Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.16
      1  1.16  rmind /*	$NetBSD: kern_sleepq.c,v 1.16 2007/10/13 00:13:05 rmind Exp $	*/
      2   1.2     ad 
      3   1.2     ad /*-
      4   1.2     ad  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5   1.2     ad  * All rights reserved.
      6   1.2     ad  *
      7   1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2     ad  * by Andrew Doran.
      9   1.2     ad  *
     10   1.2     ad  * Redistribution and use in source and binary forms, with or without
     11   1.2     ad  * modification, are permitted provided that the following conditions
     12   1.2     ad  * are met:
     13   1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2     ad  *    documentation and/or other materials provided with the distribution.
     18   1.2     ad  * 3. All advertising materials mentioning features or use of this software
     19   1.2     ad  *    must display the following acknowledgement:
     20   1.2     ad  *	This product includes software developed by the NetBSD
     21   1.2     ad  *	Foundation, Inc. and its contributors.
     22   1.2     ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.2     ad  *    contributors may be used to endorse or promote products derived
     24   1.2     ad  *    from this software without specific prior written permission.
     25   1.2     ad  *
     26   1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.2     ad  */
     38   1.2     ad 
     39   1.2     ad /*
     40   1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41   1.2     ad  * interfaces.
     42   1.2     ad  */
     43   1.2     ad 
     44   1.2     ad #include <sys/cdefs.h>
     45  1.16  rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.16 2007/10/13 00:13:05 rmind Exp $");
     46   1.2     ad 
     47   1.2     ad #include <sys/param.h>
     48   1.2     ad #include <sys/lock.h>
     49   1.2     ad #include <sys/kernel.h>
     50   1.9   yamt #include <sys/cpu.h>
     51   1.2     ad #include <sys/pool.h>
     52   1.2     ad #include <sys/proc.h>
     53   1.2     ad #include <sys/resourcevar.h>
     54   1.2     ad #include <sys/sched.h>
     55   1.2     ad #include <sys/systm.h>
     56   1.2     ad #include <sys/sleepq.h>
     57   1.2     ad #include <sys/ktrace.h>
     58   1.2     ad 
     59   1.4     ad #include <uvm/uvm_extern.h>
     60   1.4     ad 
     61   1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     62   1.2     ad 
     63   1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     64   1.2     ad sleeptab_t	sleeptab;
     65   1.2     ad 
     66   1.2     ad /*
     67   1.2     ad  * sleeptab_init:
     68   1.2     ad  *
     69   1.2     ad  *	Initialize a sleep table.
     70   1.2     ad  */
     71   1.2     ad void
     72   1.2     ad sleeptab_init(sleeptab_t *st)
     73   1.2     ad {
     74   1.2     ad 	sleepq_t *sq;
     75   1.2     ad 	int i;
     76   1.2     ad 
     77   1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     78   1.2     ad 		sq = &st->st_queues[i].st_queue;
     79   1.2     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     80   1.2     ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     81   1.2     ad 	}
     82   1.2     ad }
     83   1.2     ad 
     84   1.2     ad /*
     85   1.2     ad  * sleepq_init:
     86   1.2     ad  *
     87   1.2     ad  *	Prepare a sleep queue for use.
     88   1.2     ad  */
     89   1.2     ad void
     90   1.2     ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     91   1.2     ad {
     92   1.2     ad 
     93   1.2     ad 	sq->sq_waiters = 0;
     94   1.2     ad 	sq->sq_mutex = mtx;
     95   1.2     ad 	TAILQ_INIT(&sq->sq_queue);
     96   1.2     ad }
     97   1.2     ad 
     98   1.2     ad /*
     99   1.2     ad  * sleepq_remove:
    100   1.2     ad  *
    101   1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    102   1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    103   1.2     ad  *	to bring the LWP into memory.
