Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.1.2.10
      1  1.1.2.10  ad /*	$NetBSD: kern_sleepq.c,v 1.1.2.10 2007/01/27 14:00:02 ad Exp $	*/
      2   1.1.2.1  ad 
      3   1.1.2.1  ad /*-
      4   1.1.2.1  ad  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5   1.1.2.1  ad  * All rights reserved.
      6   1.1.2.1  ad  *
      7   1.1.2.1  ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1.2.1  ad  * by Andrew Doran.
      9   1.1.2.1  ad  *
     10   1.1.2.1  ad  * Redistribution and use in source and binary forms, with or without
     11   1.1.2.1  ad  * modification, are permitted provided that the following conditions
     12   1.1.2.1  ad  * are met:
     13   1.1.2.1  ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1.2.1  ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1.2.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1.2.1  ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1.2.1  ad  *    documentation and/or other materials provided with the distribution.
     18   1.1.2.1  ad  * 3. All advertising materials mentioning features or use of this software
     19   1.1.2.1  ad  *    must display the following acknowledgement:
     20   1.1.2.1  ad  *	This product includes software developed by the NetBSD
     21   1.1.2.1  ad  *	Foundation, Inc. and its contributors.
     22   1.1.2.1  ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1.2.1  ad  *    contributors may be used to endorse or promote products derived
     24   1.1.2.1  ad  *    from this software without specific prior written permission.
     25   1.1.2.1  ad  *
     26   1.1.2.1  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1.2.1  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1.2.1  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1.2.1  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1.2.1  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1.2.1  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1.2.1  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1.2.1  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1.2.1  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1.2.1  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1.2.1  ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1.2.1  ad  */
     38   1.1.2.1  ad 
     39   1.1.2.1  ad /*
     40   1.1.2.1  ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41   1.1.2.1  ad  * interfaces.
     42   1.1.2.1  ad  */
     43   1.1.2.1  ad 
     44   1.1.2.1  ad #include <sys/cdefs.h>
     45  1.1.2.10  ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.10 2007/01/27 14:00:02 ad Exp $");
     46   1.1.2.5  ad 
     47   1.1.2.5  ad #include "opt_multiprocessor.h"
     48   1.1.2.5  ad #include "opt_lockdebug.h"
     49   1.1.2.5  ad #include "opt_ktrace.h"
     50   1.1.2.1  ad 
     51   1.1.2.1  ad #include <sys/param.h>
     52   1.1.2.1  ad #include <sys/lock.h>
     53   1.1.2.1  ad #include <sys/kernel.h>
     54   1.1.2.1  ad #include <sys/pool.h>
     55   1.1.2.1  ad #include <sys/proc.h>
     56   1.1.2.1  ad #include <sys/resourcevar.h>
     57   1.1.2.1  ad #include <sys/sched.h>
     58   1.1.2.1  ad #include <sys/systm.h>
     59   1.1.2.1  ad #include <sys/sa.h>
     60   1.1.2.1  ad #include <sys/savar.h>
     61   1.1.2.1  ad #include <sys/sleepq.h>
     62   1.1.2.1  ad 
     63   1.1.2.5  ad #ifdef KTRACE
     64   1.1.2.5  ad #include <sys/ktrace.h>
     65   1.1.2.5  ad #endif
     66   1.1.2.5  ad 
     67   1.1.2.1  ad int	sleepq_sigtoerror(struct lwp *, int);
     68   1.1.2.1  ad void	updatepri(struct lwp *);
     69   1.1.2.1  ad void	sa_awaken(struct lwp *);
     70   1.1.2.1  ad 
     71   1.1.2.5  ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     72   1.1.2.5  ad sleeptab_t	sleeptab;
     73   1.1.2.1  ad 
     74   1.1.2.1  ad /*
     75   1.1.2.1  ad  * sleeptab_init:
     76   1.1.2.1  ad  *
     77   1.1.2.5  ad  *	Initialize a sleep table.
