kern_sleepq.c revision 1.1.2.3 1 1.1.2.3 ad /* $NetBSD: kern_sleepq.c,v 1.1.2.3 2006/10/21 14:03:14 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.1 ad * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.1.2.1 ad * interfaces.
42 1.1.2.1 ad */
43 1.1.2.1 ad
44 1.1.2.1 ad #include "opt_multiprocessor.h"
45 1.1.2.1 ad
46 1.1.2.1 ad #include <sys/cdefs.h>
47 1.1.2.3 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.3 2006/10/21 14:03:14 ad Exp $");
48 1.1.2.1 ad
49 1.1.2.1 ad #include <sys/param.h>
50 1.1.2.1 ad #include <sys/lock.h>
51 1.1.2.1 ad #include <sys/kernel.h>
52 1.1.2.1 ad #include <sys/pool.h>
53 1.1.2.1 ad #include <sys/proc.h>
54 1.1.2.1 ad #include <sys/resourcevar.h>
55 1.1.2.1 ad #include <sys/sched.h>
56 1.1.2.1 ad #include <sys/systm.h>
57 1.1.2.1 ad #include <sys/sa.h>
58 1.1.2.1 ad #include <sys/savar.h>
59 1.1.2.1 ad #include <sys/sleepq.h>
60 1.1.2.1 ad
61 1.1.2.1 ad int sleepq_sigtoerror(struct lwp *, int);
62 1.1.2.1 ad void updatepri(struct lwp *);
63 1.1.2.1 ad void sa_awaken(struct lwp *);
64 1.1.2.1 ad
65 1.1.2.1 ad sleepq_t sleeptab[SLEEPTAB_HASH_SIZE];
66 1.1.2.1 ad #ifdef MULTIPROCESSOR
67 1.1.2.1 ad kmutex_t sleeptab_mutexes[SLEEPTAB_HASH_SIZE];
68 1.1.2.1 ad #else
69 1.1.2.1 ad kmutex_t sleeptab_mutex;
70 1.1.2.1 ad #endif
71 1.1.2.1 ad
72 1.1.2.1 ad /*
73 1.1.2.1 ad * sleeptab_init:
74 1.1.2.1 ad *
75 1.1.2.1 ad * Initialize the general-purpose sleep queues.
76 1.1.2.1 ad */
77 1.1.2.1 ad void
78 1.1.2.1 ad sleeptab_init(void)
79 1.1.2.1 ad {
80 1.1.2.1 ad sleepq_t *sq;
81 1.1.2.1 ad int i;
82 1.1.2.1 ad
83 1.1.2.1 ad #ifndef MULTIPROCESSOR
84 1.1.2.1 ad mutex_init(&sleeptab_mutex, MUTEX_SPIN, IPL_SCHED);
85 1.1.2.1 ad #endif
86 1.1.2.1 ad
87 1.1.2.1 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
88 1.1.2.1 ad sq = &sleeptab[i];
89 1.1.2.1 ad #ifdef MULTIPROCESSOR
90 1.1.2.1 ad mutex_init(&sleeptab_mutexes[i], MUTEX_SPIN, IPL_SCHED);
91 1.1.2.1 ad sleepq_init(&sleeptab[i], &sleeptab_mutexes[i]);
92 1.1.2.1 ad #else
93 1.1.2.1 ad sleepq_init(&sleeptab[i], &sleeptab_mutex);
94 1.1.2.1 ad #endif
95 1.1.2.1 ad }
96 1.1.2.1 ad }
97 1.1.2.1 ad
98 1.1.2.1 ad /*
99 1.1.2.1 ad * sleepq_init:
100 1.1.2.1 ad *
101 1.1.2.1 ad * Prepare a sleep queue for use.
102 1.1.2.1 ad */
103 1.1.2.1 ad void
104 1.1.2.1 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
105 1.1.2.1 ad {
106 1.1.2.1 ad
107 1.1.2.1 ad sq->sq_waiters = 0;
108 1.1.2.1 ad sq->sq_mutex = mtx;
109 1.1.2.1 ad TAILQ_INIT(&sq->sq_queue);
110 1.1.2.1 ad }
111 1.1.2.1 ad
112 1.1.2.1 ad /*
113 1.1.2.1 ad * sleepq_remove:
114 1.1.2.1 ad *
115 1.1.2.1 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
116 1.1.2.1 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
117 1.1.2.1 ad * to bring the LWP into memory.
