kern_sleepq.c revision 1.1.2.5 1 1.1.2.5 ad /* $NetBSD: kern_sleepq.c,v 1.1.2.5 2006/11/17 16:34:36 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.1 ad * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.1.2.1 ad * interfaces.
42 1.1.2.1 ad */
43 1.1.2.1 ad
44 1.1.2.1 ad #include <sys/cdefs.h>
45 1.1.2.5 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.5 2006/11/17 16:34:36 ad Exp $");
46 1.1.2.5 ad
47 1.1.2.5 ad #include "opt_multiprocessor.h"
48 1.1.2.5 ad #include "opt_lockdebug.h"
49 1.1.2.5 ad #include "opt_ktrace.h"
50 1.1.2.1 ad
51 1.1.2.1 ad #include <sys/param.h>
52 1.1.2.1 ad #include <sys/lock.h>
53 1.1.2.1 ad #include <sys/kernel.h>
54 1.1.2.1 ad #include <sys/pool.h>
55 1.1.2.1 ad #include <sys/proc.h>
56 1.1.2.1 ad #include <sys/resourcevar.h>
57 1.1.2.1 ad #include <sys/sched.h>
58 1.1.2.1 ad #include <sys/systm.h>
59 1.1.2.1 ad #include <sys/sa.h>
60 1.1.2.1 ad #include <sys/savar.h>
61 1.1.2.1 ad #include <sys/sleepq.h>
62 1.1.2.1 ad
63 1.1.2.5 ad #ifdef KTRACE
64 1.1.2.5 ad #include <sys/ktrace.h>
65 1.1.2.5 ad #endif
66 1.1.2.5 ad
67 1.1.2.1 ad int sleepq_sigtoerror(struct lwp *, int);
68 1.1.2.1 ad void updatepri(struct lwp *);
69 1.1.2.1 ad void sa_awaken(struct lwp *);
70 1.1.2.1 ad
71 1.1.2.5 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
72 1.1.2.5 ad sleeptab_t sleeptab;
73 1.1.2.1 ad
74 1.1.2.1 ad /*
75 1.1.2.1 ad * sleeptab_init:
76 1.1.2.1 ad *
77 1.1.2.5 ad * Initialize a sleep table.
78 1.1.2.1 ad */
79 1.1.2.1 ad void
80 1.1.2.5 ad sleeptab_init(sleeptab_t *st)
81 1.1.2.1 ad {
82 1.1.2.1 ad sleepq_t *sq;
83 1.1.2.1 ad int i;
84 1.1.2.1 ad
85 1.1.2.1 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
86 1.1.2.5 ad sq = &st->st_queues[i];
87 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
88 1.1.2.5 ad mutex_init(&st->st_mutexes[i], MUTEX_SPIN, IPL_SCHED);
89 1.1.2.5 ad sleepq_init(sq, &st->st_mutexes[i]);
90 1.1.2.1 ad #else
91 1.1.2.5 ad sleepq_init(sq, &sched_mutex);
92 1.1.2.1 ad #endif
93 1.1.2.1 ad }
94 1.1.2.1 ad }
95 1.1.2.1 ad
96 1.1.2.1 ad /*
97 1.1.2.1 ad * sleepq_init:
98 1.1.2.1 ad *
99 1.1.2.1 ad * Prepare a sleep queue for use.
100 1.1.2.1 ad */
101 1.1.2.1 ad void
102 1.1.2.1 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
103 1.1.2.1 ad {
104 1.1.2.1 ad
105 1.1.2.1 ad sq->sq_waiters = 0;
106 1.1.2.1 ad sq->sq_mutex = mtx;
107 1.1.2.1 ad TAILQ_INIT(&sq->sq_queue);
108 1.1.2.1 ad }
109 1.1.2.1 ad
110 1.1.2.1 ad /*
111 1.1.2.1 ad * sleepq_remove:
112 1.1.2.1 ad *
113 1.1.2.1 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
114 1.1.2.1 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
115 1.1.2.1 ad * to bring the LWP into memory.