     78   1.1.2.1  ad  */
     79   1.1.2.1  ad void
     80   1.1.2.5  ad sleeptab_init(sleeptab_t *st)
     81   1.1.2.1  ad {
     82   1.1.2.1  ad 	sleepq_t *sq;
     83   1.1.2.1  ad 	int i;
     84   1.1.2.1  ad 
     85   1.1.2.1  ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     86   1.1.2.5  ad 		sq = &st->st_queues[i];
     87   1.1.2.5  ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     88   1.1.2.5  ad 		mutex_init(&st->st_mutexes[i], MUTEX_SPIN, IPL_SCHED);
     89   1.1.2.5  ad 		sleepq_init(sq, &st->st_mutexes[i]);
     90   1.1.2.1  ad #else
     91   1.1.2.5  ad 		sleepq_init(sq, &sched_mutex);
     92   1.1.2.1  ad #endif
     93   1.1.2.1  ad 	}
     94   1.1.2.1  ad }
     95   1.1.2.1  ad 
     96   1.1.2.1  ad /*
     97   1.1.2.1  ad  * sleepq_init:
     98   1.1.2.1  ad  *
     99   1.1.2.1  ad  *	Prepare a sleep queue for use.
    100   1.1.2.1  ad  */
    101   1.1.2.1  ad void
    102   1.1.2.1  ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
    103   1.1.2.1  ad {
    104   1.1.2.1  ad 
    105   1.1.2.1  ad 	sq->sq_waiters = 0;
    106   1.1.2.1  ad 	sq->sq_mutex = mtx;
    107   1.1.2.1  ad 	TAILQ_INIT(&sq->sq_queue);
    108   1.1.2.1  ad }
    109   1.1.2.1  ad 
    110   1.1.2.1  ad /*
    111   1.1.2.1  ad  * sleepq_remove:
    112   1.1.2.1  ad  *
    113   1.1.2.1  ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    114   1.1.2.1  ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    115   1.1.2.1  ad  *	to bring the LWP into memory.
    116   1.1.2.1  ad  */
    117   1.1.2.1  ad int
    118   1.1.2.1  ad sleepq_remove(sleepq_t *sq, struct lwp *l)
    119   1.1.2.1  ad {
    120   1.1.2.4  ad 	struct cpu_info *ci;
    121   1.1.2.1  ad 
    122   1.1.2.1  ad 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    123   1.1.2.1  ad 	KASSERT(sq->sq_waiters > 0);
    124   1.1.2.1  ad 
    125   1.1.2.1  ad 	sq->sq_waiters--;
    126   1.1.2.5  ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    127   1.1.2.1  ad 
    128   1.1.2.1  ad #ifdef DIAGNOSTIC
    129   1.1.2.1  ad 	if (sq->sq_waiters == 0)
    130   1.1.2.1  ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    131   1.1.2.1  ad 	else
    132   1.1.2.1  ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    133   1.1.2.1  ad #endif
    134   1.1.2.1  ad 
    135   1.1.2.5  ad 	l->l_syncobj = &sched_syncobj;
    136   1.1.2.4  ad 	l->l_wchan = NULL;
    137   1.1.2.5  ad 	l->l_sleepq = NULL;
    138   1.1.2.4  ad 	l->l_flag &= ~L_SINTR;
    139   1.1.2.4  ad 
    140   1.1.2.7  ad 	/*
    141   1.1.2.7  ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    142   1.1.2.7  ad 	 * holds it stopped set it running again.
    143   1.1.2.7  ad 	 */
    144   1.1.2.7  ad 	if (l->l_stat != LSSLEEP) {
    145   1.1.2.7  ad 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    146   1.1.2.7  ad 		lwp_setlock(l, &sched_mutex);
    147   1.1.2.7  ad 		return 0;
    148   1.1.2.7  ad 	}
    149   1.1.2.7  ad 
    150   1.1.2.5  ad 	sched_lock(1);
    151   1.1.2.4  ad 	lwp_setlock(l, &sched_mutex);
    152   1.1.2.4  ad 
    153   1.1.2.4  ad 	/*
    154   1.1.2.4  ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    155   1.1.2.4  ad 	 * about to call mi_switch(), in which case it will yield.
