kern_sleepq.c revision 1.1.2.13 1 1.1.2.13 ad /* $NetBSD: kern_sleepq.c,v 1.1.2.13 2007/02/05 13:11:13 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.13 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.1.2.1 ad * interfaces.
42 1.1.2.1 ad */
43 1.1.2.1 ad
44 1.1.2.1 ad #include <sys/cdefs.h>
45 1.1.2.13 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.13 2007/02/05 13:11:13 ad Exp $");
46 1.1.2.5 ad
47 1.1.2.5 ad #include "opt_multiprocessor.h"
48 1.1.2.5 ad #include "opt_lockdebug.h"
49 1.1.2.5 ad #include "opt_ktrace.h"
50 1.1.2.1 ad
51 1.1.2.1 ad #include <sys/param.h>
52 1.1.2.1 ad #include <sys/lock.h>
53 1.1.2.1 ad #include <sys/kernel.h>
54 1.1.2.1 ad #include <sys/pool.h>
55 1.1.2.1 ad #include <sys/proc.h>
56 1.1.2.1 ad #include <sys/resourcevar.h>
57 1.1.2.1 ad #include <sys/sched.h>
58 1.1.2.1 ad #include <sys/systm.h>
59 1.1.2.1 ad #include <sys/sleepq.h>
60 1.1.2.1 ad
61 1.1.2.5 ad #ifdef KTRACE
62 1.1.2.5 ad #include <sys/ktrace.h>
63 1.1.2.5 ad #endif
64 1.1.2.5 ad
65 1.1.2.1 ad int sleepq_sigtoerror(struct lwp *, int);
66 1.1.2.1 ad void updatepri(struct lwp *);
67 1.1.2.1 ad void sa_awaken(struct lwp *);
68 1.1.2.1 ad
69 1.1.2.5 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
70 1.1.2.5 ad sleeptab_t sleeptab;
71 1.1.2.1 ad
72 1.1.2.1 ad /*
73 1.1.2.1 ad * sleeptab_init:
74 1.1.2.1 ad *
75 1.1.2.5 ad * Initialize a sleep table.
76 1.1.2.1 ad */
77 1.1.2.1 ad void
78 1.1.2.5 ad sleeptab_init(sleeptab_t *st)
79 1.1.2.1 ad {
80 1.1.2.1 ad sleepq_t *sq;
81 1.1.2.1 ad int i;
82 1.1.2.1 ad
83 1.1.2.1 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 1.1.2.5 ad sq = &st->st_queues[i];
85 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
86 1.1.2.5 ad mutex_init(&st->st_mutexes[i], MUTEX_SPIN, IPL_SCHED);
87 1.1.2.5 ad sleepq_init(sq, &st->st_mutexes[i]);
88 1.1.2.1 ad #else
89 1.1.2.5 ad sleepq_init(sq, &sched_mutex);
90 1.1.2.1 ad #endif
91 1.1.2.1 ad }
92 1.1.2.1 ad }
93 1.1.2.1 ad
94 1.1.2.1 ad /*
95 1.1.2.1 ad * sleepq_init:
96 1.1.2.1 ad *
97 1.1.2.1 ad * Prepare a sleep queue for use.
98 1.1.2.1 ad */
99 1.1.2.1 ad void
100 1.1.2.1 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
101 1.1.2.1 ad {
102 1.1.2.1 ad
103 1.1.2.1 ad sq->sq_waiters = 0;
104 1.1.2.1 ad sq->sq_mutex = mtx;
105 1.1.2.1 ad TAILQ_INIT(&sq->sq_queue);
106 1.1.2.1 ad }
107 1.1.2.1 ad
108 1.1.2.1 ad /*
109 1.1.2.1 ad * sleepq_remove:
110 1.1.2.1 ad *
111 1.1.2.1 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
112 1.1.2.1 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
113 1.1.2.1 ad * to bring the LWP into memory.
114 1.1.2.1 ad */
115 1.1.2.1 ad int
116 1.1.2.1 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
117 1.1.2.1 ad {
118 1.1.2.4 ad struct cpu_info *ci;
119 1.1.2.1 ad
120 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
121 1.1.2.1 ad KASSERT(sq->sq_waiters > 0);
122 1.1.2.1 ad
123 1.1.2.1 ad sq->sq_waiters--;
124 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
125 1.1.2.1 ad
126 1.1.2.1 ad #ifdef DIAGNOSTIC
127 1.1.2.1 ad if (sq->sq_waiters == 0)
128 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
129 1.1.2.1 ad else
130 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
131 1.1.2.1 ad #endif
132 1.1.2.1 ad
133 1.1.2.5 ad l->l_syncobj = &sched_syncobj;
134 1.1.2.4 ad l->l_wchan = NULL;
135 1.1.2.5 ad l->l_sleepq = NULL;
136 1.1.2.4 ad l->l_flag &= ~L_SINTR;
137 1.1.2.4 ad
138 1.1.2.7 ad /*
139 1.1.2.7 ad * If not sleeping, the LWP must have been suspended. Let whoever
140 1.1.2.7 ad * holds it stopped set it running again.
