kern_sleepq.c revision 1.1.2.14 1 1.1.2.14 ad /* $NetBSD: kern_sleepq.c,v 1.1.2.14 2007/02/05 17:58:13 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.13 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.1.2.1 ad * interfaces.
42 1.1.2.1 ad */
43 1.1.2.1 ad
44 1.1.2.1 ad #include <sys/cdefs.h>
45 1.1.2.14 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.14 2007/02/05 17:58:13 ad Exp $");
46 1.1.2.5 ad
47 1.1.2.5 ad #include "opt_multiprocessor.h"
48 1.1.2.5 ad #include "opt_lockdebug.h"
49 1.1.2.5 ad #include "opt_ktrace.h"
50 1.1.2.1 ad
51 1.1.2.1 ad #include <sys/param.h>
52 1.1.2.1 ad #include <sys/lock.h>
53 1.1.2.1 ad #include <sys/kernel.h>
54 1.1.2.1 ad #include <sys/pool.h>
55 1.1.2.1 ad #include <sys/proc.h>
56 1.1.2.1 ad #include <sys/resourcevar.h>
57 1.1.2.1 ad #include <sys/sched.h>
58 1.1.2.1 ad #include <sys/systm.h>
59 1.1.2.1 ad #include <sys/sleepq.h>
60 1.1.2.1 ad
61 1.1.2.5 ad #ifdef KTRACE
62 1.1.2.5 ad #include <sys/ktrace.h>
63 1.1.2.5 ad #endif
64 1.1.2.5 ad
65 1.1.2.1 ad int sleepq_sigtoerror(struct lwp *, int);
66 1.1.2.1 ad void updatepri(struct lwp *);
67 1.1.2.1 ad void sa_awaken(struct lwp *);
68 1.1.2.1 ad
69 1.1.2.5 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
70 1.1.2.5 ad sleeptab_t sleeptab;
71 1.1.2.1 ad
72 1.1.2.1 ad /*
73 1.1.2.1 ad * sleeptab_init:
74 1.1.2.1 ad *
75 1.1.2.5 ad * Initialize a sleep table.
76 1.1.2.1 ad */
77 1.1.2.1 ad void
78 1.1.2.5 ad sleeptab_init(sleeptab_t *st)
79 1.1.2.1 ad {
80 1.1.2.1 ad sleepq_t *sq;
81 1.1.2.1 ad int i;
82 1.1.2.1 ad
83 1.1.2.1 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
85 1.1.2.14 ad sq = &st->st_queues[i].st_queue;
86 1.1.2.14 ad mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
87 1.1.2.14 ad sleepq_init(sq, &st->st_queues[i].st_mutex);
88 1.1.2.1 ad #else
89 1.1.2.14 ad sq = &st->st_queues[i];
90 1.1.2.5 ad sleepq_init(sq, &sched_mutex);
91 1.1.2.1 ad #endif
92 1.1.2.1 ad }
93 1.1.2.1 ad }
94 1.1.2.1 ad
95 1.1.2.1 ad /*
96 1.1.2.1 ad * sleepq_init:
97 1.1.2.1 ad *
98 1.1.2.1 ad * Prepare a sleep queue for use.
99 1.1.2.1 ad */
100 1.1.2.1 ad void
101 1.1.2.1 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
102 1.1.2.1 ad {
103 1.1.2.1 ad
104 1.1.2.1 ad sq->sq_waiters = 0;
105 1.1.2.1 ad sq->sq_mutex = mtx;
106 1.1.2.1 ad TAILQ_INIT(&sq->sq_queue);
107 1.1.2.1 ad }
108 1.1.2.1 ad
109 1.1.2.1 ad /*
110 1.1.2.1 ad * sleepq_remove:
111 1.1.2.1 ad *
112 1.1.2.1 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
113 1.1.2.1 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
114 1.1.2.1 ad * to bring the LWP into memory.
115 1.1.2.1 ad */
116 1.1.2.1 ad int
117 1.1.2.1 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
118 1.1.2.1 ad {
119 1.1.2.4 ad struct cpu_info *ci;
120 1.1.2.1 ad
121 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
122 1.1.2.1 ad KASSERT(sq->sq_waiters > 0);
123 1.1.2.1 ad
124 1.1.2.1 ad sq->sq_waiters--;
125 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
126 1.1.2.1 ad
127 1.1.2.1 ad #ifdef DIAGNOSTIC
128 1.1.2.1 ad if (sq->sq_waiters == 0)
129 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
130 1.1.2.1 ad else
131 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
132 1.1.2.1 ad #endif
133 1.1.2.1 ad
134 1.1.2.5 ad l->l_syncobj = &sched_syncobj;
135 1.1.2.4 ad l->l_wchan = NULL;
136 1.1.2.5 ad l->l_sleepq = NULL;
137 1.1.2.4 ad l->l_flag &= ~L_SINTR;
138 1.1.2.4 ad
139 1.1.2.7 ad /*
140 1.1.2.7 ad * If not sleeping, the LWP must have been suspended. Let whoever
141 1.1.2.7 ad * holds it stopped set it running again.