    156   1.1.2.7  ad 	 *
    157   1.1.2.7  ad 	 * XXXSMP Will need to change for preemption.
    158   1.1.2.4  ad 	 */
    159   1.1.2.7  ad 	ci = l->l_cpu;
    160   1.1.2.7  ad #ifdef MULTIPROCESSOR
    161   1.1.2.7  ad 	if (ci->ci_curlwp == l) {
    162   1.1.2.7  ad #else
    163   1.1.2.7  ad 	if (l == curlwp) {
    164   1.1.2.7  ad #endif
    165   1.1.2.1  ad 		l->l_stat = LSONPROC;
    166   1.1.2.4  ad 		l->l_slptime = 0;
    167   1.1.2.5  ad 		sched_unlock(1);
    168   1.1.2.1  ad 		return 0;
    169   1.1.2.1  ad 	}
    170   1.1.2.1  ad 
    171   1.1.2.4  ad 	/*
    172   1.1.2.4  ad 	 * Set it running.  We'll try to get the last CPU that ran
    173   1.1.2.4  ad 	 * this LWP to pick it up again.
    174   1.1.2.4  ad 	 */
    175   1.1.2.7  ad 	if (l->l_proc->p_sa != NULL)
    176   1.1.2.7  ad 		sa_awaken(l);
    177   1.1.2.1  ad 	if (l->l_slptime > 1)
    178   1.1.2.1  ad 		updatepri(l);
    179   1.1.2.7  ad 	l->l_stat = LSRUN;
    180   1.1.2.4  ad 	l->l_slptime = 0;
    181   1.1.2.1  ad 	if ((l->l_flag & L_INMEM) != 0) {
    182   1.1.2.1  ad 		setrunqueue(l);
    183   1.1.2.5  ad 		if (l->l_priority < ci->ci_schedstate.spc_curpriority)
    184   1.1.2.5  ad 			cpu_need_resched(ci);
    185   1.1.2.5  ad 		sched_unlock(1);
    186   1.1.2.1  ad 		return 0;
    187   1.1.2.1  ad 	}
    188   1.1.2.1  ad 
    189   1.1.2.5  ad 	sched_unlock(1);
    190   1.1.2.1  ad 	return 1;
    191   1.1.2.1  ad }
    192   1.1.2.1  ad 
    193   1.1.2.1  ad /*
    194   1.1.2.5  ad  * sleepq_insert:
    195   1.1.2.5  ad  *
    196   1.1.2.5  ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    197   1.1.2.5  ad  */
    198   1.1.2.5  ad static inline void
    199   1.1.2.5  ad sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
    200   1.1.2.5  ad {
    201   1.1.2.7  ad 	struct lwp *l2;
    202   1.1.2.5  ad 
    203   1.1.2.5  ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    204   1.1.2.5  ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    205   1.1.2.7  ad 			if (l2->l_priority > pri) {
    206   1.1.2.7  ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    207   1.1.2.7  ad 				return;
    208   1.1.2.7  ad 			}
    209   1.1.2.5  ad 		}
    210   1.1.2.5  ad 	}
    211   1.1.2.5  ad 
    212   1.1.2.7  ad 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    213   1.1.2.5  ad }
    214   1.1.2.5  ad 
    215   1.1.2.5  ad /*
    216   1.1.2.7  ad  * sleepq_block:
    217   1.1.2.7  ad  *
    218   1.1.2.7  ad  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    219   1.1.2.7  ad  *	queue must already be locked, and any interlock (such as the kernel
    220   1.1.2.7  ad  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    221   1.1.2.1  ad  *
    222   1.1.2.7  ad  * 	sleepq_block() may return early under exceptional conditions, for
    223   1.1.2.7  ad  * 	example if the LWP's containing process is exiting.
