kern_sleepq.c revision 1.1.2.4 1 1.1.2.4 ad /* $NetBSD: kern_sleepq.c,v 1.1.2.4 2006/10/24 21:10:21 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.1 ad * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.1.2.1 ad * interfaces.
42 1.1.2.1 ad */
43 1.1.2.1 ad
44 1.1.2.1 ad #include "opt_multiprocessor.h"
45 1.1.2.1 ad
46 1.1.2.1 ad #include <sys/cdefs.h>
47 1.1.2.4 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.4 2006/10/24 21:10:21 ad Exp $");
48 1.1.2.1 ad
49 1.1.2.1 ad #include <sys/param.h>
50 1.1.2.1 ad #include <sys/lock.h>
51 1.1.2.1 ad #include <sys/kernel.h>
52 1.1.2.1 ad #include <sys/pool.h>
53 1.1.2.1 ad #include <sys/proc.h>
54 1.1.2.1 ad #include <sys/resourcevar.h>
55 1.1.2.1 ad #include <sys/sched.h>
56 1.1.2.1 ad #include <sys/systm.h>
57 1.1.2.1 ad #include <sys/sa.h>
58 1.1.2.1 ad #include <sys/savar.h>
59 1.1.2.1 ad #include <sys/sleepq.h>
60 1.1.2.1 ad
61 1.1.2.1 ad int sleepq_sigtoerror(struct lwp *, int);
62 1.1.2.4 ad void sleepq_exit(sleepq_t *, struct lwp *);
63 1.1.2.1 ad void updatepri(struct lwp *);
64 1.1.2.1 ad void sa_awaken(struct lwp *);
65 1.1.2.1 ad
66 1.1.2.1 ad sleepq_t sleeptab[SLEEPTAB_HASH_SIZE];
67 1.1.2.1 ad #ifdef MULTIPROCESSOR
68 1.1.2.1 ad kmutex_t sleeptab_mutexes[SLEEPTAB_HASH_SIZE];
69 1.1.2.1 ad #endif
70 1.1.2.1 ad
71 1.1.2.1 ad /*
72 1.1.2.1 ad * sleeptab_init:
73 1.1.2.1 ad *
74 1.1.2.1 ad * Initialize the general-purpose sleep queues.
75 1.1.2.1 ad */
76 1.1.2.1 ad void
77 1.1.2.1 ad sleeptab_init(void)
78 1.1.2.1 ad {
79 1.1.2.1 ad sleepq_t *sq;
80 1.1.2.1 ad int i;
81 1.1.2.1 ad
82 1.1.2.1 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 1.1.2.1 ad sq = &sleeptab[i];
84 1.1.2.1 ad #ifdef MULTIPROCESSOR
85 1.1.2.1 ad mutex_init(&sleeptab_mutexes[i], MUTEX_SPIN, IPL_SCHED);
86 1.1.2.1 ad sleepq_init(&sleeptab[i], &sleeptab_mutexes[i]);
87 1.1.2.1 ad #else
88 1.1.2.4 ad sleepq_init(&sleeptab[i], &sched_mutex);
89 1.1.2.1 ad #endif
90 1.1.2.1 ad }
91 1.1.2.1 ad }
92 1.1.2.1 ad
93 1.1.2.1 ad /*
94 1.1.2.1 ad * sleepq_init:
95 1.1.2.1 ad *
96 1.1.2.1 ad * Prepare a sleep queue for use.
97 1.1.2.1 ad */
98 1.1.2.1 ad void
99 1.1.2.1 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
100 1.1.2.1 ad {
101 1.1.2.1 ad
102 1.1.2.1 ad sq->sq_waiters = 0;
103 1.1.2.1 ad sq->sq_mutex = mtx;
104 1.1.2.1 ad TAILQ_INIT(&sq->sq_queue);
105 1.1.2.1 ad }
106 1.1.2.1 ad
107 1.1.2.1 ad /*
108 1.1.2.1 ad * sleepq_remove:
109 1.1.2.1 ad *
110 1.1.2.1 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
111 1.1.2.1 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
112 1.1.2.1 ad * to bring the LWP into memory.