    104   1.2     ad  */
    105   1.2     ad int
    106   1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    107   1.2     ad {
    108   1.9   yamt 	struct schedstate_percpu *spc;
    109   1.2     ad 	struct cpu_info *ci;
    110  1.14     ad 	pri_t pri;
    111   1.2     ad 
    112   1.4     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    113   1.2     ad 	KASSERT(sq->sq_waiters > 0);
    114   1.2     ad 
    115   1.2     ad 	sq->sq_waiters--;
    116   1.2     ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    117   1.2     ad 
    118   1.2     ad #ifdef DIAGNOSTIC
    119   1.2     ad 	if (sq->sq_waiters == 0)
    120   1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    121   1.2     ad 	else
    122   1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    123   1.2     ad #endif
    124   1.2     ad 
    125   1.2     ad 	l->l_syncobj = &sched_syncobj;
    126   1.2     ad 	l->l_wchan = NULL;
    127   1.2     ad 	l->l_sleepq = NULL;
    128   1.5  pavel 	l->l_flag &= ~LW_SINTR;
    129   1.2     ad 
    130   1.9   yamt 	ci = l->l_cpu;
    131   1.9   yamt 	spc = &ci->ci_schedstate;
    132   1.9   yamt 
    133   1.2     ad 	/*
    134   1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    135   1.2     ad 	 * holds it stopped set it running again.
    136   1.2     ad 	 */
    137   1.2     ad 	if (l->l_stat != LSSLEEP) {
    138  1.16  rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    139   1.9   yamt 		lwp_setlock(l, &spc->spc_lwplock);
    140   1.2     ad 		return 0;
    141   1.2     ad 	}
    142   1.2     ad 
    143   1.2     ad 	/*
    144   1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    145   1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    146   1.2     ad 	 */
    147   1.9   yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    148   1.2     ad 		l->l_stat = LSONPROC;
    149   1.2     ad 		l->l_slptime = 0;
    150   1.9   yamt 		lwp_setlock(l, &spc->spc_lwplock);
    151   1.2     ad 		return 0;
    152   1.2     ad 	}
    153   1.2     ad 
    154   1.2     ad 	/*
    155  1.16  rmind 	 * Call the wake-up handler of scheduler.
    156  1.16  rmind 	 * It might change the CPU for this thread.
    157  1.16  rmind 	 */
    158  1.16  rmind 	sched_wakeup(l);
    159  1.16  rmind 	ci = l->l_cpu;
    160  1.16  rmind 	spc = &ci->ci_schedstate;
    161  1.16  rmind 
    162  1.16  rmind 	/*
    163   1.2     ad 	 * Set it running.  We'll try to get the last CPU that ran
    164   1.2     ad 	 * this LWP to pick it up again.
    165   1.2     ad 	 */
    166   1.9   yamt 	spc_lock(ci);
    167   1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    168   1.9   yamt 	sched_setrunnable(l);
    169   1.2     ad 	l->l_stat = LSRUN;
    170   1.2     ad 	l->l_slptime = 0;
    171   1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    172   1.9   yamt 		sched_enqueue(l, false);
    173  1.14     ad 		pri = lwp_eprio(l);
    174  1.14     ad 		/* XXX This test is not good enough! */
    175  1.14     ad 		if ((pri < spc->spc_curpriority && pri < PUSER) ||
    176  1.14     ad #ifdef MULTIPROCESSOR
    177  1.14     ad 		   ci->ci_curlwp == ci->ci_data.cpu_idlelwp) {
    178  1.14     ad #else
    179  1.14     ad 		   curlwp == ci->ci_data.cpu_idlelwp) {
    180  1.14     ad #endif
    181  1.14     ad 			cpu_need_resched(ci, RESCHED_IMMED);
    182  1.14     ad 		}
    183   1.9   yamt 		spc_unlock(ci);
    184   1.2     ad 		return 0;
    185   1.2     ad 	}
    186   1.9   yamt 	spc_unlock(ci);
    187   1.2     ad 	return 1;
    188   1.2     ad }
    189   1.2     ad 
    190   1.2     ad /*
    191   1.2     ad  * sleepq_insert:
    192   1.2     ad  *
    193   1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    194   1.2     ad  */
    195   1.2     ad inline void
    196   1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    197   1.2     ad {