    224   1.1.2.1  ad  */
    225   1.1.2.1  ad void
    226   1.1.2.7  ad sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
    227   1.1.2.5  ad 	     int catch, syncobj_t *sobj)
    228   1.1.2.1  ad {
    229   1.1.2.1  ad 	struct lwp *l = curlwp;
    230   1.1.2.1  ad 
    231   1.1.2.1  ad 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    232   1.1.2.5  ad 	KASSERT(l->l_stat == LSONPROC);
    233   1.1.2.5  ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    234   1.1.2.1  ad 
    235   1.1.2.1  ad #ifdef KTRACE
    236   1.1.2.5  ad 	if (KTRPOINT(l->l_proc, KTR_CSW))
    237   1.1.2.1  ad 		ktrcsw(l, 1, 0);
    238   1.1.2.1  ad #endif
    239   1.1.2.1  ad 
    240   1.1.2.5  ad 	l->l_syncobj = sobj;
    241   1.1.2.1  ad 	l->l_wchan = wchan;
    242   1.1.2.5  ad 	l->l_sleepq = sq;
    243   1.1.2.1  ad 	l->l_wmesg = wmesg;
    244   1.1.2.1  ad 	l->l_slptime = 0;
    245   1.1.2.5  ad 	l->l_priority = pri;
    246   1.1.2.5  ad 	l->l_stat = LSSLEEP;
    247   1.1.2.7  ad 	l->l_sleeperr = 0;
    248   1.1.2.5  ad 	l->l_nvcsw++;
    249   1.1.2.5  ad 
    250   1.1.2.7  ad 	sq->sq_waiters++;
    251   1.1.2.5  ad 	sleepq_insert(sq, l, pri, sobj);
    252   1.1.2.1  ad 
    253   1.1.2.7  ad 	/*
    254   1.1.2.7  ad 	 * If sleeping interruptably, check for pending signals, exits or
    255   1.1.2.7  ad 	 * core dump events.
    256   1.1.2.7  ad 	 */
    257   1.1.2.7  ad 	if (catch) {
    258   1.1.2.7  ad 		l->l_flag |= L_SINTR;
    259   1.1.2.7  ad 		if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
    260   1.1.2.7  ad 			l->l_sleeperr = EPASSTHROUGH;
    261   1.1.2.7  ad 			/* lwp_unsleep() will release the lock */
    262   1.1.2.7  ad 			lwp_unsleep(l);
    263   1.1.2.7  ad 			return;
    264   1.1.2.7  ad 		}
    265   1.1.2.7  ad 		if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
    266   1.1.2.7  ad 			l->l_flag &= ~L_CANCELLED;
    267   1.1.2.7  ad 			l->l_sleeperr = EINTR;
    268   1.1.2.7  ad 			/* lwp_unsleep() will release the lock */
    269   1.1.2.7  ad 			lwp_unsleep(l);
    270   1.1.2.7  ad 			return;
    271   1.1.2.7  ad 		}
    272   1.1.2.7  ad 	}
    273   1.1.2.7  ad 
    274   1.1.2.1  ad 	if (timo)
    275   1.1.2.1  ad 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    276   1.1.2.1  ad 
    277   1.1.2.7  ad 	if ((l->l_flag & L_SA) != 0) {
    278   1.1.2.7  ad 		/* XXXAD Allocating memory while on sleep queue */
    279   1.1.2.7  ad 		sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
    280   1.1.2.7  ad 	} else {
    281   1.1.2.7  ad 		mi_switch(l, NULL);
    282   1.1.2.7  ad 		l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    283   1.1.2.7  ad 	}
    284   1.1.2.7  ad 
    285   1.1.2.1  ad 	/*
    286   1.1.2.7  ad 	 * When we reach this point, the LWP and sleep queue are unlocked.