113 1.1.2.1 ad */
114 1.1.2.1 ad int
115 1.1.2.1 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
116 1.1.2.1 ad {
117 1.1.2.4 ad struct cpu_info *ci;
118 1.1.2.1 ad
119 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
120 1.1.2.4 ad LOCK_ASSERT(mutex_owned(&sched_mutex));
121 1.1.2.1 ad KASSERT(sq->sq_waiters > 0);
122 1.1.2.1 ad
123 1.1.2.1 ad sq->sq_waiters--;
124 1.1.2.1 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
125 1.1.2.1 ad
126 1.1.2.1 ad #ifdef DIAGNOSTIC
127 1.1.2.1 ad if (sq->sq_waiters == 0)
128 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
129 1.1.2.1 ad else
130 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
131 1.1.2.1 ad #endif
132 1.1.2.1 ad
133 1.1.2.4 ad l->l_wchan = NULL;
134 1.1.2.4 ad l->l_flag &= ~L_SINTR;
135 1.1.2.4 ad
136 1.1.2.1 ad /*
137 1.1.2.1 ad * If not sleeping, the LWP must have been suspended. Let whoever
138 1.1.2.1 ad * holds it stopped set it running again.
139 1.1.2.1 ad */
140 1.1.2.1 ad if (l->l_stat != LSSLEEP) {
141 1.1.2.1 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
142 1.1.2.1 ad return 0;
143 1.1.2.1 ad }
144 1.1.2.1 ad
145 1.1.2.4 ad if (l->l_proc->p_sa)
146 1.1.2.4 ad sa_awaken(l);
147 1.1.2.4 ad
148 1.1.2.4 ad lwp_setlock(l, &sched_mutex);
149 1.1.2.4 ad
150 1.1.2.4 ad /*
151 1.1.2.4 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
152 1.1.2.4 ad * about to call mi_switch(), in which case it will yield.
153 1.1.2.4 ad */
154 1.1.2.4 ad if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
155 1.1.2.1 ad l->l_stat = LSONPROC;
156 1.1.2.4 ad l->l_slptime = 0;
157 1.1.2.1 ad return 0;
158 1.1.2.1 ad }
159 1.1.2.1 ad
160 1.1.2.4 ad /*
161 1.1.2.4 ad * Set it running. We'll try to get the last CPU that ran
162 1.1.2.4 ad * this LWP to pick it up again.
163 1.1.2.4 ad */
164 1.1.2.1 ad l->l_stat = LSRUN;
165 1.1.2.1 ad if (l->l_slptime > 1)
166 1.1.2.1 ad updatepri(l);
167 1.1.2.4 ad l->l_slptime = 0;
168 1.1.2.1 ad if ((l->l_flag & L_INMEM) != 0) {
169 1.1.2.1 ad setrunqueue(l);
170 1.1.2.1 ad cpu_need_resched(l->l_cpu);
171 1.1.2.1 ad return 0;
172 1.1.2.1 ad }
173 1.1.2.1 ad
174 1.1.2.1 ad return 1;
175 1.1.2.1 ad }
176 1.1.2.1 ad
177 1.1.2.1 ad /*
178 1.1.2.1 ad * sleepq_enter:
179 1.1.2.1 ad *
180 1.1.2.1 ad * Enter an LWP into the sleep queue and prepare for sleep. Any interlocking
181 1.1.2.1 ad * step such as releasing a mutex or checking for signals may be safely done
182 1.1.2.1 ad * by the caller once on the sleep queue.
183 1.1.2.1 ad */
184 1.1.2.1 ad void
185 1.1.2.1 ad sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
186 1.1.2.1 ad int catch)
187 1.1.2.1 ad {
188 1.1.2.1 ad struct lwp *l = curlwp;
189 1.1.2.1 ad
190 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
191 1.1.2.1 ad
192 1.1.2.1 ad #ifdef KTRACE
193 1.1.2.1 ad if (KTRPOINT(p, KTR_CSW))
194 1.1.2.1 ad ktrcsw(l, 1, 0);
195 1.1.2.1 ad #endif
196 1.1.2.1 ad
197 1.1.2.1 ad sq->sq_waiters++;
198 1.1.2.1 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepq);
199 1.1.2.1 ad
200 1.1.2.1 ad /*
201 1.1.2.1 ad * Acquire the per-LWP mutex.