142 1.1.2.7 ad */
143 1.1.2.7 ad if (l->l_stat != LSSLEEP) {
144 1.1.2.7 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
145 1.1.2.7 ad lwp_setlock(l, &sched_mutex);
146 1.1.2.7 ad return 0;
147 1.1.2.7 ad }
148 1.1.2.7 ad
149 1.1.2.5 ad sched_lock(1);
150 1.1.2.4 ad lwp_setlock(l, &sched_mutex);
151 1.1.2.4 ad
152 1.1.2.4 ad /*
153 1.1.2.4 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 1.1.2.4 ad * about to call mi_switch(), in which case it will yield.
155 1.1.2.7 ad *
156 1.1.2.7 ad * XXXSMP Will need to change for preemption.
157 1.1.2.4 ad */
158 1.1.2.7 ad ci = l->l_cpu;
159 1.1.2.7 ad #ifdef MULTIPROCESSOR
160 1.1.2.7 ad if (ci->ci_curlwp == l) {
161 1.1.2.7 ad #else
162 1.1.2.7 ad if (l == curlwp) {
163 1.1.2.7 ad #endif
164 1.1.2.1 ad l->l_stat = LSONPROC;
165 1.1.2.4 ad l->l_slptime = 0;
166 1.1.2.5 ad sched_unlock(1);
167 1.1.2.1 ad return 0;
168 1.1.2.1 ad }
169 1.1.2.1 ad
170 1.1.2.4 ad /*
171 1.1.2.4 ad * Set it running. We'll try to get the last CPU that ran
172 1.1.2.4 ad * this LWP to pick it up again.
173 1.1.2.4 ad */
174 1.1.2.1 ad if (l->l_slptime > 1)
175 1.1.2.1 ad updatepri(l);
176 1.1.2.7 ad l->l_stat = LSRUN;
177 1.1.2.4 ad l->l_slptime = 0;
178 1.1.2.1 ad if ((l->l_flag & L_INMEM) != 0) {
179 1.1.2.1 ad setrunqueue(l);
180 1.1.2.5 ad if (l->l_priority < ci->ci_schedstate.spc_curpriority)
181 1.1.2.5 ad cpu_need_resched(ci);
182 1.1.2.5 ad sched_unlock(1);
183 1.1.2.1 ad return 0;
184 1.1.2.1 ad }
185 1.1.2.1 ad
186 1.1.2.5 ad sched_unlock(1);
187 1.1.2.1 ad return 1;
188 1.1.2.1 ad }
189 1.1.2.1 ad
190 1.1.2.1 ad /*
191 1.1.2.5 ad * sleepq_insert:
192 1.1.2.5 ad *
193 1.1.2.5 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
194 1.1.2.5 ad */
195 1.1.2.5 ad static inline void
196 1.1.2.5 ad sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
197 1.1.2.5 ad {
198 1.1.2.7 ad struct lwp *l2;
199 1.1.2.5 ad
200 1.1.2.5 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
201 1.1.2.5 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
202 1.1.2.7 ad if (l2->l_priority > pri) {
203 1.1.2.7 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
204 1.1.2.7 ad return;
205 1.1.2.7 ad }
206 1.1.2.5 ad }
207 1.1.2.5 ad }
208 1.1.2.5 ad
209 1.1.2.7 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
210 1.1.2.5 ad }
211 1.1.2.5 ad
212 1.1.2.5 ad /*
213 1.1.2.7 ad * sleepq_block:
214 1.1.2.7 ad *
215 1.1.2.7 ad * Enter an LWP into the sleep queue and prepare for sleep. The sleep
216 1.1.2.7 ad * queue must already be locked, and any interlock (such as the kernel
217 1.1.2.7 ad * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
218 1.1.2.1 ad *
219 1.1.2.7 ad * sleepq_block() may return early under exceptional conditions, for
220 1.1.2.7 ad * example if the LWP's containing process is exiting.
