer();
    731 
    732 	tset = l->l_sigpend.sp_set;
    733 	sigplusset(&p->p_sigpend.sp_set, &tset);
    734 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    735 	sigminusset(&l->l_sigmask, &tset);
    736 
    737 	if (signo == 0) {
    738 		return firstsig(&tset);
    739 	}
    740 	return sigismember(&tset, signo) ? signo : 0;
    741 }
    742 
    743 void
    744 getucontext(struct lwp *l, ucontext_t *ucp)
    745 {
    746 	struct proc *p = l->l_proc;
    747 
    748 	KASSERT(mutex_owned(p->p_lock));
    749 
    750 	ucp->uc_flags = 0;
    751 	ucp->uc_link = l->l_ctxlink;
    752 	ucp->uc_sigmask = l->l_sigmask;
    753 	ucp->uc_flags |= _UC_SIGMASK;
    754 
    755 	/*
    756 	 * The (unsupplied) definition of the `current execution stack'
    757 	 * in the System V Interface Definition appears to allow returning
    758 	 * the main context stack.
    759 	 */
    760 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    761 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    762 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    763 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    764 	} else {
    765 		/* Simply copy alternate signal execution stack. */
    766 		ucp->uc_stack = l->l_sigstk;
    767 	}
    768 	ucp->uc_flags |= _UC_STACK;
    769 	mutex_exit(p->p_lock);
    770 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    771 	mutex_enter(p->p_lock);
    772 }
    773 
    774 int
    775 setucontext(struct lwp *l, const ucontext_t *ucp)
    776 {
    777 	struct proc *p = l->l_proc;
    778 	int error;
    779 
    780 	KASSERT(mutex_owned(p->p_lock));
    781 
    782 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    783 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    784 		if (error != 0)
    785 			return error;
    786 	}
    787 
    788 	mutex_exit(p->p_lock);
    789 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    790 	mutex_enter(p->p_lock);
    791 	if (error != 0)
    792 		return (error);
    793 
    794 	l->l_ctxlink = ucp->uc_link;
    795 
    796 	/*
    797 	 * If there was stack information, update whether or not we are
    798 	 * still running on an alternate signal stack.
    799 	 */
    800 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    801 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    802 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    803 		else
    804 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    805 	}
    806 
    807 	return 0;
    808 }
    809 
    810 /*
    811  * killpg1: common code for kill process group/broadcast kill.
    812  */
    813 int
    814 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    815 {
    816 	struct proc	*p, *cp;
    817 	kauth_cred_t	pc;
    818 	struct pgrp	*pgrp;
    819 	int		nfound;
    820 	int		signo = ksi->ksi_signo;
    821 
    822 	cp = l->l_proc;
    823 	pc = l->l_cred;
    824 	nfound = 0;
    825 
    826 	mutex_enter(&proc_lock);
    827 	if (all) {
    828 		/*
    829 		 * Broadcast.
    830 		 */
    831 		PROCLIST_FOREACH(p, &allproc) {
    832 			if (p->p_pid <= 1 || p == cp ||
    833 			    (p->p_flag & PK_SYSTEM) != 0)
    834 				continue;
    835 			mutex_enter(p->p_lock);
    836 			if (kauth_authorize_process(pc,
    837 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    838 			    NULL) == 0) {
    839 				nfound++;
    840 				if (signo)
    841 					kpsignal2(p, ksi);
    842 			}
    843 			mutex_exit(p->p_lock);
    844 		}
    845 	} else {
    846 		if (pgid == 0)
    847 			/* Zero pgid means send to my process group. */
    848 			pgrp = cp->p_pgrp;
    849 		else {
    850 			pgrp = pgrp_find(pgid);
    851 			if (pgrp == NULL)
    852 				goto out;
    853 		}
    854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    855 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    856 				continue;
    857 			mutex_enter(p->p_lock);
    858 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    859 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    860 				nfound++;
    861 				if (signo && P_ZOMBIE(p) == 0)
    862 					kpsignal2(p, ksi);
    863 			}
    864 			mutex_exit(p->p_lock);
    865 		}
    866 	}
    867 out:
    868 	mutex_exit(&proc_lock);
    869 	return nfound ? 0 : ESRCH;
    870 }
    871 
    872 /*
    873  * Send a signal to a process group.  If checktty is set, limit to members
    874  * which have a controlling terminal.
    875  */
    876 void
    877 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    878 {
    879 	ksiginfo_t ksi;
    880 
    881 	KASSERT(!cpu_intr_p());
    882 	KASSERT(mutex_owned(&proc_lock));
    883 
    884 	KSI_INIT_EMPTY(&ksi);
    885 	ksi.ksi_signo = sig;
    886 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    887 }
    888 
    889 void
    890 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    891 {
    892 	struct proc *p;
    893 
    894 	KASSERT(!cpu_intr_p());
    895 	KASSERT(mutex_owned(&proc_lock));
    896 	KASSERT(pgrp != NULL);
    897 
    898 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    899 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    900 			kpsignal(p, ksi, data);
    901 }
    902 
    903 /*
    904  * Send a signal caused by a trap to the current LWP.  If it will be caught
    905  * immediately, deliver it with correct code.  Otherwise, post it normally.
    906  */
    907 void
    908 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    909 {
    910 	struct proc	*p;
    911 	struct sigacts	*ps;
    912 	int signo = ksi->ksi_signo;
    913 	sigset_t *mask;
    914 	sig_t action;
    915 
    916 	KASSERT(KSI_TRAP_P(ksi));
    917 
    918 	ksi->ksi_lid = l->l_lid;
    919 	p = l->l_proc;
    920 
    921 	KASSERT(!cpu_intr_p());
    922 	mutex_enter(&proc_lock);
    923 	mutex_enter(p->p_lock);
    924 
    925 repeat:
    926 	/*
    927 	 * If we are exiting, demise now.
    928 	 *
    929 	 * This avoids notifying tracer and deadlocking.
    930 	 */
    931 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    932 		mutex_exit(p->p_lock);
    933 		mutex_exit(&proc_lock);
    934 		lwp_exit(l);
    935 		panic("trapsignal");
    936 		/* NOTREACHED */
    937 	}
    938 
    939 	/*
    940 	 * The process is already stopping.
    941 	 */
    942 	if ((p->p_sflag & PS_STOPPING) != 0) {
    943 		mutex_exit(&proc_lock);
    944 		sigswitch_unlock_and_switch_away(l);
    945 		mutex_enter(&proc_lock);
    946 		mutex_enter(p->p_lock);
    947 		goto repeat;
    948 	}
    949 
    950 	mask = &l->l_sigmask;
    951 	ps = p->p_sigacts;
    952 	action = SIGACTION_PS(ps, signo).sa_handler;
    953 
    954 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    955 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    956 	    p->p_xsig != SIGKILL &&
    957 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    958 		p->p_xsig = signo;
    959 		p->p_sigctx.ps_faked = true;
    960 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    961 		p->p_sigctx.ps_info = ksi->ksi_info;
    962 		sigswitch(0, signo, true);
    963 
    964 		if (ktrpoint(KTR_PSIG)) {
    965 			if (p->p_emul->e_ktrpsig)
    966 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    967 			else
    968 				ktrpsig(signo, action, mask, ksi);
    969 		}
    970 		return;
    971 	}
    972 
    973 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    974 	const bool masked = sigismember(mask, signo);
    975 	if (caught && !masked) {
    976 		mutex_exit(&proc_lock);
    977 		l->l_ru.ru_nsignals++;
    978 		kpsendsig(l, ksi, mask);
    979 		mutex_exit(p->p_lock);
    980 
    981 		if (ktrpoint(KTR_PSIG)) {
    982 			if (p->p_emul->e_ktrpsig)
    983 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    984 			else
    985 				ktrpsig(signo, action, mask, ksi);
    986 		}
    987 		return;
    988 	}
    989 
    990 	/*
    991 	 * If the signal is masked or ignored, then unmask it and
    992 	 * reset it to the default action so that the process or
    993 	 * its tracer will be notified.