116 1.1.2.1 ad */
117 1.1.2.1 ad int
118 1.1.2.1 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
119 1.1.2.1 ad {
120 1.1.2.4 ad struct cpu_info *ci;
121 1.1.2.1 ad
122 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
123 1.1.2.1 ad KASSERT(sq->sq_waiters > 0);
124 1.1.2.5 ad KASSERT(l->l_stat == LSSLEEP);
125 1.1.2.1 ad
126 1.1.2.1 ad sq->sq_waiters--;
127 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
128 1.1.2.1 ad
129 1.1.2.1 ad #ifdef DIAGNOSTIC
130 1.1.2.1 ad if (sq->sq_waiters == 0)
131 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
132 1.1.2.1 ad else
133 1.1.2.1 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
134 1.1.2.1 ad #endif
135 1.1.2.1 ad
136 1.1.2.5 ad l->l_syncobj = &sched_syncobj;
137 1.1.2.4 ad l->l_wchan = NULL;
138 1.1.2.5 ad l->l_sleepq = NULL;
139 1.1.2.4 ad l->l_flag &= ~L_SINTR;
140 1.1.2.4 ad
141 1.1.2.5 ad sched_lock(1);
142 1.1.2.4 ad lwp_setlock(l, &sched_mutex);
143 1.1.2.4 ad
144 1.1.2.4 ad /*
145 1.1.2.4 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
146 1.1.2.4 ad * about to call mi_switch(), in which case it will yield.
147 1.1.2.4 ad */
148 1.1.2.4 ad if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
149 1.1.2.1 ad l->l_stat = LSONPROC;
150 1.1.2.4 ad l->l_slptime = 0;
151 1.1.2.5 ad sched_unlock(1);
152 1.1.2.1 ad return 0;
153 1.1.2.1 ad }
154 1.1.2.1 ad
155 1.1.2.5 ad if (l->l_proc->p_sa)
156 1.1.2.5 ad sa_awaken(l);
157 1.1.2.5 ad
158 1.1.2.4 ad /*
159 1.1.2.4 ad * Set it running. We'll try to get the last CPU that ran
160 1.1.2.4 ad * this LWP to pick it up again.
161 1.1.2.4 ad */
162 1.1.2.5 ad if (l->l_stat == LSSLEEP)
163 1.1.2.5 ad l->l_stat = LSRUN;
164 1.1.2.1 ad if (l->l_slptime > 1)
165 1.1.2.1 ad updatepri(l);
166 1.1.2.4 ad l->l_slptime = 0;
167 1.1.2.1 ad if ((l->l_flag & L_INMEM) != 0) {
168 1.1.2.1 ad setrunqueue(l);
169 1.1.2.5 ad if (l->l_priority < ci->ci_schedstate.spc_curpriority)
170 1.1.2.5 ad cpu_need_resched(ci);
171 1.1.2.5 ad sched_unlock(1);
172 1.1.2.1 ad return 0;
173 1.1.2.1 ad }
174 1.1.2.1 ad
175 1.1.2.5 ad sched_unlock(1);
176 1.1.2.1 ad return 1;
177 1.1.2.1 ad }
178 1.1.2.1 ad
179 1.1.2.1 ad /*
180 1.1.2.5 ad * sleepq_insert:
181 1.1.2.5 ad *
182 1.1.2.5 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
183 1.1.2.5 ad */
184 1.1.2.5 ad static inline void
185 1.1.2.5 ad sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
186 1.1.2.5 ad {
187 1.1.2.5 ad struct lwp *l2, *l3 = NULL;
188 1.1.2.5 ad
189 1.1.2.5 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
190 1.1.2.5 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
191 1.1.2.5 ad l3 = l2;
192 1.1.2.5 ad if (l2->l_priority > pri)
193 1.1.2.5 ad break;
194 1.1.2.5 ad }
195 1.1.2.5 ad }
196 1.1.2.5 ad
197 1.1.2.5 ad if (l3 == NULL)
198 1.1.2.5 ad TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
199 1.1.2.5 ad else
200 1.1.2.5 ad TAILQ_INSERT_BEFORE(l3, l, l_sleepchain);
201 1.1.2.5 ad }
202 1.1.2.5 ad
203 1.1.2.5 ad /*
204 1.1.2.1 ad * sleepq_enter:
205 1.1.2.1 ad *
206 1.1.2.1 ad * Enter an LWP into the sleep queue and prepare for sleep. Any interlocking
207 1.1.2.1 ad * step such as releasing a mutex or checking for signals may be safely done
208 1.1.2.1 ad * by the caller once on the sleep queue.