    198   1.8     ad 	lwp_t *l2;
    199   1.6   yamt 	const int pri = lwp_eprio(l);
    200   1.2     ad 
    201   1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    202   1.2     ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    203   1.6   yamt 			if (lwp_eprio(l2) > pri) {
    204   1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    205   1.2     ad 				return;
    206   1.2     ad 			}
    207   1.2     ad 		}
    208   1.2     ad 	}
    209   1.2     ad 
    210  1.14     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    211  1.14     ad 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    212  1.14     ad 	else
    213  1.14     ad 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    214   1.2     ad }
    215   1.2     ad 
    216   1.9   yamt /*
    217   1.9   yamt  * sleepq_enqueue:
    218   1.9   yamt  *
    219   1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    220   1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    221   1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    222   1.9   yamt  */
    223   1.2     ad void
    224   1.7   yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    225   1.9   yamt 	       syncobj_t *sobj)
    226   1.2     ad {
    227   1.8     ad 	lwp_t *l = curlwp;
    228   1.2     ad 
    229   1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    230   1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    231   1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    232   1.2     ad 
    233   1.2     ad 	l->l_syncobj = sobj;
    234   1.2     ad 	l->l_wchan = wchan;
    235   1.2     ad 	l->l_sleepq = sq;
    236   1.2     ad 	l->l_wmesg = wmesg;
    237   1.2     ad 	l->l_slptime = 0;
    238   1.2     ad 	l->l_priority = pri;
    239   1.2     ad 	l->l_stat = LSSLEEP;
    240   1.2     ad 	l->l_sleeperr = 0;
    241   1.2     ad 
    242   1.2     ad 	sq->sq_waiters++;
    243   1.6   yamt 	sleepq_insert(sq, l, sobj);
    244  1.15  rmind 	sched_slept(l);
    245   1.6   yamt }
    246   1.6   yamt 
    247   1.9   yamt /*
    248   1.9   yamt  * sleepq_block:
    249   1.9   yamt  *
    250   1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    251   1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    252   1.9   yamt  * 	example if the LWP's containing process is exiting.
    253   1.9   yamt  */
    254   1.9   yamt int
    255   1.9   yamt sleepq_block(int timo, bool catch)
    256   1.6   yamt {
    257  1.10     ad 	int error = 0, sig;
    258   1.9   yamt 	struct proc *p;
    259   1.8     ad 	lwp_t *l = curlwp;
    260  1.11     ad 	bool early = false;
    261   1.2     ad 
    262  1.12     ad 	ktrcsw(1, 0);
    263   1.4     ad 
    264   1.2     ad 	/*
    265   1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    266   1.2     ad 	 * core dump events.
    267   1.2     ad 	 */
    268   1.2     ad 	if (catch) {
    269   1.5  pavel 		l->l_flag |= LW_SINTR;
    270   1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    271   1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    272  1.14     ad 			error = EINTR;
    273  1.14     ad 			early = true;
    274  1.14     ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    275  1.11     ad 			early = true;
    276   1.2     ad 	}
    277   1.2     ad 
    278  1.13   yamt 	if (early) {
    279  1.13   yamt 		/* lwp_unsleep() will release the lock */
    280  1.13   yamt 		lwp_unsleep(l);
    281  1.13   yamt 	} else {
    282  1.11     ad 		if (timo)
    283  1.14     ad 			callout_schedule(&l->l_timeout_ch, timo);
    284  1.11     ad 		mi_switch(l);
    285  1.11     ad 
    286  1.11     ad 		/* The LWP and sleep queue are now unlocked. */
    287  1.11     ad 		if (timo) {
    288  1.11     ad 			/*
    289  1.11     ad 			 * Even if the callout appears to have fired, we need to
    290  1.11     ad 			 * stop it in order to synchronise with other CPUs.