    287   1.1.2.1  ad 	 */
    288   1.1.2.7  ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    289   1.1.2.1  ad }
    290   1.1.2.1  ad 
    291   1.1.2.1  ad /*
    292   1.1.2.7  ad  * sleepq_unblock:
    293   1.1.2.1  ad  *
    294   1.1.2.7  ad  *	After any intermediate step such as updating statistics, re-acquire
    295   1.1.2.7  ad  *	the kernel lock and record the switch for ktrace.  Note that we are
    296   1.1.2.7  ad  *	no longer on the sleep queue at this point.
    297   1.1.2.7  ad  *
    298   1.1.2.7  ad  *	This is split out from sleepq_block() in expectation that at some
    299   1.1.2.7  ad  *	point in the future, LWPs may awake on different kernel stacks than
    300   1.1.2.7  ad  *	those they went asleep on.
    301   1.1.2.1  ad  */
    302   1.1.2.1  ad int
    303   1.1.2.7  ad sleepq_unblock(int timo, int catch)
    304   1.1.2.1  ad {
    305   1.1.2.7  ad 	int error, expired, sig;
    306   1.1.2.1  ad 	struct proc *p;
    307   1.1.2.7  ad 	struct lwp *l;
    308   1.1.2.1  ad 
    309   1.1.2.7  ad 	l = curlwp;
    310   1.1.2.7  ad 	error = l->l_sleeperr;
    311   1.1.2.1  ad 
    312   1.1.2.1  ad 	if (timo) {
    313   1.1.2.1  ad 		/*
    314   1.1.2.1  ad 		 * Even if the callout appears to have fired, we need to
    315   1.1.2.1  ad 		 * stop it in order to synchronise with other CPUs.
    316   1.1.2.1  ad 		 */
    317   1.1.2.1  ad 		expired = callout_expired(&l->l_tsleep_ch);
    318   1.1.2.1  ad 		callout_stop(&l->l_tsleep_ch);
    319   1.1.2.4  ad 		if (expired && error == 0)
    320   1.1.2.5  ad 			error = EWOULDBLOCK;
    321   1.1.2.1  ad 	}
    322   1.1.2.1  ad 
    323   1.1.2.7  ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    324   1.1.2.7  ad 	/*
    325   1.1.2.7  ad 	 * Re-acquire the kernel lock.  XXXSMP This can come after the
    326   1.1.2.7  ad 	 * ktrace stuff below once its safe to allocate memory unlocked.
    327   1.1.2.7  ad 	 */
    328   1.1.2.7  ad 	KERNEL_LOCK(l->l_biglocks, l);
    329   1.1.2.7  ad #endif
    330   1.1.2.7  ad 
    331   1.1.2.7  ad 	if (catch && (error == 0 || error == EPASSTHROUGH)) {
    332   1.1.2.8  ad 		l->l_sleeperr = 0;
    333   1.1.2.7  ad 		p = l->l_proc;
    334   1.1.2.1  ad 		if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
    335   1.1.2.1  ad 			error = EINTR;
    336   1.1.2.1  ad 		else if ((l->l_flag & L_PENDSIG) != 0) {
    337   1.1.2.1  ad 			mutex_enter(&p->p_smutex);
    338   1.1.2.1  ad 			if ((sig = issignal(l)) != 0)
    339   1.1.2.1  ad 				error = sleepq_sigtoerror(l, sig);
    340   1.1.2.1  ad 			mutex_exit(&p->p_smutex);
    341   1.1.2.1  ad 		}
    342   1.1.2.7  ad 		if (error == EPASSTHROUGH) {
    343   1.1.2.7  ad 			/* Raced */
    344   1.1.2.7  ad 			error = EINTR;
    345   1.1.2.7  ad 		}
    346   1.1.2.1  ad 	}
    347   1.1.2.1  ad 
    348   1.1.2.1  ad #ifdef KTRACE
    349   1.1.2.5  ad 	if (KTRPOINT(l->l_proc, KTR_CSW))
    350   1.1.2.1  ad 		ktrcsw(l, 0, 0);
    351   1.1.2.1  ad #endif
    352   1.1.2.7  ad 
    353   1.1.2.7  ad 	return error;
    354   1.1.2.1  ad }
    355   1.1.2.1  ad 
    356   1.1.2.1  ad /*
    357   1.1.2.6  ad  * sleepq_wake:
    358   1.1.2.1  ad  *
    359   1.1.2.6  ad  *	Wake zero or more LWPs blocked on a single wait channel.