    994 	 */
    995 	const bool ignored = action == SIG_IGN;
    996 	if (masked || ignored) {
    997 		mutex_enter(&ps->sa_mutex);
    998 		sigdelset(mask, signo);
    999 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1000 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1001 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
   1002 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1003 		mutex_exit(&ps->sa_mutex);
   1004 	}
   1005 
   1006 	kpsignal2(p, ksi);
   1007 	mutex_exit(p->p_lock);
   1008 	mutex_exit(&proc_lock);
   1009 }
   1010 
   1011 /*
   1012  * Fill in signal information and signal the parent for a child status change.
   1013  */
   1014 void
   1015 child_psignal(struct proc *p, int mask)
   1016 {
   1017 	ksiginfo_t ksi;
   1018 	struct proc *q;
   1019 	int xsig;
   1020 
   1021 	KASSERT(mutex_owned(&proc_lock));
   1022 	KASSERT(mutex_owned(p->p_lock));
   1023 
   1024 	xsig = p->p_xsig;
   1025 
   1026 	KSI_INIT(&ksi);
   1027 	ksi.ksi_signo = SIGCHLD;
   1028 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1029 	ksi.ksi_pid = p->p_pid;
   1030 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1031 	ksi.ksi_status = xsig;
   1032 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1033 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1034 
   1035 	q = p->p_pptr;
   1036 
   1037 	mutex_exit(p->p_lock);
   1038 	mutex_enter(q->p_lock);
   1039 
   1040 	if ((q->p_sflag & mask) == 0)
   1041 		kpsignal2(q, &ksi);
   1042 
   1043 	mutex_exit(q->p_lock);
   1044 	mutex_enter(p->p_lock);
   1045 }
   1046 
   1047 void
   1048 psignal(struct proc *p, int signo)
   1049 {
   1050 	ksiginfo_t ksi;
   1051 
   1052 	KASSERT(!cpu_intr_p());
   1053 	KASSERT(mutex_owned(&proc_lock));
   1054 
   1055 	KSI_INIT_EMPTY(&ksi);
   1056 	ksi.ksi_signo = signo;
   1057 	mutex_enter(p->p_lock);
   1058 	kpsignal2(p, &ksi);
   1059 	mutex_exit(p->p_lock);
   1060 }
   1061 
   1062 void
   1063 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1064 {
   1065 	fdfile_t *ff;
   1066 	file_t *fp;
   1067 	fdtab_t *dt;
   1068 
   1069 	KASSERT(!cpu_intr_p());
   1070 	KASSERT(mutex_owned(&proc_lock));
   1071 
   1072 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1073 		size_t fd;
   1074 		filedesc_t *fdp = p->p_fd;
   1075 
   1076 		/* XXXSMP locking */
   1077 		ksi->ksi_fd = -1;
   1078 		dt = atomic_load_consume(&fdp->fd_dt);
   1079 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1080 			if ((ff = dt->dt_ff[fd]) == NULL)
   1081 				continue;
   1082 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
   1083 				continue;
   1084 			if (fp->f_data == data) {
   1085 				ksi->ksi_fd = fd;
   1086 				break;
   1087 			}
   1088 		}
   1089 	}
   1090 	mutex_enter(p->p_lock);
   1091 	kpsignal2(p, ksi);
   1092 	mutex_exit(p->p_lock);
   1093 }
   1094 
   1095 /*
   1096  * sigismasked:
   1097  *
   1098  *	Returns true if signal is ignored or masked for the specified LWP.
   1099  */
   1100 int
   1101 sigismasked(struct lwp *l, int sig)
   1102 {
   1103 	struct proc *p = l->l_proc;
   1104 
   1105 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1106 	    sigismember(&l->l_sigmask, sig);
   1107 }
   1108 
   1109 /*
   1110  * sigpost:
   1111  *
   1112  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1113  *	be able to take the signal.
   1114  */
   1115 static int
   1116 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1117 {
   1118 	int rv, masked;
   1119 	struct proc *p = l->l_proc;
   1120 
   1121 	KASSERT(mutex_owned(p->p_lock));
   1122 
   1123 	/*
   1124 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1125 	 * pending signals.  Don't give it more.
   1126 	 */
   1127 	if (l->l_stat == LSZOMB)
   1128 		return 0;
   1129 
   1130 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1131 
   1132 	lwp_lock(l);
   1133 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1134 		if ((prop & SA_KILL) != 0)
   1135 			l->l_flag &= ~LW_DBGSUSPEND;
   1136 		else {
   1137 			lwp_unlock(l);
   1138 			return 0;
   1139 		}
   1140 	}
   1141 
   1142 	/*
   1143 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1144 	 * is found to take the signal immediately, it should be taken soon.
   1145 	 */
   1146 	signotify(l);
   1147 
   1148 	/*
   1149 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1150 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1151 	 */
   1152 	masked = sigismember(&l->l_sigmask, sig);
   1153 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1154 		lwp_unlock(l);
   1155 		return 0;
   1156 	}
   1157 
   1158 	/*
   1159 	 * If killing the process, make it run fast.
   1160 	 */
   1161 	if (__predict_false((prop & SA_KILL) != 0) &&
   1162 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1163 		KASSERT(l->l_class == SCHED_OTHER);
   1164 		lwp_changepri(l, MAXPRI_USER);
   1165 	}
   1166 
   1167 	/*
   1168 	 * If the LWP is running or on a run queue, then we win.  If it's
   1169 	 * sleeping interruptably, wake it and make it take the signal.  If
   1170 	 * the sleep isn't interruptable, then the chances are it will get
   1171 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1172 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1173 	 * for later; otherwise punt.
   1174 	 */
   1175 	rv = 0;
   1176 
   1177 	switch (l->l_stat) {
   1178 	case LSRUN:
   1179 	case LSONPROC:
   1180 		rv = 1;
   1181 		break;
   1182 
   1183 	case LSSLEEP:
   1184 		if ((l->l_flag & LW_SINTR) != 0) {
   1185 			/* setrunnable() will release the lock. */
   1186 			setrunnable(l);
   1187 			return 1;
   1188 		}
   1189 		break;
   1190 
   1191 	case LSSUSPENDED:
   1192 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1193 			/* lwp_continue() will release the lock. */
   1194 			lwp_continue(l);
   1195 			return 1;
   1196 		}
   1197 		break;
   1198 
   1199 	case LSSTOP:
   1200 		if ((prop & SA_STOP) != 0)
   1201 			break;
   1202 
   1203 		/*
   1204 		 * If the LWP is stopped and we are sending a continue
   1205 		 * signal, then start it again.
   1206 		 */
   1207 		if ((prop & SA_CONT) != 0) {
   1208 			if (l->l_wchan != NULL) {
   1209 				l->l_stat = LSSLEEP;
   1210 				p->p_nrlwps++;
   1211 				rv = 1;
   1212 				break;
   1213 			}
   1214 			/* setrunnable() will release the lock. */
   1215 			setrunnable(l);
   1216 			return 1;
   1217 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1218 			/* setrunnable() will release the lock. */
   1219 			setrunnable(l);
   1220 			return 1;
   1221 		}
   1222 		break;
   1223 
   1224 	default:
   1225 		break;
   1226 	}
   1227 
   1228 	lwp_unlock(l);
   1229 	return rv;
   1230 }
   1231 
   1232 /*
   1233  * Notify an LWP that it has a pending signal.
   1234  */
   1235 void
   1236 signotify(struct lwp *l)
   1237 {
   1238 	KASSERT(lwp_locked(l, NULL));
   1239 
   1240 	l->l_flag |= LW_PENDSIG;
   1241 	lwp_need_userret(l);
   1242 }
   1243 
   1244 /*
   1245  * Find an LWP within process p that is waiting on signal ksi, and hand
   1246  * it on.