    291  1.11     ad 			 */
    292  1.14     ad 			if (callout_stop(&l->l_timeout_ch))
    293  1.11     ad 				error = EWOULDBLOCK;
    294  1.11     ad 		}
    295   1.2     ad 	}
    296   1.2     ad 
    297   1.9   yamt 	if (catch && error == 0) {
    298   1.2     ad 		p = l->l_proc;
    299   1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    300   1.2     ad 			error = EINTR;
    301   1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    302   1.2     ad 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() */
    303   1.2     ad 			mutex_enter(&p->p_smutex);
    304   1.2     ad 			if ((sig = issignal(l)) != 0)
    305   1.2     ad 				error = sleepq_sigtoerror(l, sig);
    306   1.2     ad 			mutex_exit(&p->p_smutex);
    307   1.2     ad 			KERNEL_UNLOCK_LAST(l);
    308   1.2     ad 		}
    309   1.2     ad 	}
    310   1.2     ad 
    311  1.12     ad 	ktrcsw(0, 0);
    312   1.2     ad 
    313   1.2     ad 	KERNEL_LOCK(l->l_biglocks, l);
    314   1.2     ad 	return error;
    315   1.2     ad }
    316   1.2     ad 
    317   1.2     ad /*
    318   1.2     ad  * sleepq_wake:
    319   1.2     ad  *
    320   1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    321   1.2     ad  */
    322   1.8     ad lwp_t *
    323   1.2     ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    324   1.2     ad {
    325   1.8     ad 	lwp_t *l, *next;
    326   1.2     ad 	int swapin = 0;
    327   1.2     ad 
    328   1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    329   1.2     ad 
    330   1.2     ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    331   1.2     ad 		KASSERT(l->l_sleepq == sq);
    332   1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    333   1.2     ad 		if (l->l_wchan != wchan)
    334   1.2     ad 			continue;
    335   1.2     ad 		swapin |= sleepq_remove(sq, l);
    336   1.2     ad 		if (--expected == 0)
    337   1.2     ad 			break;
    338   1.2     ad 	}
    339   1.2     ad 
    340   1.2     ad 	sleepq_unlock(sq);
    341   1.2     ad 
    342   1.2     ad 	/*
    343   1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    344   1.2     ad 	 * then kick the swapper into action.
    345   1.2     ad 	 */
    346   1.2     ad 	if (swapin)
    347   1.4     ad 		uvm_kick_scheduler();
    348   1.8     ad 
    349   1.8     ad 	return l;
    350   1.2     ad }
    351   1.2     ad 
    352   1.2     ad /*
    353   1.2     ad  * sleepq_unsleep:
    354   1.2     ad  *
    355   1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    356   1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    357   1.2     ad  *	always release it.
    358   1.2     ad  */
    359   1.2     ad void
    360   1.8     ad sleepq_unsleep(lwp_t *l)
    361   1.2     ad {
    362   1.2     ad 	sleepq_t *sq = l->l_sleepq;
    363   1.2     ad 	int swapin;
    364   1.2     ad 
    365   1.4     ad 	KASSERT(lwp_locked(l, NULL));
    366   1.2     ad 	KASSERT(l->l_wchan != NULL);
    367   1.2     ad 	KASSERT(l->l_mutex == sq->sq_mutex);
    368   1.2     ad 
    369   1.2     ad 	swapin = sleepq_remove(sq, l);
    370   1.2     ad 	sleepq_unlock(sq);
    371   1.2     ad 
    372   1.2     ad 	if (swapin)
    373   1.4     ad 		uvm_kick_scheduler();
    374   1.2     ad }
    375   1.2     ad 
    376   1.2     ad /*
    377   1.2     ad  * sleepq_timeout:
    378   1.2     ad  *
    379   1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    380   1.2     ad  *	sleep queue.