118 1.1.2.1 ad */
119 1.1.2.1 ad int
120 1.1.2.1 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
121 1.1.2.1 ad {
122 1.1.2.1 ad
123 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
124 1.1.2.1 ad KASSERT(sq->sq_waiters > 0);
125 1.1.2.1 ad
126 1.1.2.1 ad l->l_wchan = NULL;
127 1.1.2.1 ad l->l_slptime = 0;
128 1.1.2.1 ad l->l_flag &= ~L_SINTR;
129 1.1.2.1 ad
130 1.1.2.1 ad sq->sq_waiters--;
131 1.1.2.1 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
132 1.1.2.1 ad
133 1.1.2.1 ad #ifdef DIAGNOSTIC
134 1.1.2.1 ad if (sq->sq_waiters == 0)
135 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
136 1.1.2.1 ad else
137 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
138 1.1.2.1 ad #endif
139 1.1.2.1 ad
140 1.1.2.1 ad /*
141 1.1.2.1 ad * If not sleeping, the LWP must have been suspended. Let whoever
142 1.1.2.1 ad * holds it stopped set it running again.
143 1.1.2.1 ad */
144 1.1.2.1 ad if (l->l_stat != LSSLEEP) {
145 1.1.2.1 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
146 1.1.2.1 ad return 0;
147 1.1.2.1 ad }
148 1.1.2.1 ad
149 1.1.2.1 ad if (l == curlwp) {
150 1.1.2.1 ad l->l_stat = LSONPROC;
151 1.1.2.1 ad lwp_setlock(l, &l->l_cpu->ci_sched_mutex);
152 1.1.2.1 ad return 0;
153 1.1.2.1 ad }
154 1.1.2.1 ad
155 1.1.2.1 ad l->l_stat = LSRUN;
156 1.1.2.1 ad
157 1.1.2.1 ad if (l->l_proc->p_sa)
158 1.1.2.1 ad sa_awaken(l);
159 1.1.2.1 ad if (l->l_slptime > 1)
160 1.1.2.1 ad updatepri(l);
161 1.1.2.1 ad
162 1.1.2.1 ad /*
163 1.1.2.1 ad * Try to set the LWP running, and swap in its new mutex. Once
164 1.1.2.1 ad * we've done the swap, we can't touch the LWP again.
165 1.1.2.1 ad */
166 1.1.2.1 ad if ((l->l_flag & L_INMEM) != 0) {
167 1.1.2.1 ad /*
168 1.1.2.1 ad * Try to get the last CPU that ran this LWP to pick it up.
169 1.1.2.1 ad */
170 1.1.2.1 ad setrunqueue(l);
171 1.1.2.1 ad lwp_setlock(l, &sched_mutex);
172 1.1.2.1 ad cpu_need_resched(l->l_cpu);
173 1.1.2.1 ad return 0;
174 1.1.2.1 ad }
175 1.1.2.1 ad
176 1.1.2.1 ad lwp_setlock(l, &lwp_mutex);
177 1.1.2.1 ad return 1;
178 1.1.2.1 ad }
179 1.1.2.1 ad
180 1.1.2.1 ad /*
181 1.1.2.1 ad * sleepq_enter:
182 1.1.2.1 ad *
183 1.1.2.1 ad * Enter an LWP into the sleep queue and prepare for sleep. Any interlocking
184 1.1.2.1 ad * step such as releasing a mutex or checking for signals may be safely done
185 1.1.2.1 ad * by the caller once on the sleep queue.