   1247  */
   1248 static int
   1249 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1250 {
   1251 	struct lwp *l;
   1252 	int signo;
   1253 
   1254 	KASSERT(mutex_owned(p->p_lock));
   1255 
   1256 	signo = ksi->ksi_signo;
   1257 
   1258 	if (ksi->ksi_lid != 0) {
   1259 		/*
   1260 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1261 		 * it's interested.
   1262 		 */
   1263 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1264 			return 0;
   1265 		if (l->l_sigwaited == NULL ||
   1266 		    !sigismember(&l->l_sigwaitset, signo))
   1267 			return 0;
   1268 	} else {
   1269 		/*
   1270 		 * Look for any LWP that may be interested.
   1271 		 */
   1272 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1273 			KASSERT(l->l_sigwaited != NULL);
   1274 			if (sigismember(&l->l_sigwaitset, signo))
   1275 				break;
   1276 		}
   1277 	}
   1278 
   1279 	if (l != NULL) {
   1280 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1281 		l->l_sigwaited = NULL;
   1282 		LIST_REMOVE(l, l_sigwaiter);
   1283 		cv_signal(&l->l_sigcv);
   1284 		return 1;
   1285 	}
   1286 
   1287 	return 0;
   1288 }
   1289 
   1290 /*
   1291  * Send the signal to the process.  If the signal has an action, the action
   1292  * is usually performed by the target process rather than the caller; we add
   1293  * the signal to the set of pending signals for the process.
   1294  *
   1295  * Exceptions:
   1296  *   o When a stop signal is sent to a sleeping process that takes the
   1297  *     default action, the process is stopped without awakening it.
   1298  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1299  *     regardless of the signal action (eg, blocked or ignored).
   1300  *
   1301  * Other ignored signals are discarded immediately.
   1302  */
   1303 int
   1304 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1305 {
   1306 	int prop, signo = ksi->ksi_signo;
   1307 	struct lwp *l = NULL;
   1308 	ksiginfo_t *kp;
   1309 	lwpid_t lid;
   1310 	sig_t action;
   1311 	bool toall;
   1312 	bool traced;
   1313 	int error = 0;
   1314 
   1315 	KASSERT(!cpu_intr_p());
   1316 	KASSERT(mutex_owned(&proc_lock));
   1317 	KASSERT(mutex_owned(p->p_lock));
   1318 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1319 	KASSERT(signo > 0);
   1320 	KASSERT(signo < NSIG);
   1321 
   1322 	/*
   1323 	 * If the process is being created by fork, is a zombie or is
   1324 	 * exiting, then just drop the signal here and bail out.
   1325 	 */
   1326 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1327 		return 0;
   1328 
   1329 	/*
   1330 	 * Notify any interested parties of the signal.
   1331 	 */
   1332 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1333 
   1334 	/*
   1335 	 * Some signals including SIGKILL must act on the entire process.
   1336 	 */
   1337 	kp = NULL;
   1338 	prop = sigprop[signo];
   1339 	toall = ((prop & SA_TOALL) != 0);
   1340 	lid = toall ? 0 : ksi->ksi_lid;
   1341 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1342 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1343 
   1344 	/*
   1345 	 * If proc is traced, always give parent a chance.
   1346 	 */
   1347 	if (traced) {
   1348 		action = SIG_DFL;
   1349 
   1350 		if (lid == 0) {
   1351 			/*
   1352 			 * If the process is being traced and the signal
   1353 			 * is being caught, make sure to save any ksiginfo.
   1354 			 */
   1355 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1356 				goto discard;
   1357 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1358 				goto out;
   1359 		}
   1360 	} else {
   1361 
   1362 		/*
   1363 		 * If the signal is being ignored, then drop it.  Note: we
   1364 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1365 		 * SIG_IGN, action will be SIG_DFL here.
   1366 		 */
   1367 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1368 			goto discard;
   1369 
   1370 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1371 			action = SIG_CATCH;
   1372 		else {
   1373 			action = SIG_DFL;
   1374 
   1375 			/*
   1376 			 * If sending a tty stop signal to a member of an
   1377 			 * orphaned process group, discard the signal here if
   1378 			 * the action is default; don't stop the process below
   1379 			 * if sleeping, and don't clear any pending SIGCONT.
   1380 			 */
   1381 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1382 				goto discard;
   1383 
   1384 			if (prop & SA_KILL && p->p_nice > NZERO)
   1385 				p->p_nice = NZERO;
   1386 		}
   1387 	}
   1388 
   1389 	/*
   1390 	 * If stopping or continuing a process, discard any pending
   1391 	 * signals that would do the inverse.
   1392 	 */
   1393 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1394 		ksiginfoq_t kq;
   1395 
   1396 		ksiginfo_queue_init(&kq);
   1397 		if ((prop & SA_CONT) != 0)
   1398 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1399 		if ((prop & SA_STOP) != 0)
   1400 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1401 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1402 	}
   1403 
   1404 	/*
   1405 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1406 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1407 	 * the signal info.  The signal won't be processed further here.
   1408 	 */
   1409 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1410 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1411 	    sigunwait(p, ksi))
   1412 		goto discard;
   1413 
   1414 	/*
   1415 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1416 	 * here.
   1417 	 */
   1418 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1419 		goto discard;
   1420 
   1421 	/*
   1422 	 * LWP private signals are easy - just find the LWP and post
   1423 	 * the signal to it.
   1424 	 */
   1425 	if (lid != 0) {
   1426 		l = lwp_find(p, lid);
   1427 		if (l != NULL) {
   1428 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1429 				goto out;
   1430 			membar_producer();
   1431 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1432 				signo = -1;
   1433 		}
   1434 		goto out;
   1435 	}
   1436 
   1437 	/*
   1438 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1439 	 * or for an SA process.
   1440 	 */
   1441 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1442 		if (traced)
   1443 			goto deliver;
   1444 
   1445 		/*
   1446 		 * If SIGCONT is default (or ignored) and process is
   1447 		 * asleep, we are finished; the process should not
   1448 		 * be awakened.
   1449 		 */
   1450 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1451 			goto out;
   1452 	} else {
   1453 		/*
   1454 		 * Process is stopped or stopping.
   1455 		 * - If traced, then no action is needed, unless killing.
   1456 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1457 		 */
   1458 		if (traced && signo != SIGKILL) {
   1459 			goto out;
   1460 		}
   1461 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1462 			/*
   1463 			 * Re-adjust p_nstopchild if the process was
   1464 			 * stopped but not yet collected by its parent.
   1465 			 */
   1466 			if (p->p_stat == SSTOP && !p->p_waited)
   1467 				p->p_pptr->p_nstopchild--;
   1468 			p->p_stat = SACTIVE;
   1469 			p->p_sflag &= ~PS_STOPPING;
   1470 			if (traced) {
   1471 				KASSERT(signo == SIGKILL);
   1472 				goto deliver;
   1473 			}
   1474 			/*
   1475 			 * Do not make signal pending if SIGCONT is default.
   1476 			 *
   1477 			 * If the process catches SIGCONT, let it handle the
   1478 			 * signal itself (if waiting on event - process runs,
   1479 			 * otherwise continues sleeping).
   1480 			 */
   1481 			if ((prop & SA_CONT) != 0) {
   1482 				p->p_xsig = SIGCONT;
   1483 				p->p_sflag |= PS_CONTINUED;
   1484 				child_psignal(p, 0);
   1485 				if (action == SIG_DFL) {
   1486 					KASSERT(signo != SIGKILL);
   1487 					goto deliver;
   1488 				}
   1489 			}
   1490 		} else if ((prop & SA_STOP) != 0) {
   1491 			/*
   1492 			 * Already stopped, don't need to stop again.
   1493 			 * (If we did the shell could get confused.)
   1494 			 */
   1495 			goto out;
   1496 		}
   1497 	}
   1498 	/*
   1499 	 * Make signal pending.
   1500 	 */
   1501 	KASSERT(!traced);
   1502 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1503 		goto out;
   1504 deliver:
   1505 	/*
   1506 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1507 	 * visible on the per process list (for sigispending()).  This
   1508 	 * is unlikely to be needed in practice, but...