    360   1.1.2.1  ad  */
    361   1.1.2.1  ad void
    362   1.1.2.6  ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    363   1.1.2.1  ad {
    364   1.1.2.1  ad 	struct lwp *l, *next;
    365   1.1.2.1  ad 	int swapin = 0;
    366   1.1.2.1  ad 
    367   1.1.2.1  ad 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    368   1.1.2.1  ad 
    369   1.1.2.1  ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    370   1.1.2.5  ad 		KASSERT(l->l_sleepq == sq);
    371   1.1.2.5  ad 		next = TAILQ_NEXT(l, l_sleepchain);
    372   1.1.2.1  ad 		if (l->l_wchan != wchan)
    373   1.1.2.1  ad 			continue;
    374   1.1.2.1  ad 		swapin |= sleepq_remove(sq, l);
    375   1.1.2.1  ad 		if (--expected == 0)
    376   1.1.2.1  ad 			break;
    377   1.1.2.1  ad 	}
    378   1.1.2.1  ad 
    379   1.1.2.1  ad 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    380  1.1.2.10  ad 	sleepq_unlock(sq);
    381   1.1.2.1  ad 
    382   1.1.2.1  ad 	/*
    383   1.1.2.1  ad 	 * If there are newly awakend threads that need to be swapped in,
    384   1.1.2.1  ad 	 * then kick the swapper into action.
    385   1.1.2.1  ad 	 */
    386   1.1.2.1  ad 	if (swapin)
    387   1.1.2.1  ad 		wakeup(&proc0);
    388   1.1.2.1  ad }
    389   1.1.2.1  ad 
    390   1.1.2.1  ad /*
    391   1.1.2.1  ad  * sleepq_unsleep:
    392   1.1.2.1  ad  *
    393   1.1.2.1  ad  *	Remove an LWP from its sleep queue and set it runnable again.
    394   1.1.2.1  ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    395   1.1.2.1  ad  *	always release it.
    396   1.1.2.1  ad  */
    397   1.1.2.1  ad void
    398   1.1.2.1  ad sleepq_unsleep(struct lwp *l)
    399   1.1.2.1  ad {
    400   1.1.2.5  ad 	sleepq_t *sq = l->l_sleepq;
    401   1.1.2.1  ad 	int swapin;
    402   1.1.2.1  ad 
    403   1.1.2.5  ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    404   1.1.2.1  ad 	KASSERT(l->l_wchan != NULL);
    405   1.1.2.1  ad 	KASSERT(l->l_mutex == sq->sq_mutex);
    406   1.1.2.1  ad 
    407   1.1.2.1  ad 	swapin = sleepq_remove(sq, l);
    408  1.1.2.10  ad 	sleepq_unlock(sq);
    409   1.1.2.1  ad 
    410   1.1.2.1  ad 	if (swapin)
    411   1.1.2.1  ad 		wakeup(&proc0);
    412   1.1.2.1  ad }
    413   1.1.2.1  ad 
    414   1.1.2.1  ad /*
    415   1.1.2.1  ad  * sleepq_timeout:
    416   1.1.2.1  ad  *
    417   1.1.2.1  ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    418   1.1.2.1  ad  *	sleep queue.
    419   1.1.2.1  ad  */
    420   1.1.2.1  ad void
    421   1.1.2.1  ad sleepq_timeout(void *arg)
    422   1.1.2.1  ad {
    423   1.1.2.1  ad 	struct lwp *l = arg;
    424   1.1.2.1  ad 
    425   1.1.2.1  ad 	/*
    426   1.1.2.1  ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    427   1.1.2.1  ad 	 * current mutex will also be the sleep queue mutex.