186 1.1.2.1 ad */
187 1.1.2.1 ad void
188 1.1.2.1 ad sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
189 1.1.2.1 ad int catch)
190 1.1.2.1 ad {
191 1.1.2.1 ad struct lwp *l = curlwp;
192 1.1.2.1 ad
193 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
194 1.1.2.1 ad
195 1.1.2.1 ad #ifdef KTRACE
196 1.1.2.1 ad if (KTRPOINT(p, KTR_CSW))
197 1.1.2.1 ad ktrcsw(l, 1, 0);
198 1.1.2.1 ad #endif
199 1.1.2.1 ad
200 1.1.2.1 ad sq->sq_waiters++;
201 1.1.2.1 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepq);
202 1.1.2.1 ad
203 1.1.2.1 ad /*
204 1.1.2.1 ad * Acquire the per-LWP mutex.
205 1.1.2.1 ad */
206 1.1.2.1 ad lwp_lock(l);
207 1.1.2.1 ad
208 1.1.2.1 ad KASSERT(l->l_wchan == NULL);
209 1.1.2.1 ad
210 1.1.2.1 ad l->l_wchan = wchan;
211 1.1.2.1 ad l->l_wmesg = wmesg;
212 1.1.2.1 ad l->l_slptime = 0;
213 1.1.2.1 ad l->l_priority = pri & PRIMASK;
214 1.1.2.1 ad l->l_flag &= ~L_CANCELLED;
215 1.1.2.1 ad if (catch)
216 1.1.2.1 ad l->l_flag |= L_SINTR;
217 1.1.2.1 ad if (l->l_stat == LSONPROC)
218 1.1.2.1 ad l->l_stat = LSSLEEP;
219 1.1.2.1 ad l->l_nvcsw++;
220 1.1.2.1 ad
221 1.1.2.1 ad if (timo)
222 1.1.2.1 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
223 1.1.2.1 ad
224 1.1.2.1 ad /*
225 1.1.2.1 ad * The LWP is now on the sleep queue. Release its old mutex and
226 1.1.2.1 ad * lend it ours for the duration of the sleep.
227 1.1.2.1 ad */
228 1.1.2.1 ad lwp_swaplock(l, sq->sq_mutex);
229 1.1.2.1 ad }
230 1.1.2.1 ad
231 1.1.2.1 ad /*
232 1.1.2.1 ad * sleepq_block:
233 1.1.2.1 ad *
234 1.1.2.1 ad * The calling LWP has been entered into the sleep queue by
235 1.1.2.1 ad * sleepq_enter(), and now wants to block. sleepq_block() may return
236 1.1.2.1 ad * early under exceptional conditions, for example if the LWP's process
237 1.1.2.1 ad * is exiting. sleepq_block() must be called if sleepq_enter() has
238 1.1.2.1 ad * been called.
239 1.1.2.1 ad */
240 1.1.2.1 ad int
241 1.1.2.1 ad sleepq_block(sleepq_t *sq, int timo)
242 1.1.2.1 ad {
243 1.1.2.1 ad int error, flag, expired, sig;
244 1.1.2.1 ad struct lwp *l = curlwp;
245 1.1.2.1 ad struct proc *p;
246 1.1.2.1 ad
247 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
248 1.1.2.1 ad
249 1.1.2.1 ad flag = l->l_flag;
250 1.1.2.1 ad error = 0;
251 1.1.2.1 ad
252 1.1.2.1 ad /*
253 1.1.2.1 ad * If sleeping interruptably, check for pending signals, exits or
254 1.1.2.1 ad * core dump events.
255 1.1.2.1 ad */
256 1.1.2.1 ad if ((flag & L_SINTR) != 0) {
257 1.1.2.1 ad while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
258 1.1.2.1 ad lwp_unlock(l);
259 1.1.2.1 ad p = l->l_proc;
260 1.1.2.1 ad mutex_enter(&p->p_smutex);
261 1.1.2.1 ad if ((sig = issignal(l)) != 0)
262 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
263 1.1.2.1 ad mutex_exit(&p->p_smutex);
264 1.1.2.1 ad lwp_lock(l);
265 1.1.2.1 ad }
266 1.1.2.1 ad
267 1.1.2.1 ad if (error == 0 && (l->l_flag & (L_WEXIT | L_WCORE)) != 0)
268 1.1.2.1 ad error = EINTR;
269 1.1.2.1 ad
270 1.1.2.1 ad if (error != 0) {
271 1.1.2.1 ad /*
272 1.1.2.1 ad * If the LWP is on a sleep queue and we remove it,
273 1.1.2.1 ad * we will change its mutex and so we need to unlock
274 1.1.2.1 ad * the sleep queue. If it's off the sleep queue
275 1.1.2.1 ad * already, the unlock the LWP directly.