   1509 	 */
   1510 	membar_producer();
   1511 
   1512 	/*
   1513 	 * Try to find an LWP that can take the signal.
   1514 	 */
   1515 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1516 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1517 			break;
   1518 	}
   1519 	signo = -1;
   1520 out:
   1521 	/*
   1522 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1523 	 * with locks held.  The caller should take care of this.
   1524 	 */
   1525 	ksiginfo_free(kp);
   1526 	if (signo == -1)
   1527 		return error;
   1528 discard:
   1529 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1530 	return error;
   1531 }
   1532 
   1533 void
   1534 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1535 {
   1536 	struct proc *p = l->l_proc;
   1537 
   1538 	KASSERT(mutex_owned(p->p_lock));
   1539 	(*p->p_emul->e_sendsig)(ksi, mask);
   1540 }
   1541 
   1542 /*
   1543  * Stop any LWPs sleeping interruptably.
   1544  */
   1545 static void
   1546 proc_stop_lwps(struct proc *p)
   1547 {
   1548 	struct lwp *l;
   1549 
   1550 	KASSERT(mutex_owned(p->p_lock));
   1551 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1552 
   1553 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1554 		lwp_lock(l);
   1555 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1556 			l->l_stat = LSSTOP;
   1557 			p->p_nrlwps--;
   1558 		}
   1559 		lwp_unlock(l);
   1560 	}
   1561 }
   1562 
   1563 /*
   1564  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1565  *
   1566  * Drop p_lock briefly if ppsig is true.
   1567  */
   1568 static void
   1569 proc_stop_done(struct proc *p, int ppmask)
   1570 {
   1571 
   1572 	KASSERT(mutex_owned(&proc_lock));
   1573 	KASSERT(mutex_owned(p->p_lock));
   1574 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1575 	KASSERT(p->p_nrlwps == 0 || p->p_nrlwps == 1);
   1576 	KASSERT(p->p_nrlwps == 0 || p == curproc);
   1577 
   1578 	p->p_sflag &= ~PS_STOPPING;
   1579 	p->p_stat = SSTOP;
   1580 	p->p_waited = 0;
   1581 	p->p_pptr->p_nstopchild++;
   1582 
   1583 	/* child_psignal drops p_lock briefly. */
   1584 	child_psignal(p, ppmask);
   1585 	cv_broadcast(&p->p_pptr->p_waitcv);
   1586 }
   1587 
   1588 /*
   1589  * Stop the current process and switch away to the debugger notifying
   1590  * an event specific to a traced process only.
   1591  */
   1592 void
   1593 eventswitch(int code, int pe_report_event, int entity)
   1594 {
   1595 	struct lwp *l = curlwp;
   1596 	struct proc *p = l->l_proc;
   1597 	struct sigacts *ps;
   1598 	sigset_t *mask;
   1599 	sig_t action;
   1600 	ksiginfo_t ksi;
   1601 	const int signo = SIGTRAP;
   1602 
   1603 	KASSERT(mutex_owned(&proc_lock));
   1604 	KASSERT(mutex_owned(p->p_lock));
   1605 	KASSERT(p->p_pptr != initproc);
   1606 	KASSERT(l->l_stat == LSONPROC);
   1607 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1608 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1609 	KASSERT(p->p_nrlwps > 0);
   1610 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1611 	        (code == TRAP_EXEC));
   1612 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1613 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1614 
   1615 repeat:
   1616 	/*
   1617 	 * If we are exiting, demise now.
   1618 	 *
   1619 	 * This avoids notifying tracer and deadlocking.
   1620 	 */
   1621 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1622 		mutex_exit(p->p_lock);
   1623 		mutex_exit(&proc_lock);
   1624 
   1625 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1626 			/* Avoid double lwp_exit() and panic. */
   1627 			return;
   1628 		}
   1629 
   1630 		lwp_exit(l);
   1631 		panic("eventswitch");
   1632 		/* NOTREACHED */
   1633 	}
   1634 
   1635 	/*
   1636 	 * If we are no longer traced, abandon this event signal.
   1637 	 *
   1638 	 * This avoids killing a process after detaching the debugger.
   1639 	 */
   1640 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1641 		mutex_exit(p->p_lock);
   1642 		mutex_exit(&proc_lock);
   1643 		return;
   1644 	}
   1645 
   1646 	/*
   1647 	 * If there's a pending SIGKILL process it immediately.
   1648 	 */
   1649 	if (p->p_xsig == SIGKILL ||
   1650 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1651 		mutex_exit(p->p_lock);
   1652 		mutex_exit(&proc_lock);
   1653 		return;
   1654 	}
   1655 
   1656 	/*
   1657 	 * The process is already stopping.
   1658 	 */
   1659 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1660 		mutex_exit(&proc_lock);
   1661 		sigswitch_unlock_and_switch_away(l);
   1662 		mutex_enter(&proc_lock);
   1663 		mutex_enter(p->p_lock);
   1664 		goto repeat;
   1665 	}
   1666 
   1667 	KSI_INIT_TRAP(&ksi);
   1668 	ksi.ksi_lid = l->l_lid;
   1669 	ksi.ksi_signo = signo;
   1670 	ksi.ksi_code = code;
   1671 	ksi.ksi_pe_report_event = pe_report_event;
   1672 
   1673 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1674 	ksi.ksi_pe_other_pid = entity;
   1675 
   1676 	/* Needed for ktrace */
   1677 	ps = p->p_sigacts;
   1678 	action = SIGACTION_PS(ps, signo).sa_handler;
   1679 	mask = &l->l_sigmask;
   1680 
   1681 	p->p_xsig = signo;
   1682 	p->p_sigctx.ps_faked = true;
   1683 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1684 	p->p_sigctx.ps_info = ksi.ksi_info;
   1685 
   1686 	sigswitch(0, signo, true);
   1687 
   1688 	if (code == TRAP_CHLD) {
   1689 		mutex_enter(&proc_lock);
   1690 		while (l->l_vforkwaiting)
   1691 			cv_wait(&l->l_waitcv, &proc_lock);
   1692 		mutex_exit(&proc_lock);
   1693 	}
   1694 
   1695 	if (ktrpoint(KTR_PSIG)) {
   1696 		if (p->p_emul->e_ktrpsig)
   1697 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1698 		else
   1699 			ktrpsig(signo, action, mask, &ksi);
   1700 	}
   1701 }
   1702 
   1703 void
   1704 eventswitchchild(struct proc *p, int code, int pe_report_event)
   1705 {
   1706 	mutex_enter(&proc_lock);
   1707 	mutex_enter(p->p_lock);
   1708 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
   1709 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   1710 		mutex_exit(p->p_lock);
   1711 		mutex_exit(&proc_lock);
   1712 		return;
   1713 	}
   1714 	eventswitch(code, pe_report_event, p->p_oppid);
   1715 }
   1716 
   1717 /*
   1718  * Stop the current process and switch away when being stopped or traced.
   1719  */
   1720 static void
   1721 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1722 {
   1723 	struct lwp *l = curlwp;
   1724 	struct proc *p = l->l_proc;
   1725 
   1726 	KASSERT(mutex_owned(p->p_lock));
   1727 	KASSERT(l->l_stat == LSONPROC);
   1728 	KASSERT(p->p_nrlwps > 0);
   1729 
   1730 	if (proc_lock_held) {
   1731 		KASSERT(mutex_owned(&proc_lock));
   1732 	} else {
   1733 		KASSERT(!mutex_owned(&proc_lock));
   1734 	}
   1735 
   1736 	/*
   1737 	 * On entry we know that the process needs to stop.  If it's
   1738 	 * the result of a 'sideways' stop signal that has been sourced
   1739 	 * through issignal(), then stop other LWPs in the process too.
   1740 	 */
   1741 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1742 		KASSERT(signo != 0);
   1743 		proc_stop(p, signo);
   1744 		KASSERT(p->p_nrlwps > 0);
   1745 	}
   1746 
   1747 	/*
   1748 	 * If we are the last live LWP, and the stop was a result of
   1749 	 * a new signal, then signal the parent.