202 1.1.2.1 ad */
203 1.1.2.1 ad lwp_lock(l);
204 1.1.2.1 ad
205 1.1.2.1 ad KASSERT(l->l_wchan == NULL);
206 1.1.2.1 ad
207 1.1.2.1 ad l->l_wchan = wchan;
208 1.1.2.1 ad l->l_wmesg = wmesg;
209 1.1.2.1 ad l->l_slptime = 0;
210 1.1.2.1 ad l->l_priority = pri & PRIMASK;
211 1.1.2.1 ad l->l_flag &= ~L_CANCELLED;
212 1.1.2.1 ad if (catch)
213 1.1.2.1 ad l->l_flag |= L_SINTR;
214 1.1.2.1 ad if (l->l_stat == LSONPROC)
215 1.1.2.1 ad l->l_stat = LSSLEEP;
216 1.1.2.1 ad l->l_nvcsw++;
217 1.1.2.1 ad
218 1.1.2.1 ad if (timo)
219 1.1.2.1 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
220 1.1.2.1 ad
221 1.1.2.1 ad /*
222 1.1.2.1 ad * The LWP is now on the sleep queue. Release its old mutex and
223 1.1.2.1 ad * lend it ours for the duration of the sleep.
224 1.1.2.1 ad */
225 1.1.2.4 ad lwp_setlock_unlock(l, sq->sq_mutex);
226 1.1.2.4 ad }
227 1.1.2.4 ad
228 1.1.2.4 ad /*
229 1.1.2.4 ad * sleepq_exit:
230 1.1.2.4 ad *
231 1.1.2.4 ad * Remove the current LWP from a sleep queue after the sleep has been
232 1.1.2.4 ad * interrupted.
233 1.1.2.4 ad */
234 1.1.2.4 ad void
235 1.1.2.4 ad sleepq_exit(sleepq_t *sq, struct lwp *l)
236 1.1.2.4 ad {
237 1.1.2.4 ad
238 1.1.2.4 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
239 1.1.2.4 ad KASSERT(sq->sq_waiters > 0);
240 1.1.2.4 ad KASSERT(l->l_stat == LSSLEEP);
241 1.1.2.4 ad
242 1.1.2.4 ad l->l_wchan = NULL;
243 1.1.2.4 ad l->l_slptime = 0;
244 1.1.2.4 ad l->l_flag &= ~L_SINTR;
245 1.1.2.4 ad
246 1.1.2.4 ad sq->sq_waiters--;
247 1.1.2.4 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
248 1.1.2.4 ad
249 1.1.2.4 ad #ifdef DIAGNOSTIC
250 1.1.2.4 ad if (sq->sq_waiters == 0)
251 1.1.2.4 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
252 1.1.2.4 ad else
253 1.1.2.4 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
254 1.1.2.4 ad #endif
255 1.1.2.4 ad
256 1.1.2.4 ad l->l_stat = LSONPROC;
257 1.1.2.4 ad
258 1.1.2.4 ad lwp_setlock_unlock(l, &sched_mutex);
259 1.1.2.1 ad }
260 1.1.2.1 ad
261 1.1.2.1 ad /*
262 1.1.2.1 ad * sleepq_block:
263 1.1.2.1 ad *
264 1.1.2.1 ad * The calling LWP has been entered into the sleep queue by
265 1.1.2.1 ad * sleepq_enter(), and now wants to block. sleepq_block() may return
266 1.1.2.1 ad * early under exceptional conditions, for example if the LWP's process
267 1.1.2.1 ad * is exiting. sleepq_block() must be called if sleepq_enter() has
268 1.1.2.1 ad * been called.