276 1.1.2.1 ad */
277 1.1.2.1 ad if (l->l_wchan != NULL) {
278 1.1.2.2 ad mutex_enter(&sched_mutex);
279 1.1.2.1 ad (void)sleepq_remove(sq, l);
280 1.1.2.2 ad mutex_exit(&sched_mutex);
281 1.1.2.1 ad mutex_exit(sq->sq_mutex);
282 1.1.2.1 ad } else
283 1.1.2.1 ad lwp_unlock(l);
284 1.1.2.1 ad
285 1.1.2.1 ad goto out;
286 1.1.2.1 ad }
287 1.1.2.1 ad }
288 1.1.2.1 ad
289 1.1.2.1 ad if (l->l_stat == LSONPROC) {
290 1.1.2.1 ad /*
291 1.1.2.1 ad * We may have decided not to switch away, and so removed
292 1.1.2.1 ad * ourself from the sleep queue.
293 1.1.2.1 ad */
294 1.1.2.1 ad lwp_unlock(l);
295 1.1.2.1 ad } else if ((flag & L_SA) != 0) {
296 1.1.2.1 ad sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
297 1.1.2.1 ad /* XXXAD verify sa_switch restores SPL. */
298 1.1.2.1 ad } else {
299 1.1.2.1 ad mi_switch(l, NULL);
300 1.1.2.1 ad
301 1.1.2.1 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
302 1.1.2.1 ad }
303 1.1.2.1 ad
304 1.1.2.1 ad KASSERT(l->l_wchan == NULL);
305 1.1.2.1 ad
306 1.1.2.1 ad if (timo) {
307 1.1.2.1 ad /*
308 1.1.2.1 ad * Even if the callout appears to have fired, we need to
309 1.1.2.1 ad * stop it in order to synchronise with other CPUs.
310 1.1.2.1 ad */
311 1.1.2.1 ad expired = callout_expired(&l->l_tsleep_ch);
312 1.1.2.1 ad callout_stop(&l->l_tsleep_ch);
313 1.1.2.1 ad if (expired)
314 1.1.2.1 ad return EWOULDBLOCK;
315 1.1.2.1 ad }
316 1.1.2.1 ad
317 1.1.2.1 ad if ((flag & L_SINTR) != 0) {
318 1.1.2.1 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
319 1.1.2.1 ad error = EINTR;
320 1.1.2.1 ad else if ((l->l_flag & L_PENDSIG) != 0) {
321 1.1.2.1 ad p = l->l_proc;
322 1.1.2.1 ad mutex_enter(&p->p_smutex);
323 1.1.2.1 ad if ((sig = issignal(l)) != 0)
324 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
325 1.1.2.1 ad mutex_exit(&p->p_smutex);
326 1.1.2.1 ad }
327 1.1.2.1 ad }
328 1.1.2.1 ad
329 1.1.2.1 ad out:
330 1.1.2.1 ad #ifdef KTRACE
331 1.1.2.1 ad if (KTRPOINT(p, KTR_CSW))
332 1.1.2.1 ad ktrcsw(l, 0, 0);
333 1.1.2.1 ad #endif
334 1.1.2.1 ad return error;
335 1.1.2.1 ad }
336 1.1.2.1 ad
337 1.1.2.1 ad /*
338 1.1.2.1 ad * sleepq_wakeone:
339 1.1.2.1 ad *
340 1.1.2.1 ad * Remove one LWP from the sleep queue and wake it. We search among
341 1.1.2.1 ad * the higest priority LWPs waiting on a single wait channel, and pick
342 1.1.2.1 ad * the longest waiting one.