   1750 	 */
   1751 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1752 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
   1753 			mutex_exit(p->p_lock);
   1754 			mutex_enter(&proc_lock);
   1755 			mutex_enter(p->p_lock);
   1756 		}
   1757 
   1758 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1759 			/*
   1760 			 * Note that proc_stop_done() can drop
   1761 			 * p->p_lock briefly.
   1762 			 */
   1763 			proc_stop_done(p, ppmask);
   1764 		}
   1765 
   1766 		mutex_exit(&proc_lock);
   1767 	}
   1768 
   1769 	sigswitch_unlock_and_switch_away(l);
   1770 }
   1771 
   1772 /*
   1773  * Unlock and switch away.
   1774  */
   1775 static void
   1776 sigswitch_unlock_and_switch_away(struct lwp *l)
   1777 {
   1778 	struct proc *p;
   1779 	int biglocks;
   1780 
   1781 	p = l->l_proc;
   1782 
   1783 	KASSERT(mutex_owned(p->p_lock));
   1784 	KASSERT(!mutex_owned(&proc_lock));
   1785 
   1786 	KASSERT(l->l_stat == LSONPROC);
   1787 	KASSERT(p->p_nrlwps > 0);
   1788 
   1789 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1790 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1791 		p->p_nrlwps--;
   1792 		lwp_lock(l);
   1793 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1794 		l->l_stat = LSSTOP;
   1795 		lwp_unlock(l);
   1796 	}
   1797 
   1798 	mutex_exit(p->p_lock);
   1799 	lwp_lock(l);
   1800 	spc_lock(l->l_cpu);
   1801 	mi_switch(l);
   1802 	KERNEL_LOCK(biglocks, l);
   1803 }
   1804 
   1805 /*
   1806  * Check for a signal from the debugger.
   1807  */
   1808 static int
   1809 sigchecktrace(void)
   1810 {
   1811 	struct lwp *l = curlwp;
   1812 	struct proc *p = l->l_proc;
   1813 	int signo;
   1814 
   1815 	KASSERT(mutex_owned(p->p_lock));
   1816 
   1817 	/* If there's a pending SIGKILL, process it immediately. */
   1818 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1819 		return 0;
   1820 
   1821 	/*
   1822 	 * If we are no longer being traced, or the parent didn't
   1823 	 * give us a signal, or we're stopping, look for more signals.
   1824 	 */
   1825 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1826 	    (p->p_sflag & PS_STOPPING) != 0)
   1827 		return 0;
   1828 
   1829 	/*
   1830 	 * If the new signal is being masked, look for other signals.
   1831 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1832 	 */
   1833 	signo = p->p_xsig;
   1834 	p->p_xsig = 0;
   1835 	if (sigismember(&l->l_sigmask, signo)) {
   1836 		signo = 0;
   1837 	}
   1838 	return signo;
   1839 }
   1840 
   1841 /*
   1842  * If the current process has received a signal (should be caught or cause
   1843  * termination, should interrupt current syscall), return the signal number.
   1844  *
   1845  * Stop signals with default action are processed immediately, then cleared;
   1846  * they aren't returned.  This is checked after each entry to the system for
   1847  * a syscall or trap.
   1848  *
   1849  * We will also return -1 if the process is exiting and the current LWP must
   1850  * follow suit.
   1851  */
   1852 int
   1853 issignal(struct lwp *l)
   1854 {
   1855 	struct proc *p;
   1856 	int siglwp, signo, prop;
   1857 	sigpend_t *sp;
   1858 	sigset_t ss;
   1859 	bool traced;
   1860 
   1861 	p = l->l_proc;
   1862 	sp = NULL;
   1863 	signo = 0;
   1864 
   1865 	KASSERT(p == curproc);
   1866 	KASSERT(mutex_owned(p->p_lock));
   1867 
   1868 	for (;;) {
   1869 		/* Discard any signals that we have decided not to take. */
   1870 		if (signo != 0) {
   1871 			(void)sigget(sp, NULL, signo, NULL);
   1872 		}
   1873 
   1874 		/*
   1875 		 * If the process is stopped/stopping, then stop ourselves
   1876 		 * now that we're on the kernel/userspace boundary.  When
   1877 		 * we awaken, check for a signal from the debugger.
   1878 		 */
   1879 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1880 			sigswitch_unlock_and_switch_away(l);
   1881 			mutex_enter(p->p_lock);
   1882 			continue;
   1883 		} else if (p->p_stat == SACTIVE)
   1884 			signo = sigchecktrace();
   1885 		else
   1886 			signo = 0;
   1887 
   1888 		/* Signals from the debugger are "out of band". */
   1889 		sp = NULL;
   1890 
   1891 		/*
   1892 		 * If the debugger didn't provide a signal, find a pending
   1893 		 * signal from our set.  Check per-LWP signals first, and
   1894 		 * then per-process.
   1895 		 */
   1896 		if (signo == 0) {
   1897 			sp = &l->l_sigpend;
   1898 			ss = sp->sp_set;
   1899 			siglwp = l->l_lid;
   1900 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1901 				sigminusset(&vforksigmask, &ss);
   1902 			sigminusset(&l->l_sigmask, &ss);
   1903 
   1904 			if ((signo = firstsig(&ss)) == 0) {
   1905 				sp = &p->p_sigpend;
   1906 				ss = sp->sp_set;
   1907 				siglwp = 0;
   1908 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1909 					sigminusset(&vforksigmask, &ss);
   1910 				sigminusset(&l->l_sigmask, &ss);
   1911 
   1912 				if ((signo = firstsig(&ss)) == 0) {
   1913 					/*
   1914 					 * No signal pending - clear the
   1915 					 * indicator and bail out.
   1916 					 */
   1917 					lwp_lock(l);
   1918 					l->l_flag &= ~LW_PENDSIG;
   1919 					lwp_unlock(l);
   1920 					sp = NULL;
   1921 					break;
   1922 				}
   1923 			}
   1924 		}
   1925 
   1926 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1927 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1928 
   1929 		if (sp) {
   1930 			/* Overwrite process' signal context to correspond
   1931 			 * to the currently reported LWP.  This is necessary
   1932 			 * for PT_GET_SIGINFO to report the correct signal when
   1933 			 * multiple LWPs have pending signals.  We do this only
   1934 			 * when the signal comes from the queue, for signals
   1935 			 * created by the debugger we assume it set correct
   1936 			 * siginfo.
   1937 			 */
   1938 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1939 			if (ksi) {
   1940 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1941 				p->p_sigctx.ps_info = ksi->ksi_info;
   1942 			} else {
   1943 				p->p_sigctx.ps_lwp = siglwp;
   1944 				memset(&p->p_sigctx.ps_info, 0,
   1945 				    sizeof(p->p_sigctx.ps_info));
   1946 				p->p_sigctx.ps_info._signo = signo;
   1947 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1948 			}
   1949 		}
   1950 
   1951 		/*
   1952 		 * We should see pending but ignored signals only if
   1953 		 * we are being traced.
   1954 		 */
   1955 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1956 		    !traced) {
   1957 			/* Discard the signal. */
   1958 			continue;
   1959 		}
   1960 
   1961 		/*
   1962 		 * If traced, always stop, and stay stopped until released
   1963 		 * by the debugger.  If the our parent is our debugger waiting
   1964 		 * for us and we vforked, don't hang as we could deadlock.
   1965 		 */
   1966 		if (traced && signo != SIGKILL &&
   1967 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1968 		     (p->p_pptr == p->p_opptr))) {
   1969 			/*
   1970 			 * Take the signal, but don't remove it from the
   1971 			 * siginfo queue, because the debugger can send
   1972 			 * it later.