221 1.1.2.1 ad */
222 1.1.2.1 ad void
223 1.1.2.7 ad sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
224 1.1.2.5 ad int catch, syncobj_t *sobj)
225 1.1.2.1 ad {
226 1.1.2.1 ad struct lwp *l = curlwp;
227 1.1.2.1 ad
228 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
229 1.1.2.5 ad KASSERT(l->l_stat == LSONPROC);
230 1.1.2.5 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
231 1.1.2.1 ad
232 1.1.2.1 ad #ifdef KTRACE
233 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
234 1.1.2.1 ad ktrcsw(l, 1, 0);
235 1.1.2.1 ad #endif
236 1.1.2.1 ad
237 1.1.2.5 ad l->l_syncobj = sobj;
238 1.1.2.1 ad l->l_wchan = wchan;
239 1.1.2.5 ad l->l_sleepq = sq;
240 1.1.2.1 ad l->l_wmesg = wmesg;
241 1.1.2.1 ad l->l_slptime = 0;
242 1.1.2.5 ad l->l_priority = pri;
243 1.1.2.5 ad l->l_stat = LSSLEEP;
244 1.1.2.7 ad l->l_sleeperr = 0;
245 1.1.2.5 ad l->l_nvcsw++;
246 1.1.2.5 ad
247 1.1.2.7 ad sq->sq_waiters++;
248 1.1.2.5 ad sleepq_insert(sq, l, pri, sobj);
249 1.1.2.1 ad
250 1.1.2.7 ad /*
251 1.1.2.7 ad * If sleeping interruptably, check for pending signals, exits or
252 1.1.2.7 ad * core dump events.
253 1.1.2.7 ad */
254 1.1.2.7 ad if (catch) {
255 1.1.2.7 ad l->l_flag |= L_SINTR;
256 1.1.2.7 ad if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
257 1.1.2.7 ad l->l_sleeperr = EPASSTHROUGH;
258 1.1.2.7 ad /* lwp_unsleep() will release the lock */
259 1.1.2.7 ad lwp_unsleep(l);
260 1.1.2.7 ad return;
261 1.1.2.7 ad }
262 1.1.2.7 ad if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
263 1.1.2.7 ad l->l_flag &= ~L_CANCELLED;
264 1.1.2.7 ad l->l_sleeperr = EINTR;
265 1.1.2.7 ad /* lwp_unsleep() will release the lock */
266 1.1.2.7 ad lwp_unsleep(l);
267 1.1.2.7 ad return;
268 1.1.2.7 ad }
269 1.1.2.7 ad }
270 1.1.2.7 ad
271 1.1.2.1 ad if (timo)
272 1.1.2.1 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
273 1.1.2.1 ad
274 1.1.2.11 ad mi_switch(l, NULL);
275 1.1.2.11 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
276 1.1.2.7 ad
277 1.1.2.1 ad /*
278 1.1.2.7 ad * When we reach this point, the LWP and sleep queue are unlocked.
279 1.1.2.1 ad */
280 1.1.2.7 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
281 1.1.2.1 ad }
282 1.1.2.1 ad
283 1.1.2.1 ad /*
284 1.1.2.7 ad * sleepq_unblock:
285 1.1.2.1 ad *
286 1.1.2.7 ad * After any intermediate step such as updating statistics, re-acquire
287 1.1.2.7 ad * the kernel lock and record the switch for ktrace. Note that we are
288 1.1.2.7 ad * no longer on the sleep queue at this point.
289 1.1.2.7 ad *
290 1.1.2.7 ad * This is split out from sleepq_block() in expectation that at some
291 1.1.2.7 ad * point in the future, LWPs may awake on different kernel stacks than
292 1.1.2.7 ad * those they went asleep on.
293 1.1.2.1 ad */
294 1.1.2.1 ad int
295 1.1.2.7 ad sleepq_unblock(int timo, int catch)
296 1.1.2.1 ad {
297 1.1.2.7 ad int error, expired, sig;
298 1.1.2.1 ad struct proc *p;
299 1.1.2.7 ad struct lwp *l;
300 1.1.2.1 ad
301 1.1.2.7 ad l = curlwp;
302 1.1.2.7 ad error = l->l_sleeperr;
303 1.1.2.1 ad
304 1.1.2.1 ad if (timo) {
305 1.1.2.1 ad /*
306 1.1.2.1 ad * Even if the callout appears to have fired, we need to
307 1.1.2.1 ad * stop it in order to synchronise with other CPUs.