343 1.1.2.1 ad */
344 1.1.2.1 ad void
345 1.1.2.1 ad sleepq_wakeone(sleepq_t *sq, wchan_t wchan)
346 1.1.2.1 ad {
347 1.1.2.1 ad struct lwp *l, *bl;
348 1.1.2.1 ad int bpri, swapin;
349 1.1.2.1 ad
350 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
351 1.1.2.1 ad
352 1.1.2.1 ad swapin = 0;
353 1.1.2.1 ad bpri = MAXPRI;
354 1.1.2.1 ad bl = NULL;
355 1.1.2.1 ad
356 1.1.2.1 ad TAILQ_FOREACH(l, &sq->sq_queue, l_sleepq) {
357 1.1.2.1 ad if (l->l_wchan != wchan || l->l_priority > bpri)
358 1.1.2.1 ad continue;
359 1.1.2.1 ad bl = l;
360 1.1.2.1 ad bpri = l->l_priority;
361 1.1.2.1 ad }
362 1.1.2.1 ad
363 1.1.2.1 ad if (bl != NULL) {
364 1.1.2.1 ad mutex_enter(&sched_mutex);
365 1.1.2.1 ad swapin = sleepq_remove(sq, bl);
366 1.1.2.1 ad mutex_exit(&sched_mutex);
367 1.1.2.1 ad }
368 1.1.2.1 ad
369 1.1.2.1 ad mutex_exit(sq->sq_mutex);
370 1.1.2.1 ad
371 1.1.2.1 ad if (swapin)
372 1.1.2.1 ad wakeup(&proc0);
373 1.1.2.1 ad }
374 1.1.2.1 ad
375 1.1.2.1 ad /*
376 1.1.2.1 ad * sleepq_wakeall:
377 1.1.2.1 ad *
378 1.1.2.1 ad * Wake all LWPs blocked on a single wait channel.
379 1.1.2.1 ad */
380 1.1.2.1 ad void
381 1.1.2.1 ad sleepq_wakeall(sleepq_t *sq, wchan_t wchan, u_int expected)
382 1.1.2.1 ad {
383 1.1.2.1 ad struct lwp *l, *next;
384 1.1.2.1 ad int swapin = 0;
385 1.1.2.1 ad
386 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
387 1.1.2.1 ad
388 1.1.2.1 ad mutex_enter(&sched_mutex);
389 1.1.2.1 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
390 1.1.2.1 ad next = TAILQ_NEXT(l, l_sleepq);
391 1.1.2.1 ad if (l->l_wchan != wchan)
392 1.1.2.1 ad continue;
393 1.1.2.1 ad swapin |= sleepq_remove(sq, l);
394 1.1.2.1 ad if (--expected == 0)
395 1.1.2.1 ad break;
396 1.1.2.1 ad }
397 1.1.2.1 ad mutex_exit(&sched_mutex);
398 1.1.2.1 ad
399 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
400 1.1.2.1 ad mutex_exit(sq->sq_mutex);
401 1.1.2.1 ad
402 1.1.2.1 ad /*
403 1.1.2.1 ad * If there are newly awakend threads that need to be swapped in,
404 1.1.2.1 ad * then kick the swapper into action.
405 1.1.2.1 ad */
406 1.1.2.1 ad if (swapin)
407 1.1.2.1 ad wakeup(&proc0);
408 1.1.2.1 ad }
409 1.1.2.1 ad
410 1.1.2.1 ad /*
411 1.1.2.1 ad * sleepq_unsleep:
412 1.1.2.1 ad *
413 1.1.2.1 ad * Remove an LWP from its sleep queue and set it runnable again.
414 1.1.2.1 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
415 1.1.2.1 ad * always release it.