   1973 			 */
   1974 			if (sp)
   1975 				sigdelset(&sp->sp_set, signo);
   1976 			p->p_xsig = signo;
   1977 
   1978 			/* Handling of signal trace */
   1979 			sigswitch(0, signo, false);
   1980 			mutex_enter(p->p_lock);
   1981 
   1982 			/* Check for a signal from the debugger. */
   1983 			if ((signo = sigchecktrace()) == 0)
   1984 				continue;
   1985 
   1986 			/* Signals from the debugger are "out of band". */
   1987 			sp = NULL;
   1988 		}
   1989 
   1990 		prop = sigprop[signo];
   1991 
   1992 		/*
   1993 		 * Decide whether the signal should be returned.
   1994 		 */
   1995 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1996 		case (long)SIG_DFL:
   1997 			/*
   1998 			 * Don't take default actions on system processes.
   1999 			 */
   2000 			if (p->p_pid <= 1) {
   2001 #ifdef DIAGNOSTIC
   2002 				/*
   2003 				 * Are you sure you want to ignore SIGSEGV
   2004 				 * in init? XXX
   2005 				 */
   2006 				printf_nolog("Process (pid %d) got sig %d\n",
   2007 				    p->p_pid, signo);
   2008 #endif
   2009 				continue;
   2010 			}
   2011 
   2012 			/*
   2013 			 * If there is a pending stop signal to process with
   2014 			 * default action, stop here, then clear the signal.
   2015 			 * However, if process is member of an orphaned
   2016 			 * process group, ignore tty stop signals.
   2017 			 */
   2018 			if (prop & SA_STOP) {
   2019 				/*
   2020 				 * XXX Don't hold proc_lock for p_lflag,
   2021 				 * but it's not a big deal.
   2022 				 */
   2023 				if ((traced &&
   2024 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   2025 				     (p->p_pptr == p->p_opptr))) ||
   2026 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   2027 				    prop & SA_TTYSTOP)) {
   2028 					/* Ignore the signal. */
   2029 					continue;
   2030 				}
   2031 				/* Take the signal. */
   2032 				(void)sigget(sp, NULL, signo, NULL);
   2033 				p->p_xsig = signo;
   2034 				p->p_sflag &= ~PS_CONTINUED;
   2035 				signo = 0;
   2036 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2037 				mutex_enter(p->p_lock);
   2038 			} else if (prop & SA_IGNORE) {
   2039 				/*
   2040 				 * Except for SIGCONT, shouldn't get here.
   2041 				 * Default action is to ignore; drop it.
   2042 				 */
   2043 				continue;
   2044 			}
   2045 			break;
   2046 
   2047 		case (long)SIG_IGN:
   2048 #ifdef DEBUG_ISSIGNAL
   2049 			/*
   2050 			 * Masking above should prevent us ever trying
   2051 			 * to take action on an ignored signal other
   2052 			 * than SIGCONT, unless process is traced.
   2053 			 */
   2054 			if ((prop & SA_CONT) == 0 && !traced)
   2055 				printf_nolog("issignal\n");
   2056 #endif
   2057 			continue;
   2058 
   2059 		default:
   2060 			/*
   2061 			 * This signal has an action, let postsig() process
   2062 			 * it.
   2063 			 */
   2064 			break;
   2065 		}
   2066 
   2067 		break;
   2068 	}
   2069 
   2070 	l->l_sigpendset = sp;
   2071 	return signo;
   2072 }
   2073 
   2074 /*
   2075  * Take the action for the specified signal
   2076  * from the current set of pending signals.
   2077  */
   2078 void
   2079 postsig(int signo)
   2080 {
   2081 	struct lwp	*l;
   2082 	struct proc	*p;
   2083 	struct sigacts	*ps;
   2084 	sig_t		action;
   2085 	sigset_t	*returnmask;
   2086 	ksiginfo_t	ksi;
   2087 
   2088 	l = curlwp;
   2089 	p = l->l_proc;
   2090 	ps = p->p_sigacts;
   2091 
   2092 	KASSERT(mutex_owned(p->p_lock));
   2093 	KASSERT(signo > 0);
   2094 
   2095 	/*
   2096 	 * Set the new mask value and also defer further occurrences of this
   2097 	 * signal.
   2098 	 *
   2099 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2100 	 * not of interest, but rather the mask from before the sigsuspend is
   2101 	 * what we want restored after the signal processing is completed.
   2102 	 */
   2103 	if (l->l_sigrestore) {
   2104 		returnmask = &l->l_sigoldmask;
   2105 		l->l_sigrestore = 0;
   2106 	} else
   2107 		returnmask = &l->l_sigmask;
   2108 
   2109 	/*
   2110 	 * Commit to taking the signal before releasing the mutex.
   2111 	 */
   2112 	action = SIGACTION_PS(ps, signo).sa_handler;
   2113 	l->l_ru.ru_nsignals++;
   2114 	if (l->l_sigpendset == NULL) {
   2115 		/* From the debugger */
   2116 		if (p->p_sigctx.ps_faked &&
   2117 		    signo == p->p_sigctx.ps_info._signo) {
   2118 			KSI_INIT(&ksi);
   2119 			ksi.ksi_info = p->p_sigctx.ps_info;
   2120 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2121 			p->p_sigctx.ps_faked = false;
   2122 		} else {
   2123 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2124 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2125 		}
   2126 	} else
   2127 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2128 
   2129 	if (ktrpoint(KTR_PSIG)) {
   2130 		mutex_exit(p->p_lock);
   2131 		if (p->p_emul->e_ktrpsig)
   2132 			p->p_emul->e_ktrpsig(signo, action,
   2133 			    returnmask, &ksi);
   2134 		else
   2135 			ktrpsig(signo, action, returnmask, &ksi);
   2136 		mutex_enter(p->p_lock);
   2137 	}
   2138 
   2139 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2140 
   2141 	if (action == SIG_DFL) {
   2142 		/*
   2143 		 * Default action, where the default is to kill
   2144 		 * the process.  (Other cases were ignored above.)
   2145 		 */
   2146 		sigexit(l, signo);
   2147 		return;
   2148 	}
   2149 
   2150 	/*
   2151 	 * If we get here, the signal must be caught.
   2152 	 */
   2153 #ifdef DIAGNOSTIC
   2154 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2155 		panic("postsig action");
   2156 #endif
   2157 
   2158 	kpsendsig(l, &ksi, returnmask);
   2159 }
   2160 
   2161 /*
   2162  * sendsig:
   2163  *
   2164  *	Default signal delivery method for NetBSD.
   2165  */
   2166 void
   2167 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2168 {
   2169 	struct sigacts *sa;
   2170 	int sig;
   2171 
   2172 	sig = ksi->ksi_signo;
   2173 	sa = curproc->p_sigacts;
   2174 
   2175 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2176 	case __SIGTRAMP_SIGCODE_VERSION:
   2177 #ifdef __HAVE_STRUCT_SIGCONTEXT
   2178 	case __SIGTRAMP_SIGCONTEXT_VERSION_MIN ...
   2179 	     __SIGTRAMP_SIGCONTEXT_VERSION_MAX:
   2180 		/* Compat for 1.6 and earlier. */
   2181 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2182 		    break);
   2183 		return;
   2184 #endif /* __HAVE_STRUCT_SIGCONTEXT */
   2185 	case __SIGTRAMP_SIGINFO_VERSION_MIN ...
   2186 	     __SIGTRAMP_SIGINFO_VERSION_MAX:
   2187 		sendsig_siginfo(ksi, mask);
   2188 		return;
   2189 	default:
   2190 		break;
   2191 	}
   2192 
   2193 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2194 	sigexit(curlwp, SIGILL);
   2195 }
   2196 
   2197 /*
   2198  * sendsig_reset:
   2199  *
   2200  *	Reset the signal action.  Called from emulation specific sendsig()
   2201  *	before unlocking to deliver the signal.