308 1.1.2.1 ad */
309 1.1.2.1 ad expired = callout_expired(&l->l_tsleep_ch);
310 1.1.2.1 ad callout_stop(&l->l_tsleep_ch);
311 1.1.2.4 ad if (expired && error == 0)
312 1.1.2.5 ad error = EWOULDBLOCK;
313 1.1.2.1 ad }
314 1.1.2.1 ad
315 1.1.2.7 ad if (catch && (error == 0 || error == EPASSTHROUGH)) {
316 1.1.2.8 ad l->l_sleeperr = 0;
317 1.1.2.7 ad p = l->l_proc;
318 1.1.2.1 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
319 1.1.2.1 ad error = EINTR;
320 1.1.2.1 ad else if ((l->l_flag & L_PENDSIG) != 0) {
321 1.1.2.12 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
322 1.1.2.1 ad mutex_enter(&p->p_smutex);
323 1.1.2.1 ad if ((sig = issignal(l)) != 0)
324 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
325 1.1.2.1 ad mutex_exit(&p->p_smutex);
326 1.1.2.12 ad KERNEL_UNLOCK_LAST(l);
327 1.1.2.1 ad }
328 1.1.2.7 ad if (error == EPASSTHROUGH) {
329 1.1.2.7 ad /* Raced */
330 1.1.2.7 ad error = EINTR;
331 1.1.2.7 ad }
332 1.1.2.1 ad }
333 1.1.2.1 ad
334 1.1.2.1 ad #ifdef KTRACE
335 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
336 1.1.2.1 ad ktrcsw(l, 0, 0);
337 1.1.2.1 ad #endif
338 1.1.2.7 ad
339 1.1.2.12 ad KERNEL_LOCK(l->l_biglocks, l);
340 1.1.2.7 ad return error;
341 1.1.2.1 ad }
342 1.1.2.1 ad
343 1.1.2.1 ad /*
344 1.1.2.6 ad * sleepq_wake:
345 1.1.2.1 ad *
346 1.1.2.6 ad * Wake zero or more LWPs blocked on a single wait channel.
347 1.1.2.1 ad */
348 1.1.2.1 ad void
349 1.1.2.6 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
350 1.1.2.1 ad {
351 1.1.2.1 ad struct lwp *l, *next;
352 1.1.2.1 ad int swapin = 0;
353 1.1.2.1 ad
354 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
355 1.1.2.1 ad
356 1.1.2.1 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
357 1.1.2.5 ad KASSERT(l->l_sleepq == sq);
358 1.1.2.5 ad next = TAILQ_NEXT(l, l_sleepchain);
359 1.1.2.1 ad if (l->l_wchan != wchan)
360 1.1.2.1 ad continue;
361 1.1.2.1 ad swapin |= sleepq_remove(sq, l);
362 1.1.2.1 ad if (--expected == 0)
363 1.1.2.1 ad break;
364 1.1.2.1 ad }
365 1.1.2.1 ad
366 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
367 1.1.2.10 ad sleepq_unlock(sq);
368 1.1.2.1 ad
369 1.1.2.1 ad /*
370 1.1.2.1 ad * If there are newly awakend threads that need to be swapped in,
371 1.1.2.1 ad * then kick the swapper into action.
372 1.1.2.1 ad */
373 1.1.2.1 ad if (swapin)
374 1.1.2.1 ad wakeup(&proc0);
375 1.1.2.1 ad }
376 1.1.2.1 ad
377 1.1.2.1 ad /*
378 1.1.2.1 ad * sleepq_unsleep:
379 1.1.2.1 ad *
380 1.1.2.1 ad * Remove an LWP from its sleep queue and set it runnable again.
381 1.1.2.1 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
382 1.1.2.1 ad * always release it.
383 1.1.2.1 ad */
384 1.1.2.1 ad void
385 1.1.2.1 ad sleepq_unsleep(struct lwp *l)
386 1.1.2.1 ad {
387 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
388 1.1.2.1 ad int swapin;
389 1.1.2.1 ad
390 1.1.2.5 ad LOCK_ASSERT(lwp_locked(l, NULL));
391 1.1.2.1 ad KASSERT(l->l_wchan != NULL);
392 1.1.2.1 ad KASSERT(l->l_mutex == sq->sq_mutex);
393 1.1.2.1 ad
394 1.1.2.1 ad swapin = sleepq_remove(sq, l);
395 1.1.2.10 ad sleepq_unlock(sq);
396 1.1.2.1 ad
397 1.1.2.1 ad if (swapin)
398 1.1.2.1 ad wakeup(&proc0);
399 1.1.2.1 ad }
400 1.1.2.1 ad
401 1.1.2.1 ad /*
402 1.1.2.1 ad * sleepq_timeout:
403 1.1.2.1 ad *
404 1.1.2.1 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
405 1.1.2.1 ad * sleep queue.