269 1.1.2.1 ad */
270 1.1.2.1 ad int
271 1.1.2.1 ad sleepq_block(sleepq_t *sq, int timo)
272 1.1.2.1 ad {
273 1.1.2.1 ad int error, flag, expired, sig;
274 1.1.2.1 ad struct lwp *l = curlwp;
275 1.1.2.1 ad struct proc *p;
276 1.1.2.1 ad
277 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
278 1.1.2.1 ad
279 1.1.2.1 ad flag = l->l_flag;
280 1.1.2.1 ad error = 0;
281 1.1.2.1 ad
282 1.1.2.1 ad /*
283 1.1.2.1 ad * If sleeping interruptably, check for pending signals, exits or
284 1.1.2.1 ad * core dump events.
285 1.1.2.1 ad */
286 1.1.2.1 ad if ((flag & L_SINTR) != 0) {
287 1.1.2.1 ad while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
288 1.1.2.1 ad lwp_unlock(l);
289 1.1.2.1 ad p = l->l_proc;
290 1.1.2.1 ad mutex_enter(&p->p_smutex);
291 1.1.2.1 ad if ((sig = issignal(l)) != 0)
292 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
293 1.1.2.1 ad mutex_exit(&p->p_smutex);
294 1.1.2.1 ad lwp_lock(l);
295 1.1.2.1 ad }
296 1.1.2.1 ad
297 1.1.2.4 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
298 1.1.2.1 ad error = EINTR;
299 1.1.2.1 ad }
300 1.1.2.1 ad
301 1.1.2.4 ad if (error != 0 && l->l_stat == LSSLEEP)
302 1.1.2.4 ad sleepq_exit(sq, l);
303 1.1.2.4 ad else if (l->l_stat != LSONPROC) {
304 1.1.2.4 ad if ((flag & L_SA) != 0) {
305 1.1.2.4 ad sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
306 1.1.2.4 ad /* XXXAD verify sa_switch restores SPL. */
307 1.1.2.4 ad } else {
308 1.1.2.4 ad mi_switch(l, NULL);
309 1.1.2.4 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
310 1.1.2.4 ad }
311 1.1.2.1 ad }
312 1.1.2.1 ad
313 1.1.2.1 ad KASSERT(l->l_wchan == NULL);
314 1.1.2.1 ad
315 1.1.2.1 ad if (timo) {
316 1.1.2.1 ad /*
317 1.1.2.1 ad * Even if the callout appears to have fired, we need to
318 1.1.2.1 ad * stop it in order to synchronise with other CPUs.
319 1.1.2.1 ad */
320 1.1.2.1 ad expired = callout_expired(&l->l_tsleep_ch);
321 1.1.2.1 ad callout_stop(&l->l_tsleep_ch);
322 1.1.2.4 ad if (expired && error == 0)
323 1.1.2.1 ad return EWOULDBLOCK;
324 1.1.2.1 ad }
325 1.1.2.1 ad
326 1.1.2.4 ad if (error == 0 && (flag & L_SINTR) != 0) {
327 1.1.2.1 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
328 1.1.2.1 ad error = EINTR;
329 1.1.2.1 ad else if ((l->l_flag & L_PENDSIG) != 0) {
330 1.1.2.1 ad p = l->l_proc;
331 1.1.2.1 ad mutex_enter(&p->p_smutex);
332 1.1.2.1 ad if ((sig = issignal(l)) != 0)
333 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
334 1.1.2.1 ad mutex_exit(&p->p_smutex);
335 1.1.2.1 ad }
336 1.1.2.1 ad }
337 1.1.2.1 ad
338 1.1.2.1 ad #ifdef KTRACE
339 1.1.2.1 ad if (KTRPOINT(p, KTR_CSW))
340 1.1.2.1 ad ktrcsw(l, 0, 0);
341 1.1.2.1 ad #endif
342 1.1.2.1 ad return error;
343 1.1.2.1 ad }
344 1.1.2.1 ad
345 1.1.2.1 ad /*
346 1.1.2.1 ad * sleepq_wakeone:
347 1.1.2.1 ad *
348 1.1.2.1 ad * Remove one LWP from the sleep queue and wake it. We search among
349 1.1.2.1 ad * the higest priority LWPs waiting on a single wait channel, and pick
350 1.1.2.1 ad * the longest waiting one.