   2202  */
   2203 void
   2204 sendsig_reset(struct lwp *l, int signo)
   2205 {
   2206 	struct proc *p = l->l_proc;
   2207 	struct sigacts *ps = p->p_sigacts;
   2208 
   2209 	KASSERT(mutex_owned(p->p_lock));
   2210 
   2211 	p->p_sigctx.ps_lwp = 0;
   2212 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2213 
   2214 	mutex_enter(&ps->sa_mutex);
   2215 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2216 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2217 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2218 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2219 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2220 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2221 	}
   2222 	mutex_exit(&ps->sa_mutex);
   2223 }
   2224 
   2225 /*
   2226  * Kill the current process for stated reason.
   2227  */
   2228 void
   2229 killproc(struct proc *p, const char *why)
   2230 {
   2231 
   2232 	KASSERT(mutex_owned(&proc_lock));
   2233 
   2234 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2235 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2236 	psignal(p, SIGKILL);
   2237 }
   2238 
   2239 /*
   2240  * Force the current process to exit with the specified signal, dumping core
   2241  * if appropriate.  We bypass the normal tests for masked and caught
   2242  * signals, allowing unrecoverable failures to terminate the process without
   2243  * changing signal state.  Mark the accounting record with the signal
   2244  * termination.  If dumping core, save the signal number for the debugger.
   2245  * Calls exit and does not return.
   2246  */
   2247 void
   2248 sigexit(struct lwp *l, int signo)
   2249 {
   2250 	int exitsig, error, docore;
   2251 	struct proc *p;
   2252 	struct lwp *t;
   2253 
   2254 	p = l->l_proc;
   2255 
   2256 	KASSERT(mutex_owned(p->p_lock));
   2257 	KERNEL_UNLOCK_ALL(l, NULL);
   2258 
   2259 	/*
   2260 	 * Don't permit coredump() multiple times in the same process.
   2261 	 * Call back into sigexit, where we will be suspended until
   2262 	 * the deed is done.  Note that this is a recursive call, but
   2263 	 * LW_WCORE will prevent us from coming back this way.
   2264 	 */
   2265 	if ((p->p_sflag & PS_WCORE) != 0) {
   2266 		lwp_lock(l);
   2267 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2268 		lwp_unlock(l);
   2269 		mutex_exit(p->p_lock);
   2270 		lwp_userret(l);
   2271 		panic("sigexit 1");
   2272 		/* NOTREACHED */
   2273 	}
   2274 
   2275 	/* If process is already on the way out, then bail now. */
   2276 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2277 		mutex_exit(p->p_lock);
   2278 		lwp_exit(l);
   2279 		panic("sigexit 2");
   2280 		/* NOTREACHED */
   2281 	}
   2282 
   2283 	/*
   2284 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2285 	 * so that their registers are available long enough to be dumped.
   2286  	 */
   2287 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2288 		p->p_sflag |= PS_WCORE;
   2289 		for (;;) {
   2290 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2291 				lwp_lock(t);
   2292 				if (t == l) {
   2293 					t->l_flag &=
   2294 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2295 					lwp_unlock(t);
   2296 					continue;
   2297 				}
   2298 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2299 				lwp_suspend(l, t);
   2300 			}
   2301 
   2302 			if (p->p_nrlwps == 1)
   2303 				break;
   2304 
   2305 			/*
   2306 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2307 			 * for everyone else to stop before proceeding.
   2308 			 */
   2309 			p->p_nlwpwait++;
   2310 			cv_broadcast(&p->p_lwpcv);
   2311 			cv_wait(&p->p_lwpcv, p->p_lock);
   2312 			p->p_nlwpwait--;
   2313 		}
   2314 	}
   2315 
   2316 	exitsig = signo;
   2317 	p->p_acflag |= AXSIG;
   2318 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2319 	p->p_sigctx.ps_info._signo = signo;
   2320 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2321 
   2322 	if (docore) {
   2323 		mutex_exit(p->p_lock);
   2324 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2325 
   2326 		if (kern_logsigexit) {
   2327 			int uid = l->l_cred ?
   2328 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2329 
   2330 			if (error)
   2331 				log(LOG_INFO, lognocoredump, p->p_pid,
   2332 				    p->p_comm, uid, signo, error);
   2333 			else
   2334 				log(LOG_INFO, logcoredump, p->p_pid,
   2335 				    p->p_comm, uid, signo);
   2336 		}
   2337 
   2338 #ifdef PAX_SEGVGUARD
   2339 		rw_enter(&exec_lock, RW_WRITER);
   2340 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2341 		rw_exit(&exec_lock);
   2342 #endif /* PAX_SEGVGUARD */
   2343 
   2344 		/* Acquire the sched state mutex.  exit1() will release it. */
   2345 		mutex_enter(p->p_lock);
   2346 		if (error == 0)
   2347 			p->p_sflag |= PS_COREDUMP;
   2348 	}
   2349 
   2350 	/* No longer dumping core. */
   2351 	p->p_sflag &= ~PS_WCORE;
   2352 
   2353 	exit1(l, 0, exitsig);
   2354 	/* NOTREACHED */
   2355 }
   2356 
   2357 /*
   2358  * Since the "real" code may (or may not) be present in loadable module,
   2359  * we provide routines here which calls the module hooks.
   2360  */
   2361 
   2362 int
   2363 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2364 {
   2365 
   2366 	int retval;
   2367 
   2368 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
   2369 	return retval;
   2370 }
   2371 
   2372 int
   2373 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
   2374 {
   2375 
   2376 	int retval;
   2377 
   2378 	MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
   2379 	return retval;
   2380 }
   2381 
   2382 int
   2383 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
   2384 {
   2385 	int retval;
   2386 
   2387 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
   2388 	return retval;
   2389 }
   2390 
   2391 int
   2392 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
   2393 {
   2394 	int retval;
   2395 
   2396 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
   2397 	return retval;
   2398 }
   2399 
   2400 /*
   2401  * Put process 'p' into the stopped state and optionally, notify the parent.
   2402  */
   2403 void
   2404 proc_stop(struct proc *p, int signo)
   2405 {
   2406 	struct lwp *l;
   2407 
   2408 	KASSERT(mutex_owned(p->p_lock));
   2409 
   2410 	/*
   2411 	 * First off, set the stopping indicator and bring all sleeping
   2412 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2413 	 * unlock between here and the p->p_nrlwps check below.
   2414 	 */
   2415 	p->p_sflag |= PS_STOPPING;
   2416 	membar_producer();
   2417 
   2418 	proc_stop_lwps(p);
   2419 
   2420 	/*
   2421 	 * If there are no LWPs available to take the signal, then we
   2422 	 * signal the parent process immediately.  Otherwise, the last
   2423 	 * LWP to stop will take care of it.
   2424 	 */
   2425 
   2426 	if (p->p_nrlwps == 0) {
   2427 		proc_stop_done(p, PS_NOCLDSTOP);
   2428 	} else {
   2429 		/*
   2430 		 * Have the remaining LWPs come to a halt, and trigger
   2431 		 * proc_stop_callout() to ensure that they do.
   2432 		 */
   2433 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2434 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2435 		}
   2436 		callout_schedule(&proc_stop_ch, 1);
   2437 	}
   2438 }
   2439 
   2440 /*
   2441  * When stopping a process, we do not immediately set sleeping LWPs stopped,
   2442  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2443  * to allow LWPs to release any locks that they may hold before stopping.
   2444  *
   2445  * Non-interruptable sleeps can be long, and there is the potential for an
   2446  * LWP to begin sleeping interruptably soon after the process has been set
   2447  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2448  * stopping, and so complete halt of the process and the return of status
   2449  * information to the parent could be delayed indefinitely.
   2450  *
   2451  * To handle this race, proc_stop_callout() runs once per tick while there
   2452  * are stopping processes in the system.  It sets LWPs that are sleeping
   2453  * interruptably into the LSSTOP state.
   2454  *
   2455  * Note that we are not concerned about keeping all LWPs stopped while the
   2456  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2457  * What we do need to ensure is that all LWPs in a stopping process have
   2458  * stopped at least once, so that notification can be sent to the parent
   2459  * process.