141 1.1.2.7 ad */
142 1.1.2.7 ad if (l->l_stat != LSSLEEP) {
143 1.1.2.7 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
144 1.1.2.7 ad lwp_setlock(l, &sched_mutex);
145 1.1.2.7 ad return 0;
146 1.1.2.7 ad }
147 1.1.2.7 ad
148 1.1.2.5 ad sched_lock(1);
149 1.1.2.4 ad lwp_setlock(l, &sched_mutex);
150 1.1.2.4 ad
151 1.1.2.4 ad /*
152 1.1.2.4 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
153 1.1.2.4 ad * about to call mi_switch(), in which case it will yield.
154 1.1.2.7 ad *
155 1.1.2.7 ad * XXXSMP Will need to change for preemption.
156 1.1.2.4 ad */
157 1.1.2.7 ad ci = l->l_cpu;
158 1.1.2.7 ad #ifdef MULTIPROCESSOR
159 1.1.2.7 ad if (ci->ci_curlwp == l) {
160 1.1.2.7 ad #else
161 1.1.2.7 ad if (l == curlwp) {
162 1.1.2.7 ad #endif
163 1.1.2.1 ad l->l_stat = LSONPROC;
164 1.1.2.4 ad l->l_slptime = 0;
165 1.1.2.5 ad sched_unlock(1);
166 1.1.2.1 ad return 0;
167 1.1.2.1 ad }
168 1.1.2.1 ad
169 1.1.2.4 ad /*
170 1.1.2.4 ad * Set it running. We'll try to get the last CPU that ran
171 1.1.2.4 ad * this LWP to pick it up again.
172 1.1.2.4 ad */
173 1.1.2.1 ad if (l->l_slptime > 1)
174 1.1.2.1 ad updatepri(l);
175 1.1.2.7 ad l->l_stat = LSRUN;
176 1.1.2.4 ad l->l_slptime = 0;
177 1.1.2.1 ad if ((l->l_flag & L_INMEM) != 0) {
178 1.1.2.1 ad setrunqueue(l);
179 1.1.2.5 ad if (l->l_priority < ci->ci_schedstate.spc_curpriority)
180 1.1.2.5 ad cpu_need_resched(ci);
181 1.1.2.5 ad sched_unlock(1);
182 1.1.2.1 ad return 0;
183 1.1.2.1 ad }
184 1.1.2.1 ad
185 1.1.2.5 ad sched_unlock(1);
186 1.1.2.1 ad return 1;
187 1.1.2.1 ad }
188 1.1.2.1 ad
189 1.1.2.1 ad /*
190 1.1.2.5 ad * sleepq_insert:
191 1.1.2.5 ad *
192 1.1.2.5 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
193 1.1.2.5 ad */
194 1.1.2.5 ad static inline void
195 1.1.2.5 ad sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
196 1.1.2.5 ad {
197 1.1.2.7 ad struct lwp *l2;
198 1.1.2.5 ad
199 1.1.2.5 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
200 1.1.2.5 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
201 1.1.2.7 ad if (l2->l_priority > pri) {
202 1.1.2.7 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
203 1.1.2.7 ad return;
204 1.1.2.7 ad }
205 1.1.2.5 ad }
206 1.1.2.5 ad }
207 1.1.2.5 ad
208 1.1.2.7 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
209 1.1.2.5 ad }
210 1.1.2.5 ad
211 1.1.2.5 ad /*
212 1.1.2.7 ad * sleepq_block:
213 1.1.2.7 ad *
214 1.1.2.7 ad * Enter an LWP into the sleep queue and prepare for sleep. The sleep
215 1.1.2.7 ad * queue must already be locked, and any interlock (such as the kernel
216 1.1.2.7 ad * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
217 1.1.2.1 ad *
218 1.1.2.7 ad * sleepq_block() may return early under exceptional conditions, for
219 1.1.2.7 ad * example if the LWP's containing process is exiting.