209 1.1.2.1 ad */
210 1.1.2.1 ad void
211 1.1.2.1 ad sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
212 1.1.2.5 ad int catch, syncobj_t *sobj)
213 1.1.2.1 ad {
214 1.1.2.1 ad struct lwp *l = curlwp;
215 1.1.2.1 ad
216 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
217 1.1.2.5 ad KASSERT(l->l_stat == LSONPROC);
218 1.1.2.5 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
219 1.1.2.1 ad
220 1.1.2.1 ad #ifdef KTRACE
221 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
222 1.1.2.1 ad ktrcsw(l, 1, 0);
223 1.1.2.1 ad #endif
224 1.1.2.1 ad
225 1.1.2.1 ad sq->sq_waiters++;
226 1.1.2.1 ad
227 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
228 1.1.2.1 ad /*
229 1.1.2.5 ad * Acquire the per-LWP mutex and sort it into the sleep queue. Once
230 1.1.2.5 ad * we have that lock, we can release the kernel lock. XXXSMP Not
231 1.1.2.5 ad * yet, since checking for signals may call pool_put(). Otherwise
232 1.1.2.5 ad * this is OK.
233 1.1.2.1 ad */
234 1.1.2.1 ad lwp_lock(l);
235 1.1.2.1 ad
236 1.1.2.5 ad #ifdef notyet
237 1.1.2.5 ad l->l_biglocks = KERNEL_UNLOCK(0, l);
238 1.1.2.5 ad #endif
239 1.1.2.5 ad #endif
240 1.1.2.1 ad
241 1.1.2.5 ad l->l_syncobj = sobj;
242 1.1.2.1 ad l->l_wchan = wchan;
243 1.1.2.5 ad l->l_sleepq = sq;
244 1.1.2.1 ad l->l_wmesg = wmesg;
245 1.1.2.1 ad l->l_slptime = 0;
246 1.1.2.5 ad l->l_priority = pri;
247 1.1.2.5 ad l->l_stat = LSSLEEP;
248 1.1.2.5 ad l->l_nvcsw++;
249 1.1.2.5 ad
250 1.1.2.1 ad if (catch)
251 1.1.2.1 ad l->l_flag |= L_SINTR;
252 1.1.2.5 ad
253 1.1.2.5 ad sleepq_insert(sq, l, pri, sobj);
254 1.1.2.1 ad
255 1.1.2.1 ad if (timo)
256 1.1.2.1 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
257 1.1.2.1 ad
258 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
259 1.1.2.1 ad /*
260 1.1.2.1 ad * The LWP is now on the sleep queue. Release its old mutex and
261 1.1.2.1 ad * lend it ours for the duration of the sleep.
262 1.1.2.1 ad */
263 1.1.2.5 ad lwp_unlock_to(l, sq->sq_mutex);
264 1.1.2.4 ad #endif
265 1.1.2.1 ad }
266 1.1.2.1 ad
267 1.1.2.1 ad /*
268 1.1.2.1 ad * sleepq_block:
269 1.1.2.1 ad *
270 1.1.2.1 ad * The calling LWP has been entered into the sleep queue by
271 1.1.2.1 ad * sleepq_enter(), and now wants to block. sleepq_block() may return
272 1.1.2.1 ad * early under exceptional conditions, for example if the LWP's process
273 1.1.2.1 ad * is exiting. sleepq_block() must be called if sleepq_enter() has
274 1.1.2.1 ad * been called.
275 1.1.2.1 ad */
276 1.1.2.1 ad int
277 1.1.2.1 ad sleepq_block(sleepq_t *sq, int timo)
278 1.1.2.1 ad {
279 1.1.2.1 ad int error, flag, expired, sig;
280 1.1.2.1 ad struct lwp *l = curlwp;
281 1.1.2.1 ad struct proc *p;
282 1.1.2.1 ad
283 1.1.2.1 ad LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
284 1.1.2.1 ad
285 1.1.2.5 ad p = l->l_proc;
286 1.1.2.1 ad flag = l->l_flag;
287 1.1.2.1 ad error = 0;
288 1.1.2.1 ad
289 1.1.2.1 ad /*
290 1.1.2.1 ad * If sleeping interruptably, check for pending signals, exits or
291 1.1.2.1 ad * core dump events.