416 1.1.2.1 ad */
417 1.1.2.1 ad void
418 1.1.2.1 ad sleepq_unsleep(struct lwp *l)
419 1.1.2.1 ad {
420 1.1.2.1 ad sleepq_t *sq;
421 1.1.2.1 ad int swapin;
422 1.1.2.1 ad
423 1.1.2.1 ad sq = &sleeptab[SLEEPTAB_HASH(l->l_wchan)];
424 1.1.2.1 ad KASSERT(l->l_wchan != NULL);
425 1.1.2.1 ad KASSERT(l->l_mutex == sq->sq_mutex);
426 1.1.2.1 ad
427 1.1.2.1 ad mutex_enter(&sched_mutex);
428 1.1.2.1 ad swapin = sleepq_remove(sq, l);
429 1.1.2.1 ad mutex_exit(&sched_mutex);
430 1.1.2.1 ad
431 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
432 1.1.2.1 ad mutex_exit(sq->sq_mutex);
433 1.1.2.1 ad
434 1.1.2.1 ad if (swapin)
435 1.1.2.1 ad wakeup(&proc0);
436 1.1.2.1 ad }
437 1.1.2.1 ad
438 1.1.2.1 ad /*
439 1.1.2.1 ad * sleepq_timeout:
440 1.1.2.1 ad *
441 1.1.2.1 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
442 1.1.2.1 ad * sleep queue.
443 1.1.2.1 ad */
444 1.1.2.1 ad void
445 1.1.2.1 ad sleepq_timeout(void *arg)
446 1.1.2.1 ad {
447 1.1.2.1 ad struct lwp *l = arg;
448 1.1.2.1 ad
449 1.1.2.1 ad /*
450 1.1.2.1 ad * Lock the LWP. Assuming it's still on the sleep queue, its
451 1.1.2.1 ad * current mutex will also be the sleep queue mutex.
452 1.1.2.1 ad */
453 1.1.2.1 ad lwp_lock(l);
454 1.1.2.1 ad
455 1.1.2.1 ad if (l->l_wchan == NULL) {
456 1.1.2.1 ad /* Somebody beat us to it. */
457 1.1.2.1 ad lwp_unlock(l);
458 1.1.2.1 ad return;
459 1.1.2.1 ad }
460 1.1.2.1 ad
461 1.1.2.1 ad sleepq_unsleep(arg);
462 1.1.2.1 ad }
463 1.1.2.1 ad
464 1.1.2.1 ad /*
465 1.1.2.1 ad * sleepq_sigtoerror:
466 1.1.2.1 ad *
467 1.1.2.1 ad * Given a signal number, interpret and return an error code.
468 1.1.2.1 ad */
469 1.1.2.1 ad int
470 1.1.2.1 ad sleepq_sigtoerror(struct lwp *l, int sig)
471 1.1.2.1 ad {
472 1.1.2.3 ad struct proc *p = l->l_proc;
473 1.1.2.1 ad int error;
474 1.1.2.1 ad
475 1.1.2.3 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
476 1.1.2.3 ad
477 1.1.2.1 ad /*
478 1.1.2.1 ad * If this sleep was canceled, don't let the syscall restart.
479 1.1.2.1 ad */
480 1.1.2.1 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
481 1.1.2.1 ad error = EINTR;
482 1.1.2.1 ad else
483 1.1.2.1 ad error = ERESTART;
484 1.1.2.1 ad
485 1.1.2.1 ad return error;
486 1.1.2.1 ad }
487 1.1.2.1 ad
488 1.1.2.1 ad /*
489 1.1.2.1 ad * sleepq_abort:
490 1.1.2.1 ad *
491 1.1.2.1 ad * After a panic or during autoconfiguration, lower the interrupt
492 1.1.2.1 ad * priority level to give pending interrupts a chance to run, and
493 1.1.2.1 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
494 1.1.2.1 ad * always returns zero.
495 1.1.2.1 ad */
496 1.1.2.1 ad int
497 1.1.2.1 ad sleepq_abort(kmutex_t *mtx, int unlock)
498 1.1.2.1 ad {
499 1.1.2.1 ad extern int safepri;
500 1.1.2.1 ad int s;
501 1.1.2.1 ad
502 1.1.2.1 ad s = splhigh();
503 1.1.2.1 ad splx(safepri);
504 1.1.2.1 ad splx(s);
505 1.1.2.1 ad if (mtx != NULL && unlock != 0)
506 1.1.2.1 ad mutex_exit(mtx);
507 1.1.2.1 ad
508 1.1.2.1 ad return 0;
509 1.1.2.1 ad }
510