   2460  */
   2461 static void
   2462 proc_stop_callout(void *cookie)
   2463 {
   2464 	bool more, restart;
   2465 	struct proc *p;
   2466 
   2467 	(void)cookie;
   2468 
   2469 	do {
   2470 		restart = false;
   2471 		more = false;
   2472 
   2473 		mutex_enter(&proc_lock);
   2474 		PROCLIST_FOREACH(p, &allproc) {
   2475 			mutex_enter(p->p_lock);
   2476 
   2477 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2478 				mutex_exit(p->p_lock);
   2479 				continue;
   2480 			}
   2481 
   2482 			/* Stop any LWPs sleeping interruptably. */
   2483 			proc_stop_lwps(p);
   2484 			if (p->p_nrlwps == 0) {
   2485 				/*
   2486 				 * We brought the process to a halt.
   2487 				 * Mark it as stopped and notify the
   2488 				 * parent.
   2489 				 *
   2490 				 * Note that proc_stop_done() will
   2491 				 * drop p->p_lock briefly.
   2492 				 * Arrange to restart and check
   2493 				 * all processes again.
   2494 				 */
   2495 				restart = true;
   2496 				proc_stop_done(p, PS_NOCLDSTOP);
   2497 			} else
   2498 				more = true;
   2499 
   2500 			mutex_exit(p->p_lock);
   2501 			if (restart)
   2502 				break;
   2503 		}
   2504 		mutex_exit(&proc_lock);
   2505 	} while (restart);
   2506 
   2507 	/*
   2508 	 * If we noted processes that are stopping but still have
   2509 	 * running LWPs, then arrange to check again in 1 tick.
   2510 	 */
   2511 	if (more)
   2512 		callout_schedule(&proc_stop_ch, 1);
   2513 }
   2514 
   2515 /*
   2516  * Given a process in state SSTOP, set the state back to SACTIVE and
   2517  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2518  */
   2519 void
   2520 proc_unstop(struct proc *p)
   2521 {
   2522 	struct lwp *l;
   2523 	int sig;
   2524 
   2525 	KASSERT(mutex_owned(&proc_lock));
   2526 	KASSERT(mutex_owned(p->p_lock));
   2527 
   2528 	p->p_stat = SACTIVE;
   2529 	p->p_sflag &= ~PS_STOPPING;
   2530 	sig = p->p_xsig;
   2531 
   2532 	if (!p->p_waited)
   2533 		p->p_pptr->p_nstopchild--;
   2534 
   2535 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2536 		lwp_lock(l);
   2537 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2538 			lwp_unlock(l);
   2539 			continue;
   2540 		}
   2541 		if (l->l_wchan == NULL) {
   2542 			setrunnable(l);
   2543 			continue;
   2544 		}
   2545 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2546 			setrunnable(l);
   2547 			sig = 0;
   2548 		} else {
   2549 			l->l_stat = LSSLEEP;
   2550 			p->p_nrlwps++;
   2551 			lwp_unlock(l);
   2552 		}
   2553 	}
   2554 }
   2555 
   2556 void
   2557 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2558                const register_t *ret, int error)
   2559 {
   2560 	struct lwp *l = curlwp;
   2561 	struct proc *p = l->l_proc;
   2562 	struct sigacts *ps;
   2563 	sigset_t *mask;
   2564 	sig_t action;
   2565 	ksiginfo_t ksi;
   2566 	size_t i, sy_narg;
   2567 	const int signo = SIGTRAP;
   2568 
   2569 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2570 	KASSERT(p->p_pptr != initproc);
   2571 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2572 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2573 
   2574 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2575 
   2576 	KSI_INIT_TRAP(&ksi);
   2577 	ksi.ksi_lid = l->l_lid;
   2578 	ksi.ksi_signo = signo;
   2579 	ksi.ksi_code = trapno;
   2580 
   2581 	ksi.ksi_sysnum = sysnum;
   2582 	if (trapno == TRAP_SCE) {
   2583 		ksi.ksi_retval[0] = 0;
   2584 		ksi.ksi_retval[1] = 0;
   2585 		ksi.ksi_error = 0;
   2586 	} else {
   2587 		ksi.ksi_retval[0] = ret[0];
   2588 		ksi.ksi_retval[1] = ret[1];
   2589 		ksi.ksi_error = error;
   2590 	}
   2591 
   2592 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2593 
   2594 	for (i = 0; i < sy_narg; i++)
   2595 		ksi.ksi_args[i] = args[i];
   2596 
   2597 	mutex_enter(p->p_lock);
   2598 
   2599 repeat:
   2600 	/*
   2601 	 * If we are exiting, demise now.
   2602 	 *
   2603 	 * This avoids notifying tracer and deadlocking.
   2604 	 */
   2605 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2606 		mutex_exit(p->p_lock);
   2607 		lwp_exit(l);
   2608 		panic("proc_stoptrace");
   2609 		/* NOTREACHED */
   2610 	}
   2611 
   2612 	/*
   2613 	 * If there's a pending SIGKILL process it immediately.
   2614 	 */
   2615 	if (p->p_xsig == SIGKILL ||
   2616 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2617 		mutex_exit(p->p_lock);
   2618 		return;
   2619 	}
   2620 
   2621 	/*
   2622 	 * If we are no longer traced, abandon this event signal.
   2623 	 *
   2624 	 * This avoids killing a process after detaching the debugger.
   2625 	 */
   2626 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2627 		mutex_exit(p->p_lock);
   2628 		return;
   2629 	}
   2630 
   2631 	/*
   2632 	 * The process is already stopping.
   2633 	 */
   2634 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2635 		sigswitch_unlock_and_switch_away(l);
   2636 		mutex_enter(p->p_lock);
   2637 		goto repeat;
   2638 	}
   2639 
   2640 	/* Needed for ktrace */
   2641 	ps = p->p_sigacts;
   2642 	action = SIGACTION_PS(ps, signo).sa_handler;
   2643 	mask = &l->l_sigmask;
   2644 
   2645 	p->p_xsig = signo;
   2646 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2647 	p->p_sigctx.ps_info = ksi.ksi_info;
   2648 	sigswitch(0, signo, false);
   2649 
   2650 	if (ktrpoint(KTR_PSIG)) {
   2651 		if (p->p_emul->e_ktrpsig)
   2652 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2653 		else
   2654 			ktrpsig(signo, action, mask, &ksi);
   2655 	}
   2656 }
   2657 
   2658 static int
   2659 filt_sigattach(struct knote *kn)
   2660 {
   2661 	struct proc *p = curproc;
   2662 
   2663 	kn->kn_obj = p;
   2664 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2665 
   2666 	mutex_enter(p->p_lock);
   2667 	klist_insert(&p->p_klist, kn);
   2668 	mutex_exit(p->p_lock);
   2669 
   2670 	return 0;
   2671 }
   2672 
   2673 static void
   2674 filt_sigdetach(struct knote *kn)
   2675 {
   2676 	struct proc *p = kn->kn_obj;
   2677 
   2678 	mutex_enter(p->p_lock);
   2679 	klist_remove(&p->p_klist, kn);
   2680 	mutex_exit(p->p_lock);
   2681 }
   2682 
   2683 /*
   2684  * Signal knotes are shared with proc knotes, so we apply a mask to
   2685  * the hint in order to differentiate them from process hints.  This
   2686  * could be avoided by using a signal-specific knote list, but probably
   2687  * isn't worth the trouble.
   2688  */
   2689 static int
   2690 filt_signal(struct knote *kn, long hint)
   2691 {
   2692 
   2693 	if (hint & NOTE_SIGNAL) {
   2694 		hint &= ~NOTE_SIGNAL;
   2695 
   2696 		if (kn->kn_id == hint)
   2697 			kn->kn_data++;
   2698 	}
   2699 	return (kn->kn_data != 0);
   2700 }
   2701 
   2702 const struct filterops sig_filtops = {
   2703 	.f_flags = FILTEROP_MPSAFE,
   2704 	.f_attach = filt_sigattach,
   2705 	.f_detach = filt_sigdetach,
   2706 	.f_event = filt_signal,
   2707 };
   2708