292 1.1.2.1 ad */
293 1.1.2.1 ad if ((flag & L_SINTR) != 0) {
294 1.1.2.1 ad while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
295 1.1.2.1 ad lwp_unlock(l);
296 1.1.2.1 ad mutex_enter(&p->p_smutex);
297 1.1.2.1 ad if ((sig = issignal(l)) != 0)
298 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
299 1.1.2.1 ad mutex_exit(&p->p_smutex);
300 1.1.2.1 ad lwp_lock(l);
301 1.1.2.1 ad }
302 1.1.2.1 ad
303 1.1.2.5 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0) {
304 1.1.2.5 ad l->l_flag &= ~L_CANCELLED;
305 1.1.2.1 ad error = EINTR;
306 1.1.2.5 ad }
307 1.1.2.5 ad
308 1.1.2.5 ad if (l->l_wchan != NULL) {
309 1.1.2.5 ad if (error != 0) {
310 1.1.2.5 ad KASSERT(l->l_stat == LSSLEEP);
311 1.1.2.5 ad sleepq_remove(sq, l);
312 1.1.2.5 ad mutex_exit(sq->sq_mutex);
313 1.1.2.5 ad }
314 1.1.2.5 ad } else {
315 1.1.2.5 ad KASSERT(l->l_stat == LSONPROC);
316 1.1.2.5 ad lwp_unlock(l);
317 1.1.2.5 ad }
318 1.1.2.1 ad }
319 1.1.2.1 ad
320 1.1.2.5 ad if (l->l_stat == LSSLEEP) {
321 1.1.2.5 ad KASSERT(l->l_wchan != NULL);
322 1.1.2.5 ad
323 1.1.2.5 ad if ((flag & L_SA) != 0)
324 1.1.2.4 ad sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
325 1.1.2.5 ad else {
326 1.1.2.4 ad mi_switch(l, NULL);
327 1.1.2.4 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
328 1.1.2.4 ad }
329 1.1.2.1 ad }
330 1.1.2.1 ad
331 1.1.2.5 ad /* When we reach this point, the LWP is unlocked. */
332 1.1.2.5 ad
333 1.1.2.5 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
334 1.1.2.1 ad
335 1.1.2.1 ad if (timo) {
336 1.1.2.1 ad /*
337 1.1.2.1 ad * Even if the callout appears to have fired, we need to
338 1.1.2.1 ad * stop it in order to synchronise with other CPUs.
339 1.1.2.1 ad */
340 1.1.2.1 ad expired = callout_expired(&l->l_tsleep_ch);
341 1.1.2.1 ad callout_stop(&l->l_tsleep_ch);
342 1.1.2.4 ad if (expired && error == 0)
343 1.1.2.5 ad error = EWOULDBLOCK;
344 1.1.2.1 ad }
345 1.1.2.1 ad
346 1.1.2.4 ad if (error == 0 && (flag & L_SINTR) != 0) {
347 1.1.2.1 ad if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
348 1.1.2.1 ad error = EINTR;
349 1.1.2.1 ad else if ((l->l_flag & L_PENDSIG) != 0) {
350 1.1.2.1 ad mutex_enter(&p->p_smutex);
351 1.1.2.1 ad if ((sig = issignal(l)) != 0)
352 1.1.2.1 ad error = sleepq_sigtoerror(l, sig);
353 1.1.2.1 ad mutex_exit(&p->p_smutex);
354 1.1.2.1 ad }
355 1.1.2.1 ad }
356 1.1.2.1 ad
357 1.1.2.5 ad return error;
358 1.1.2.5 ad }
359 1.1.2.5 ad
360 1.1.2.5 ad /*
361 1.1.2.5 ad * sleepq_unblock:
362 1.1.2.5 ad *
363 1.1.2.5 ad * After any intermediate step such as updating statistics, re-acquire
364 1.1.2.5 ad * the kernel lock and record the switch for ktrace. Note that we are
365 1.1.2.5 ad * no longer on the sleep queue at this point.
366 1.1.2.5 ad */
367 1.1.2.5 ad void
368 1.1.2.5 ad sleepq_unblock(void)
369 1.1.2.5 ad {
370 1.1.2.5 ad struct lwp *l = curlwp;
371 1.1.2.5 ad
372 1.1.2.5 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
373 1.1.2.5 ad #ifdef notyet
374 1.1.2.5 ad /*
375 1.1.2.5 ad * Re-acquire the kernel lock. XXXSMP Let mi_switch() take care of
376 1.1.2.5 ad * it, until we can release the lock in sleepq_block().
