Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.25.2.3
      1  1.25.2.3   yamt /*	$NetBSD: kern_sleepq.c,v 1.25.2.3 2008/06/17 09:15:03 yamt Exp $	*/
      2       1.2     ad 
      3       1.2     ad /*-
      4      1.22     ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2     ad  * All rights reserved.
      6       1.2     ad  *
      7       1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2     ad  * by Andrew Doran.
      9       1.2     ad  *
     10       1.2     ad  * Redistribution and use in source and binary forms, with or without
     11       1.2     ad  * modification, are permitted provided that the following conditions
     12       1.2     ad  * are met:
     13       1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2     ad  *    documentation and/or other materials provided with the distribution.
     18       1.2     ad  *
     19       1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2     ad  */
     31       1.2     ad 
     32       1.2     ad /*
     33       1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2     ad  * interfaces.
     35       1.2     ad  */
     36       1.2     ad 
     37       1.2     ad #include <sys/cdefs.h>
     38  1.25.2.3   yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.25.2.3 2008/06/17 09:15:03 yamt Exp $");
     39       1.2     ad 
     40       1.2     ad #include <sys/param.h>
     41       1.2     ad #include <sys/kernel.h>
     42       1.9   yamt #include <sys/cpu.h>
     43       1.2     ad #include <sys/pool.h>
     44       1.2     ad #include <sys/proc.h>
     45       1.2     ad #include <sys/resourcevar.h>
     46       1.2     ad #include <sys/sched.h>
     47       1.2     ad #include <sys/systm.h>
     48       1.2     ad #include <sys/sleepq.h>
     49       1.2     ad #include <sys/ktrace.h>
     50       1.2     ad 
     51       1.4     ad #include <uvm/uvm_extern.h>
     52       1.4     ad 
     53       1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     54       1.2     ad 
     55       1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     56       1.2     ad sleeptab_t	sleeptab;
     57       1.2     ad 
     58       1.2     ad /*
     59       1.2     ad  * sleeptab_init:
     60       1.2     ad  *
     61       1.2     ad  *	Initialize a sleep table.
     62       1.2     ad  */
     63       1.2     ad void
     64       1.2     ad sleeptab_init(sleeptab_t *st)
     65       1.2     ad {
     66       1.2     ad 	sleepq_t *sq;
     67       1.2     ad 	int i;
     68       1.2     ad 
     69       1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     70       1.2     ad 		sq = &st->st_queues[i].st_queue;
     71      1.19     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     72      1.19     ad 		    IPL_SCHED);
     73  1.25.2.2   yamt 		sleepq_init(sq);
     74       1.2     ad 	}
     75       1.2     ad }
     76       1.2     ad 
     77       1.2     ad /*
     78       1.2     ad  * sleepq_init:
     79       1.2     ad  *
     80       1.2     ad  *	Prepare a sleep queue for use.
     81       1.2     ad  */
     82       1.2     ad void
     83  1.25.2.2   yamt sleepq_init(sleepq_t *sq)
     84       1.2     ad {
     85       1.2     ad 
     86  1.25.2.2   yamt 	TAILQ_INIT(sq);
     87       1.2     ad }
     88       1.2     ad 
     89       1.2     ad /*
     90       1.2     ad  * sleepq_remove:
     91       1.2     ad  *
     92       1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     93       1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     94       1.2     ad  *	to bring the LWP into memory.
     95       1.2     ad  */
     96       1.2     ad int
     97       1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
     98       1.2     ad {
     99       1.9   yamt 	struct schedstate_percpu *spc;
    100       1.2     ad 	struct cpu_info *ci;
    101       1.2     ad 
    102  1.25.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    103       1.2     ad 
    104  1.25.2.2   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    105       1.2     ad 	l->l_syncobj = &sched_syncobj;
    106       1.2     ad 	l->l_wchan = NULL;
    107       1.2     ad 	l->l_sleepq = NULL;
    108       1.5  pavel 	l->l_flag &= ~LW_SINTR;
    109       1.2     ad 
    110       1.9   yamt 	ci = l->l_cpu;
    111       1.9   yamt 	spc = &ci->ci_schedstate;
    112       1.9   yamt 
    113       1.2     ad 	/*
    114       1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    115       1.2     ad 	 * holds it stopped set it running again.
    116       1.2     ad 	 */
    117       1.2     ad 	if (l->l_stat != LSSLEEP) {
    118      1.16  rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    119      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    120       1.2     ad 		return 0;
    121       1.2     ad 	}
    122       1.2     ad 
    123       1.2     ad 	/*
    124       1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    125       1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    126       1.2     ad 	 */
    127  1.25.2.2   yamt 	if ((l->l_pflag & LP_RUNNING) != 0) {
    128       1.2     ad 		l->l_stat = LSONPROC;
    129       1.2     ad 		l->l_slptime = 0;
    130      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    131       1.2     ad 		return 0;
    132       1.2     ad 	}
    133       1.2     ad 
    134  1.25.2.2   yamt 	/* Update sleep time delta, call the wake-up handler of scheduler */
    135  1.25.2.2   yamt 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    136      1.16  rmind 	sched_wakeup(l);
    137  1.25.2.2   yamt 
    138  1.25.2.2   yamt 	/* Look for a CPU to wake up */
    139  1.25.2.2   yamt 	l->l_cpu = sched_takecpu(l);
    140      1.16  rmind 	ci = l->l_cpu;
    141      1.16  rmind 	spc = &ci->ci_schedstate;
    142      1.16  rmind 
    143      1.16  rmind 	/*
    144      1.17   yamt 	 * Set it running.