406 1.1.2.1 ad */
407 1.1.2.1 ad void
408 1.1.2.1 ad sleepq_timeout(void *arg)
409 1.1.2.1 ad {
410 1.1.2.1 ad struct lwp *l = arg;
411 1.1.2.1 ad
412 1.1.2.1 ad /*
413 1.1.2.1 ad * Lock the LWP. Assuming it's still on the sleep queue, its
414 1.1.2.1 ad * current mutex will also be the sleep queue mutex.
415 1.1.2.1 ad */
416 1.1.2.1 ad lwp_lock(l);
417 1.1.2.1 ad
418 1.1.2.1 ad if (l->l_wchan == NULL) {
419 1.1.2.1 ad /* Somebody beat us to it. */
420 1.1.2.1 ad lwp_unlock(l);
421 1.1.2.1 ad return;
422 1.1.2.1 ad }
423 1.1.2.1 ad
424 1.1.2.9 ad lwp_unsleep(l);
425 1.1.2.1 ad }
426 1.1.2.1 ad
427 1.1.2.1 ad /*
428 1.1.2.1 ad * sleepq_sigtoerror:
429 1.1.2.1 ad *
430 1.1.2.1 ad * Given a signal number, interpret and return an error code.
431 1.1.2.1 ad */
432 1.1.2.1 ad int
433 1.1.2.1 ad sleepq_sigtoerror(struct lwp *l, int sig)
434 1.1.2.1 ad {
435 1.1.2.3 ad struct proc *p = l->l_proc;
436 1.1.2.1 ad int error;
437 1.1.2.1 ad
438 1.1.2.3 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
439 1.1.2.3 ad
440 1.1.2.1 ad /*
441 1.1.2.1 ad * If this sleep was canceled, don't let the syscall restart.
442 1.1.2.1 ad */
443 1.1.2.1 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
444 1.1.2.1 ad error = EINTR;
445 1.1.2.1 ad else
446 1.1.2.1 ad error = ERESTART;
447 1.1.2.1 ad
448 1.1.2.1 ad return error;
449 1.1.2.1 ad }
450 1.1.2.1 ad
451 1.1.2.1 ad /*
452 1.1.2.1 ad * sleepq_abort:
453 1.1.2.1 ad *
454 1.1.2.1 ad * After a panic or during autoconfiguration, lower the interrupt
455 1.1.2.1 ad * priority level to give pending interrupts a chance to run, and
456 1.1.2.1 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
457 1.1.2.1 ad * always returns zero.
458 1.1.2.1 ad */
459 1.1.2.1 ad int
460 1.1.2.1 ad sleepq_abort(kmutex_t *mtx, int unlock)
461 1.1.2.1 ad {
462 1.1.2.1 ad extern int safepri;
463 1.1.2.1 ad int s;
464 1.1.2.1 ad
465 1.1.2.1 ad s = splhigh();
466 1.1.2.1 ad splx(safepri);
467 1.1.2.1 ad splx(s);
468 1.1.2.1 ad if (mtx != NULL && unlock != 0)
469 1.1.2.1 ad mutex_exit(mtx);
470 1.1.2.1 ad
471 1.1.2.1 ad return 0;
472 1.1.2.1 ad }
473 1.1.2.5 ad
474 1.1.2.5 ad /*
475 1.1.2.5 ad * sleepq_changepri:
476 1.1.2.5 ad *
477 1.1.2.5 ad * Adjust the priority of an LWP residing on a sleepq.
478 1.1.2.5 ad */
479 1.1.2.5 ad void
480 1.1.2.5 ad sleepq_changepri(struct lwp *l, int pri)
481 1.1.2.5 ad {
482 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
483 1.1.2.5 ad
484 1.1.2.5 ad KASSERT(lwp_locked(l, sq->sq_mutex));
485 1.1.2.5 ad
486 1.1.2.13 ad l->l_priority = pri;
487 1.1.2.13 ad
488 1.1.2.7 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0)
489 1.1.2.7 ad return;
490 1.1.2.7 ad
491 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
492 1.1.2.5 ad sleepq_insert(sq, l, pri, l->l_syncobj);
493 1.1.2.5 ad }
494