377 1.1.2.5 ad */
378 1.1.2.5 ad KERNEL_LOCK(l->l_biglocks, l);
379 1.1.2.5 ad #endif
380 1.1.2.5 ad #endif
381 1.1.2.5 ad
382 1.1.2.1 ad #ifdef KTRACE
383 1.1.2.5 ad if (KTRPOINT(l->l_proc, KTR_CSW))
384 1.1.2.1 ad ktrcsw(l, 0, 0);
385 1.1.2.1 ad #endif
386 1.1.2.1 ad }
387 1.1.2.1 ad
388 1.1.2.1 ad /*
389 1.1.2.1 ad * sleepq_wakeone:
390 1.1.2.1 ad *
391 1.1.2.5 ad * Remove the highest priority LWP from the sleep queue and wake it.
392 1.1.2.1 ad */
393 1.1.2.1 ad void
394 1.1.2.1 ad sleepq_wakeone(sleepq_t *sq, wchan_t wchan)
395 1.1.2.1 ad {
396 1.1.2.5 ad struct lwp *l;
397 1.1.2.5 ad int swapin;
398 1.1.2.1 ad
399 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
400 1.1.2.1 ad
401 1.1.2.1 ad swapin = 0;
402 1.1.2.1 ad
403 1.1.2.5 ad if ((l = TAILQ_FIRST(&sq->sq_queue)) != NULL)
404 1.1.2.5 ad swapin = sleepq_remove(sq, l);
405 1.1.2.1 ad
406 1.1.2.1 ad mutex_exit(sq->sq_mutex);
407 1.1.2.1 ad
408 1.1.2.1 ad if (swapin)
409 1.1.2.1 ad wakeup(&proc0);
410 1.1.2.1 ad }
411 1.1.2.1 ad
412 1.1.2.1 ad /*
413 1.1.2.1 ad * sleepq_wakeall:
414 1.1.2.1 ad *
415 1.1.2.1 ad * Wake all LWPs blocked on a single wait channel.
416 1.1.2.1 ad */
417 1.1.2.1 ad void
418 1.1.2.1 ad sleepq_wakeall(sleepq_t *sq, wchan_t wchan, u_int expected)
419 1.1.2.1 ad {
420 1.1.2.1 ad struct lwp *l, *next;
421 1.1.2.1 ad int swapin = 0;
422 1.1.2.1 ad
423 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
424 1.1.2.1 ad
425 1.1.2.1 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
426 1.1.2.5 ad KASSERT(l->l_sleepq == sq);
427 1.1.2.5 ad next = TAILQ_NEXT(l, l_sleepchain);
428 1.1.2.1 ad if (l->l_wchan != wchan)
429 1.1.2.1 ad continue;
430 1.1.2.1 ad swapin |= sleepq_remove(sq, l);
431 1.1.2.1 ad if (--expected == 0)
432 1.1.2.1 ad break;
433 1.1.2.1 ad }
434 1.1.2.1 ad
435 1.1.2.1 ad LOCK_ASSERT(mutex_owned(sq->sq_mutex));
436 1.1.2.1 ad mutex_exit(sq->sq_mutex);
437 1.1.2.1 ad
438 1.1.2.1 ad /*
439 1.1.2.1 ad * If there are newly awakend threads that need to be swapped in,
440 1.1.2.1 ad * then kick the swapper into action.
441 1.1.2.1 ad */
442 1.1.2.1 ad if (swapin)
443 1.1.2.1 ad wakeup(&proc0);
444 1.1.2.1 ad }
445 1.1.2.1 ad
446 1.1.2.1 ad /*
447 1.1.2.1 ad * sleepq_unsleep:
448 1.1.2.1 ad *
449 1.1.2.1 ad * Remove an LWP from its sleep queue and set it runnable again.
450 1.1.2.1 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
451 1.1.2.1 ad * always release it.
452 1.1.2.1 ad */
453 1.1.2.1 ad void
454 1.1.2.1 ad sleepq_unsleep(struct lwp *l)
455 1.1.2.1 ad {
456 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
457 1.1.2.1 ad int swapin;
458 1.1.2.1 ad
459 1.1.2.5 ad LOCK_ASSERT(lwp_locked(l, NULL));
460 1.1.2.1 ad KASSERT(l->l_wchan != NULL);
461 1.1.2.1 ad KASSERT(l->l_mutex == sq->sq_mutex);
462 1.1.2.1 ad
463 1.1.2.1 ad swapin = sleepq_remove(sq, l);
464 1.1.2.1 ad mutex_exit(sq->sq_mutex);
465 1.1.2.1 ad
466 1.1.2.1 ad if (swapin)
467 1.1.2.1 ad wakeup(&proc0);
468 1.1.2.1 ad }
469 1.1.2.1 ad
470 1.1.2.1 ad /*
471 1.1.2.1 ad * sleepq_timeout:
472 1.1.2.1 ad *
473 1.1.2.1 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
474 1.1.2.1 ad * sleep queue.