    428   1.1.2.1  ad 	 */
    429   1.1.2.1  ad 	lwp_lock(l);
    430   1.1.2.1  ad 
    431   1.1.2.1  ad 	if (l->l_wchan == NULL) {
    432   1.1.2.1  ad 		/* Somebody beat us to it. */
    433   1.1.2.1  ad 		lwp_unlock(l);
    434   1.1.2.1  ad 		return;
    435   1.1.2.1  ad 	}
    436   1.1.2.1  ad 
    437   1.1.2.9  ad 	lwp_unsleep(l);
    438   1.1.2.1  ad }
    439   1.1.2.1  ad 
    440   1.1.2.1  ad /*
    441   1.1.2.1  ad  * sleepq_sigtoerror:
    442   1.1.2.1  ad  *
    443   1.1.2.1  ad  *	Given a signal number, interpret and return an error code.
    444   1.1.2.1  ad  */
    445   1.1.2.1  ad int
    446   1.1.2.1  ad sleepq_sigtoerror(struct lwp *l, int sig)
    447   1.1.2.1  ad {
    448   1.1.2.3  ad 	struct proc *p = l->l_proc;
    449   1.1.2.1  ad 	int error;
    450   1.1.2.1  ad 
    451   1.1.2.3  ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    452   1.1.2.3  ad 
    453   1.1.2.1  ad 	/*
    454   1.1.2.1  ad 	 * If this sleep was canceled, don't let the syscall restart.
    455   1.1.2.1  ad 	 */
    456   1.1.2.1  ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    457   1.1.2.1  ad 		error = EINTR;
    458   1.1.2.1  ad 	else
    459   1.1.2.1  ad 		error = ERESTART;
    460   1.1.2.1  ad 
    461   1.1.2.1  ad 	return error;
    462   1.1.2.1  ad }
    463   1.1.2.1  ad 
    464   1.1.2.1  ad /*
    465   1.1.2.1  ad  * sleepq_abort:
    466   1.1.2.1  ad  *
    467   1.1.2.1  ad  *	After a panic or during autoconfiguration, lower the interrupt
    468   1.1.2.1  ad  *	priority level to give pending interrupts a chance to run, and
    469   1.1.2.1  ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    470   1.1.2.1  ad  *	always returns zero.
    471   1.1.2.1  ad  */
    472   1.1.2.1  ad int
    473   1.1.2.1  ad sleepq_abort(kmutex_t *mtx, int unlock)
    474   1.1.2.1  ad {
    475   1.1.2.1  ad 	extern int safepri;
    476   1.1.2.1  ad 	int s;
    477   1.1.2.1  ad 
    478   1.1.2.1  ad 	s = splhigh();
    479   1.1.2.1  ad 	splx(safepri);
    480   1.1.2.1  ad 	splx(s);
    481   1.1.2.1  ad 	if (mtx != NULL && unlock != 0)
    482   1.1.2.1  ad 		mutex_exit(mtx);
    483   1.1.2.1  ad 
    484   1.1.2.1  ad 	return 0;
    485   1.1.2.1  ad }
    486   1.1.2.5  ad 
    487   1.1.2.5  ad /*
    488   1.1.2.5  ad  * sleepq_changepri:
    489   1.1.2.5  ad  *
    490   1.1.2.5  ad  *	Adjust the priority of an LWP residing on a sleepq.
    491   1.1.2.5  ad  */
    492   1.1.2.5  ad void
    493   1.1.2.5  ad sleepq_changepri(struct lwp *l, int pri)
    494   1.1.2.5  ad {
    495   1.1.2.5  ad 	sleepq_t *sq = l->l_sleepq;
    496   1.1.2.5  ad 
    497   1.1.2.5  ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    498   1.1.2.5  ad 
    499   1.1.2.7  ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0)
    500   1.1.2.7  ad 		return;
    501   1.1.2.7  ad 
    502   1.1.2.5  ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    503   1.1.2.5  ad 	sleepq_insert(sq, l, pri, l->l_syncobj);
    504   1.1.2.5  ad }
    505