220 1.1.2.1 ad */
221 1.1.2.1 ad void
222 1.1.2.7 ad sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
223 1.1.2.5 ad int catch, syncobj_t *sobj)
224 1.1.2.1 ad {
225 1.1.2.1 ad struct lwp *l = curlwp;
226 1.1.2.1 ad
227 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
228 1.1.2.5 ad KASSERT(l->l_stat == LSONPROC);
229 1.1.2.5 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
230 1.1.2.1 ad
231 1.1.2.1 ad #ifdef KTRACE
232 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
233 1.1.2.1 ad ktrcsw(l, 1, 0);
234 1.1.2.1 ad #endif
235 1.1.2.1 ad
236 1.1.2.5 ad l->l_syncobj = sobj;
237 1.1.2.1 ad l->l_wchan = wchan;
238 1.1.2.5 ad l->l_sleepq = sq;
239 1.1.2.1 ad l->l_wmesg = wmesg;
240 1.1.2.1 ad l->l_slptime = 0;
241 1.1.2.5 ad l->l_priority = pri;
242 1.1.2.5 ad l->l_stat = LSSLEEP;
243 1.1.2.7 ad l->l_sleeperr = 0;
244 1.1.2.5 ad l->l_nvcsw++;
245 1.1.2.5 ad
246 1.1.2.7 ad sq->sq_waiters++;
247 1.1.2.5 ad sleepq_insert(sq, l, pri, sobj);
248 1.1.2.1 ad
249 1.1.2.7 ad /*
250 1.1.2.7 ad * If sleeping interruptably, check for pending signals, exits or
251 1.1.2.7 ad * core dump events.
252 1.1.2.7 ad */
253 1.1.2.7 ad if (catch) {
254 1.1.2.7 ad l->l_flag |= L_SINTR;
255 1.1.2.7 ad if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
256 1.1.2.7 ad l->l_sleeperr = EPASSTHROUGH;
257 1.1.2.7 ad /* lwp_unsleep() will release the lock */
258 1.1.2.7 ad lwp_unsleep(l);
259 1.1.2.7 ad return;
260 1.1.2.7 ad }
261 1.1.2.7 ad if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
262 1.1.2.7 ad l->l_flag &= ~L_CANCELLED;
263 1.1.2.7 ad l->l_sleeperr = EINTR;
264 1.1.2.7 ad /* lwp_unsleep() will release the lock */
265 1.1.2.7 ad lwp_unsleep(l);
266 1.1.2.7 ad return;
267 1.1.2.7 ad }
268 1.1.2.7 ad }
269 1.1.2.7 ad
270 1.1.2.1 ad if (timo)
271 1.1.2.1 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
272 1.1.2.1 ad
273 1.1.2.11 ad mi_switch(l, NULL);
274 1.1.2.11 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
275 1.1.2.7 ad
276 1.1.2.1 ad /*
277 1.1.2.7 ad * When we reach this point, the LWP and sleep queue are unlocked.
278 1.1.2.1 ad */
279 1.1.2.7 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
280 1.1.2.1 ad }
281 1.1.2.1 ad
282 1.1.2.1 ad /*
283 1.1.2.7 ad * sleepq_unblock:
284 1.1.2.1 ad *
285 1.1.2.7 ad * After any intermediate step such as updating statistics, re-acquire
286 1.1.2.7 ad * the kernel lock and record the switch for ktrace. Note that we are
287 1.1.2.7 ad * no longer on the sleep queue at this point.
288 1.1.2.7 ad *
289 1.1.2.7 ad * This is split out from sleepq_block() in expectation that at some
290 1.1.2.7 ad * point in the future, LWPs may awake on different kernel stacks than
291 1.1.2.7 ad * those they went asleep on.
292 1.1.2.1 ad */
293 1.1.2.1 ad int
294 1.1.2.7 ad sleepq_unblock(int timo, int catch)
295 1.1.2.1 ad {
296 1.1.2.7 ad int error, expired, sig;
297 1.1.2.1 ad struct proc *p;
298 1.1.2.7 ad struct lwp *l;
299 1.1.2.1 ad
300 1.1.2.7 ad l = curlwp;
301 1.1.2.7 ad error = l->l_sleeperr;
302 1.1.2.1 ad
303 1.1.2.1 ad if (timo) {
304 1.1.2.1 ad /*
305 1.1.2.1 ad * Even if the callout appears to have fired, we need to
306 1.1.2.1 ad * stop it in order to synchronise with other CPUs.