475 1.1.2.1 ad */
476 1.1.2.1 ad void
477 1.1.2.1 ad sleepq_timeout(void *arg)
478 1.1.2.1 ad {
479 1.1.2.1 ad struct lwp *l = arg;
480 1.1.2.1 ad
481 1.1.2.1 ad /*
482 1.1.2.1 ad * Lock the LWP. Assuming it's still on the sleep queue, its
483 1.1.2.1 ad * current mutex will also be the sleep queue mutex.
484 1.1.2.1 ad */
485 1.1.2.1 ad lwp_lock(l);
486 1.1.2.1 ad
487 1.1.2.1 ad if (l->l_wchan == NULL) {
488 1.1.2.1 ad /* Somebody beat us to it. */
489 1.1.2.1 ad lwp_unlock(l);
490 1.1.2.1 ad return;
491 1.1.2.1 ad }
492 1.1.2.1 ad
493 1.1.2.5 ad sleepq_unsleep(l);
494 1.1.2.1 ad }
495 1.1.2.1 ad
496 1.1.2.1 ad /*
497 1.1.2.1 ad * sleepq_sigtoerror:
498 1.1.2.1 ad *
499 1.1.2.1 ad * Given a signal number, interpret and return an error code.
500 1.1.2.1 ad */
501 1.1.2.1 ad int
502 1.1.2.1 ad sleepq_sigtoerror(struct lwp *l, int sig)
503 1.1.2.1 ad {
504 1.1.2.3 ad struct proc *p = l->l_proc;
505 1.1.2.1 ad int error;
506 1.1.2.1 ad
507 1.1.2.3 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
508 1.1.2.3 ad
509 1.1.2.1 ad /*
510 1.1.2.1 ad * If this sleep was canceled, don't let the syscall restart.
511 1.1.2.1 ad */
512 1.1.2.1 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
513 1.1.2.1 ad error = EINTR;
514 1.1.2.1 ad else
515 1.1.2.1 ad error = ERESTART;
516 1.1.2.1 ad
517 1.1.2.1 ad return error;
518 1.1.2.1 ad }
519 1.1.2.1 ad
520 1.1.2.1 ad /*
521 1.1.2.1 ad * sleepq_abort:
522 1.1.2.1 ad *
523 1.1.2.1 ad * After a panic or during autoconfiguration, lower the interrupt
524 1.1.2.1 ad * priority level to give pending interrupts a chance to run, and
525 1.1.2.1 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
526 1.1.2.1 ad * always returns zero.
527 1.1.2.1 ad */
528 1.1.2.1 ad int
529 1.1.2.1 ad sleepq_abort(kmutex_t *mtx, int unlock)
530 1.1.2.1 ad {
531 1.1.2.1 ad extern int safepri;
532 1.1.2.1 ad int s;
533 1.1.2.1 ad
534 1.1.2.1 ad s = splhigh();
535 1.1.2.1 ad splx(safepri);
536 1.1.2.1 ad splx(s);
537 1.1.2.1 ad if (mtx != NULL && unlock != 0)
538 1.1.2.1 ad mutex_exit(mtx);
539 1.1.2.1 ad
540 1.1.2.1 ad return 0;
541 1.1.2.1 ad }
542 1.1.2.5 ad
543 1.1.2.5 ad /*
544 1.1.2.5 ad * sleepq_changepri:
545 1.1.2.5 ad *
546 1.1.2.5 ad * Adjust the priority of an LWP residing on a sleepq.
547 1.1.2.5 ad */
548 1.1.2.5 ad void
549 1.1.2.5 ad sleepq_changepri(struct lwp *l, int pri)
550 1.1.2.5 ad {
551 1.1.2.5 ad sleepq_t *sq = l->l_sleepq;
552 1.1.2.5 ad
553 1.1.2.5 ad KASSERT(lwp_locked(l, sq->sq_mutex));
554 1.1.2.5 ad
555 1.1.2.5 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
556 1.1.2.5 ad sleepq_insert(sq, l, pri, l->l_syncobj);
557 1.1.2.5 ad }
558