351 1.1.2.1 ad */
352 1.1.2.1 ad void
353 1.1.2.1 ad sleepq_wakeone(sleepq_t *sq, wchan_t wchan)
354 1.1.2.1 ad {
355 1.1.2.1 ad struct lwp *l, *bl;
356 1.1.2.1 ad int bpri, swapin;
357 1.1.2.1 ad
358 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
359 1.1.2.1 ad
360 1.1.2.1 ad swapin = 0;
361 1.1.2.1 ad bpri = MAXPRI;
362 1.1.2.1 ad bl = NULL;
363 1.1.2.1 ad
364 1.1.2.1 ad TAILQ_FOREACH(l, &sq->sq_queue, l_sleepq) {
365 1.1.2.1 ad if (l->l_wchan != wchan || l->l_priority > bpri)
366 1.1.2.1 ad continue;
367 1.1.2.1 ad bl = l;
368 1.1.2.1 ad bpri = l->l_priority;
369 1.1.2.1 ad }
370 1.1.2.1 ad
371 1.1.2.1 ad if (bl != NULL) {
372 1.1.2.4 ad sched_lock();
373 1.1.2.1 ad swapin = sleepq_remove(sq, bl);
374 1.1.2.4 ad sched_unlock();
375 1.1.2.1 ad }
376 1.1.2.1 ad
377 1.1.2.1 ad mutex_exit(sq->sq_mutex);
378 1.1.2.1 ad
379 1.1.2.1 ad if (swapin)
380 1.1.2.1 ad wakeup(&proc0);
381 1.1.2.1 ad }
382 1.1.2.1 ad
383 1.1.2.1 ad /*
384 1.1.2.1 ad * sleepq_wakeall:
385 1.1.2.1 ad *
386 1.1.2.1 ad * Wake all LWPs blocked on a single wait channel.
387 1.1.2.1 ad */
388 1.1.2.1 ad void
389 1.1.2.1 ad sleepq_wakeall(sleepq_t *sq, wchan_t wchan, u_int expected)
390 1.1.2.1 ad {
391 1.1.2.1 ad struct lwp *l, *next;
392 1.1.2.1 ad int swapin = 0;
393 1.1.2.1 ad
394 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
395 1.1.2.1 ad
396 1.1.2.4 ad sched_lock();
397 1.1.2.1 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
398 1.1.2.1 ad next = TAILQ_NEXT(l, l_sleepq);
399 1.1.2.1 ad if (l->l_wchan != wchan)
400 1.1.2.1 ad continue;
401 1.1.2.1 ad swapin |= sleepq_remove(sq, l);
402 1.1.2.1 ad if (--expected == 0)
403 1.1.2.1 ad break;
404 1.1.2.1 ad }
405 1.1.2.4 ad sched_unlock();
406 1.1.2.1 ad
407 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
408 1.1.2.1 ad mutex_exit(sq->sq_mutex);
409 1.1.2.1 ad
410 1.1.2.1 ad /*
411 1.1.2.1 ad * If there are newly awakend threads that need to be swapped in,
412 1.1.2.1 ad * then kick the swapper into action.
413 1.1.2.1 ad */
414 1.1.2.1 ad if (swapin)
415 1.1.2.1 ad wakeup(&proc0);
416 1.1.2.1 ad }
417 1.1.2.1 ad
418 1.1.2.1 ad /*
419 1.1.2.1 ad * sleepq_unsleep:
420 1.1.2.1 ad *
421 1.1.2.1 ad * Remove an LWP from its sleep queue and set it runnable again.
422 1.1.2.1 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
423 1.1.2.1 ad * always release it.