307 1.1.2.1 ad */
308 1.1.2.1 ad expired = callout_expired(&l->l_tsleep_ch);
309 1.1.2.1 ad callout_stop(&l->l_tsleep_ch);
310 1.1.2.4 ad if (expired && error == 0)
311 1.1.2.5 ad error = EWOULDBLOCK;
312 1.1.2.1 ad }
313 1.1.2.1 ad
314 1.1.2.7 ad if (catch && (error == 0 || error == EPASSTHROUGH)) {
315 1.1.2.8 ad l->l_sleeperr = 0;
316 1.1.2.7 ad p = l->l_proc;
317 1.1.2.1 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
318 1.1.2.1 ad error = EINTR;
319 1.1.2.1 ad else if ((l->l_flag & L_PENDSIG) != 0) {
320 1.1.2.12 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
321 1.1.2.1 ad mutex_enter(&p->p_smutex);
322 1.1.2.1 ad if ((sig = issignal(l)) != 0)
323 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
324 1.1.2.1 ad mutex_exit(&p->p_smutex);
325 1.1.2.12 ad KERNEL_UNLOCK_LAST(l);
326 1.1.2.1 ad }
327 1.1.2.7 ad if (error == EPASSTHROUGH) {
328 1.1.2.7 ad /* Raced */
329 1.1.2.7 ad error = EINTR;
330 1.1.2.7 ad }
331 1.1.2.1 ad }
332 1.1.2.1 ad
333 1.1.2.1 ad #ifdef KTRACE
334 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
335 1.1.2.1 ad ktrcsw(l, 0, 0);
336 1.1.2.1 ad #endif
337 1.1.2.7 ad
338 1.1.2.12 ad KERNEL_LOCK(l->l_biglocks, l);
339 1.1.2.7 ad return error;
340 1.1.2.1 ad }
341 1.1.2.1 ad
342 1.1.2.1 ad /*
343 1.1.2.6 ad * sleepq_wake:
344 1.1.2.1 ad *
345 1.1.2.6 ad * Wake zero or more LWPs blocked on a single wait channel.
346 1.1.2.1 ad */
347 1.1.2.1 ad void
348 1.1.2.6 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
349 1.1.2.1 ad {
350 1.1.2.1 ad struct lwp *l, *next;
351 1.1.2.1 ad int swapin = 0;
352 1.1.2.1 ad
353 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
354 1.1.2.1 ad
355 1.1.2.1 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
356 1.1.2.5 ad KASSERT(l->l_sleepq == sq);
357 1.1.2.5 ad next = TAILQ_NEXT(l, l_sleepchain);
358 1.1.2.1 ad if (l->l_wchan != wchan)
359 1.1.2.1 ad continue;
360 1.1.2.1 ad swapin |= sleepq_remove(sq, l);
361 1.1.2.1 ad if (--expected == 0)
362 1.1.2.1 ad break;
363 1.1.2.1 ad }
364 1.1.2.1 ad
365 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
366 1.1.2.10 ad sleepq_unlock(sq);
367 1.1.2.1 ad
368 1.1.2.1 ad /*
369 1.1.2.1 ad * If there are newly awakend threads that need to be swapped in,
370 1.1.2.1 ad * then kick the swapper into action.
371 1.1.2.1 ad */
372 1.1.2.1 ad if (swapin)
373 1.1.2.1 ad wakeup(&proc0);
374 1.1.2.1 ad }
375 1.1.2.1 ad
376 1.1.2.1 ad /*
377 1.1.2.1 ad * sleepq_unsleep:
378 1.1.2.1 ad *
379 1.1.2.1 ad * Remove an LWP from its sleep queue and set it runnable again.
380 1.1.2.1 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
381 1.1.2.1 ad * always release it.
382 1.1.2.1 ad */
383 1.1.2.1 ad void
384 1.1.2.1 ad sleepq_unsleep(struct lwp *l)
385 1.1.2.1 ad {
386 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
387 1.1.2.1 ad int swapin;
388 1.1.2.1 ad
389 1.1.2.5 ad LOCK_ASSERT(lwp_locked(l, NULL));
390 1.1.2.1 ad KASSERT(l->l_wchan != NULL);
391 1.1.2.1 ad KASSERT(l->l_mutex == sq->sq_mutex);
392 1.1.2.1 ad
393 1.1.2.1 ad swapin = sleepq_remove(sq, l);
394 1.1.2.10 ad sleepq_unlock(sq);
395 1.1.2.1 ad
396 1.1.2.1 ad if (swapin)
397 1.1.2.1 ad wakeup(&proc0);
398 1.1.2.1 ad }
399 1.1.2.1 ad
400 1.1.2.1 ad /*
401 1.1.2.1 ad * sleepq_timeout:
402 1.1.2.1 ad *
403 1.1.2.1 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
404 1.1.2.1 ad * sleep queue.