    381   1.2     ad  */
    382   1.2     ad void
    383   1.2     ad sleepq_timeout(void *arg)
    384   1.2     ad {
    385   1.8     ad 	lwp_t *l = arg;
    386   1.2     ad 
    387   1.2     ad 	/*
    388   1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    389   1.2     ad 	 * current mutex will also be the sleep queue mutex.
    390   1.2     ad 	 */
    391   1.2     ad 	lwp_lock(l);
    392   1.2     ad 
    393   1.2     ad 	if (l->l_wchan == NULL) {
    394   1.2     ad 		/* Somebody beat us to it. */
    395   1.2     ad 		lwp_unlock(l);
    396   1.2     ad 		return;
    397   1.2     ad 	}
    398   1.2     ad 
    399   1.2     ad 	lwp_unsleep(l);
    400   1.2     ad }
    401   1.2     ad 
    402   1.2     ad /*
    403   1.2     ad  * sleepq_sigtoerror:
    404   1.2     ad  *
    405   1.2     ad  *	Given a signal number, interpret and return an error code.
    406   1.2     ad  */
    407   1.2     ad int
    408   1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    409   1.2     ad {
    410   1.2     ad 	struct proc *p = l->l_proc;
    411   1.2     ad 	int error;
    412   1.2     ad 
    413   1.4     ad 	KASSERT(mutex_owned(&p->p_smutex));
    414   1.2     ad 
    415   1.2     ad 	/*
    416   1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    417   1.2     ad 	 */
    418   1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    419   1.2     ad 		error = EINTR;
    420   1.2     ad 	else
    421   1.2     ad 		error = ERESTART;
    422   1.2     ad 
    423   1.2     ad 	return error;
    424   1.2     ad }
    425   1.2     ad 
    426   1.2     ad /*
    427   1.2     ad  * sleepq_abort:
    428   1.2     ad  *
    429   1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    430   1.2     ad  *	priority level to give pending interrupts a chance to run, and
    431   1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    432   1.2     ad  *	always returns zero.
    433   1.2     ad  */
    434   1.2     ad int
    435   1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    436   1.2     ad {
    437   1.2     ad 	extern int safepri;
    438   1.2     ad 	int s;
    439   1.2     ad 
    440   1.2     ad 	s = splhigh();
    441   1.2     ad 	splx(safepri);
    442   1.2     ad 	splx(s);
    443   1.2     ad 	if (mtx != NULL && unlock != 0)
    444   1.2     ad 		mutex_exit(mtx);
    445   1.2     ad 
    446   1.2     ad 	return 0;
    447   1.2     ad }
    448   1.2     ad 
    449   1.2     ad /*
    450   1.2     ad  * sleepq_changepri:
    451   1.2     ad  *
    452   1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    453   1.2     ad  *	will only alter the user priority; the effective priority is
    454   1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    455   1.2     ad  */
    456   1.2     ad void
    457   1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    458   1.2     ad {
    459   1.2     ad 
    460   1.2     ad 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    461   1.2     ad 	l->l_usrpri = pri;
    462   1.2     ad }
    463   1.6   yamt 
    464   1.6   yamt void
    465   1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    466   1.6   yamt {
    467   1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    468   1.7   yamt 	pri_t opri;
    469   1.6   yamt 
    470   1.6   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    471   1.6   yamt 
    472   1.6   yamt 	opri = lwp_eprio(l);
    473   1.6   yamt 	l->l_inheritedprio = pri;
    474   1.6   yamt 
    475   1.6   yamt 	if (lwp_eprio(l) != opri &&
    476   1.6   yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    477   1.6   yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    478   1.6   yamt 		sleepq_insert(sq, l, l->l_syncobj);
    479   1.6   yamt 	}
    480   1.6   yamt }
    481