424 1.1.2.1 ad */
425 1.1.2.1 ad void
426 1.1.2.1 ad sleepq_unsleep(struct lwp *l)
427 1.1.2.1 ad {
428 1.1.2.1 ad sleepq_t *sq;
429 1.1.2.1 ad int swapin;
430 1.1.2.1 ad
431 1.1.2.1 ad sq = &sleeptab[SLEEPTAB_HASH(l->l_wchan)];
432 1.1.2.1 ad KASSERT(l->l_wchan != NULL);
433 1.1.2.1 ad KASSERT(l->l_mutex == sq->sq_mutex);
434 1.1.2.1 ad
435 1.1.2.4 ad sched_lock();
436 1.1.2.1 ad swapin = sleepq_remove(sq, l);
437 1.1.2.4 ad sched_unlock();
438 1.1.2.1 ad
439 1.1.2.1 ad mutex_exit(sq->sq_mutex);
440 1.1.2.1 ad
441 1.1.2.1 ad if (swapin)
442 1.1.2.1 ad wakeup(&proc0);
443 1.1.2.1 ad }
444 1.1.2.1 ad
445 1.1.2.1 ad /*
446 1.1.2.1 ad * sleepq_timeout:
447 1.1.2.1 ad *
448 1.1.2.1 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
449 1.1.2.1 ad * sleep queue.
450 1.1.2.1 ad */
451 1.1.2.1 ad void
452 1.1.2.1 ad sleepq_timeout(void *arg)
453 1.1.2.1 ad {
454 1.1.2.1 ad struct lwp *l = arg;
455 1.1.2.1 ad
456 1.1.2.1 ad /*
457 1.1.2.1 ad * Lock the LWP. Assuming it's still on the sleep queue, its
458 1.1.2.1 ad * current mutex will also be the sleep queue mutex.
459 1.1.2.1 ad */
460 1.1.2.1 ad lwp_lock(l);
461 1.1.2.1 ad
462 1.1.2.1 ad if (l->l_wchan == NULL) {
463 1.1.2.1 ad /* Somebody beat us to it. */
464 1.1.2.1 ad lwp_unlock(l);
465 1.1.2.1 ad return;
466 1.1.2.1 ad }
467 1.1.2.1 ad
468 1.1.2.1 ad sleepq_unsleep(arg);
469 1.1.2.1 ad }
470 1.1.2.1 ad
471 1.1.2.1 ad /*
472 1.1.2.1 ad * sleepq_sigtoerror:
473 1.1.2.1 ad *
474 1.1.2.1 ad * Given a signal number, interpret and return an error code.
475 1.1.2.1 ad */
476 1.1.2.1 ad int
477 1.1.2.1 ad sleepq_sigtoerror(struct lwp *l, int sig)
478 1.1.2.1 ad {
479 1.1.2.3 ad struct proc *p = l->l_proc;
480 1.1.2.1 ad int error;
481 1.1.2.1 ad
482 1.1.2.3 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
483 1.1.2.3 ad
484 1.1.2.1 ad /*
485 1.1.2.1 ad * If this sleep was canceled, don't let the syscall restart.
486 1.1.2.1 ad */
487 1.1.2.1 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
488 1.1.2.1 ad error = EINTR;
489 1.1.2.1 ad else
490 1.1.2.1 ad error = ERESTART;
491 1.1.2.1 ad
492 1.1.2.1 ad return error;
493 1.1.2.1 ad }
494 1.1.2.1 ad
495 1.1.2.1 ad /*
496 1.1.2.1 ad * sleepq_abort:
497 1.1.2.1 ad *
498 1.1.2.1 ad * After a panic or during autoconfiguration, lower the interrupt
499 1.1.2.1 ad * priority level to give pending interrupts a chance to run, and
500 1.1.2.1 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
501 1.1.2.1 ad * always returns zero.
502 1.1.2.1 ad */
503 1.1.2.1 ad int
504 1.1.2.1 ad sleepq_abort(kmutex_t *mtx, int unlock)
505 1.1.2.1 ad {
506 1.1.2.1 ad extern int safepri;
507 1.1.2.1 ad int s;
508 1.1.2.1 ad
509 1.1.2.1 ad s = splhigh();
510 1.1.2.1 ad splx(safepri);
511 1.1.2.1 ad splx(s);
512 1.1.2.1 ad if (mtx != NULL && unlock != 0)
513 1.1.2.1 ad mutex_exit(mtx);
514 1.1.2.1 ad
515 1.1.2.1 ad return 0;
516 1.1.2.1 ad }
517