405 1.1.2.1 ad */
406 1.1.2.1 ad void
407 1.1.2.1 ad sleepq_timeout(void *arg)
408 1.1.2.1 ad {
409 1.1.2.1 ad struct lwp *l = arg;
410 1.1.2.1 ad
411 1.1.2.1 ad /*
412 1.1.2.1 ad * Lock the LWP. Assuming it's still on the sleep queue, its
413 1.1.2.1 ad * current mutex will also be the sleep queue mutex.
414 1.1.2.1 ad */
415 1.1.2.1 ad lwp_lock(l);
416 1.1.2.1 ad
417 1.1.2.1 ad if (l->l_wchan == NULL) {
418 1.1.2.1 ad /* Somebody beat us to it. */
419 1.1.2.1 ad lwp_unlock(l);
420 1.1.2.1 ad return;
421 1.1.2.1 ad }
422 1.1.2.1 ad
423 1.1.2.9 ad lwp_unsleep(l);
424 1.1.2.1 ad }
425 1.1.2.1 ad
426 1.1.2.1 ad /*
427 1.1.2.1 ad * sleepq_sigtoerror:
428 1.1.2.1 ad *
429 1.1.2.1 ad * Given a signal number, interpret and return an error code.
430 1.1.2.1 ad */
431 1.1.2.1 ad int
432 1.1.2.1 ad sleepq_sigtoerror(struct lwp *l, int sig)
433 1.1.2.1 ad {
434 1.1.2.3 ad struct proc *p = l->l_proc;
435 1.1.2.1 ad int error;
436 1.1.2.1 ad
437 1.1.2.3 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
438 1.1.2.3 ad
439 1.1.2.1 ad /*
440 1.1.2.1 ad * If this sleep was canceled, don't let the syscall restart.
441 1.1.2.1 ad */
442 1.1.2.1 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
443 1.1.2.1 ad error = EINTR;
444 1.1.2.1 ad else
445 1.1.2.1 ad error = ERESTART;
446 1.1.2.1 ad
447 1.1.2.1 ad return error;
448 1.1.2.1 ad }
449 1.1.2.1 ad
450 1.1.2.1 ad /*
451 1.1.2.1 ad * sleepq_abort:
452 1.1.2.1 ad *
453 1.1.2.1 ad * After a panic or during autoconfiguration, lower the interrupt
454 1.1.2.1 ad * priority level to give pending interrupts a chance to run, and
455 1.1.2.1 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
456 1.1.2.1 ad * always returns zero.
457 1.1.2.1 ad */
458 1.1.2.1 ad int
459 1.1.2.1 ad sleepq_abort(kmutex_t *mtx, int unlock)
460 1.1.2.1 ad {
461 1.1.2.1 ad extern int safepri;
462 1.1.2.1 ad int s;
463 1.1.2.1 ad
464 1.1.2.1 ad s = splhigh();
465 1.1.2.1 ad splx(safepri);
466 1.1.2.1 ad splx(s);
467 1.1.2.1 ad if (mtx != NULL && unlock != 0)
468 1.1.2.1 ad mutex_exit(mtx);
469 1.1.2.1 ad
470 1.1.2.1 ad return 0;
471 1.1.2.1 ad }
472 1.1.2.5 ad
473 1.1.2.5 ad /*
474 1.1.2.5 ad * sleepq_changepri:
475 1.1.2.5 ad *
476 1.1.2.5 ad * Adjust the priority of an LWP residing on a sleepq.
477 1.1.2.5 ad */
478 1.1.2.5 ad void
479 1.1.2.5 ad sleepq_changepri(struct lwp *l, int pri)
480 1.1.2.5 ad {
481 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
482 1.1.2.5 ad
483 1.1.2.5 ad KASSERT(lwp_locked(l, sq->sq_mutex));
484 1.1.2.5 ad
485 1.1.2.13 ad l->l_priority = pri;
486 1.1.2.13 ad
487 1.1.2.7 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0)
488 1.1.2.7 ad return;
489 1.1.2.7 ad
490 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
491 1.1.2.5 ad sleepq_insert(sq, l, pri, l->l_syncobj);
492 1.1.2.5 ad }
493