    145       1.2     ad 	 */
    146       1.9   yamt 	spc_lock(ci);
    147       1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    148       1.9   yamt 	sched_setrunnable(l);
    149       1.2     ad 	l->l_stat = LSRUN;
    150       1.2     ad 	l->l_slptime = 0;
    151       1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    152       1.9   yamt 		sched_enqueue(l, false);
    153       1.9   yamt 		spc_unlock(ci);
    154       1.2     ad 		return 0;
    155       1.2     ad 	}
    156       1.9   yamt 	spc_unlock(ci);
    157       1.2     ad 	return 1;
    158       1.2     ad }
    159       1.2     ad 
    160       1.2     ad /*
    161       1.2     ad  * sleepq_insert:
    162       1.2     ad  *
    163       1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    164       1.2     ad  */
    165       1.2     ad inline void
    166       1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    167       1.2     ad {
    168       1.8     ad 	lwp_t *l2;
    169       1.6   yamt 	const int pri = lwp_eprio(l);
    170       1.2     ad 
    171       1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    172  1.25.2.2   yamt 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    173      1.18     ad 			if (lwp_eprio(l2) < pri) {
    174       1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    175       1.2     ad 				return;
    176       1.2     ad 			}
    177       1.2     ad 		}
    178       1.2     ad 	}
    179       1.2     ad 
    180      1.14     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    181  1.25.2.2   yamt 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    182      1.14     ad 	else
    183  1.25.2.2   yamt 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    184       1.2     ad }
    185       1.2     ad 
    186       1.9   yamt /*
    187       1.9   yamt  * sleepq_enqueue:
    188       1.9   yamt  *
    189       1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    190       1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    191       1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    192       1.9   yamt  */
    193       1.2     ad void
    194      1.18     ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    195       1.2     ad {
    196       1.8     ad 	lwp_t *l = curlwp;
    197       1.2     ad 
    198  1.25.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    199       1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    200       1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    201       1.2     ad 
    202       1.2     ad 	l->l_syncobj = sobj;
    203       1.2     ad 	l->l_wchan = wchan;
    204       1.2     ad 	l->l_sleepq = sq;
    205       1.2     ad 	l->l_wmesg = wmesg;
    206       1.2     ad 	l->l_slptime = 0;
    207       1.2     ad 	l->l_stat = LSSLEEP;
    208       1.2     ad 	l->l_sleeperr = 0;
    209       1.2     ad 
    210       1.6   yamt 	sleepq_insert(sq, l, sobj);
    211  1.25.2.2   yamt 
    212  1.25.2.2   yamt 	/* Save the time when thread has slept */
    213  1.25.2.2   yamt 	l->l_slpticks = hardclock_ticks;
    214      1.15  rmind 	sched_slept(l);
    215       1.6   yamt }
    216       1.6   yamt 
    217       1.9   yamt /*
    218       1.9   yamt  * sleepq_block:
    219       1.9   yamt  *
    220       1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    221       1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    222       1.9   yamt  * 	example if the LWP's containing process is exiting.
    223       1.9   yamt  */
    224       1.9   yamt int
    225       1.9   yamt sleepq_block(int timo, bool catch)
    226       1.6   yamt {
    227      1.10     ad 	int error = 0, sig;
    228       1.9   yamt 	struct proc *p;
    229       1.8     ad 	lwp_t *l = curlwp;
    230      1.11     ad 	bool early = false;
    231       1.2     ad 
    232      1.12     ad 	ktrcsw(1, 0);
    233       1.4     ad 
    234       1.2     ad 	/*
    235       1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    236       1.2     ad 	 * core dump events.
    237       1.2     ad 	 */
    238       1.2     ad 	if (catch) {
    239       1.5  pavel 		l->l_flag |= LW_SINTR;
    240       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    241       1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    242      1.14     ad 			error = EINTR;
    243      1.14     ad 			early = true;
    244      1.14     ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    245      1.11     ad 			early = true;
    246       1.2     ad 	}
    247       1.2     ad 
    248      1.13   yamt 	if (early) {
    249      1.13   yamt 		/* lwp_unsleep() will release the lock */
    250      1.22     ad 		lwp_unsleep(l, true);
    251      1.13   yamt 	} else {
    252      1.11     ad 		if (timo)
    253      1.14     ad 			callout_schedule(&l->l_timeout_ch, timo);
    254      1.11     ad 		mi_switch(l);
    255      1.11     ad 
    256      1.11     ad 		/* The LWP and sleep queue are now unlocked. */
    257      1.11     ad 		if (timo) {
    258      1.11     ad 			/*
    259      1.11     ad 			 * Even if the callout appears to have fired, we need to
    260      1.11     ad 			 * stop it in order to synchronise with other CPUs.
    261      1.11     ad 			 */
    262  1.25.2.1   yamt 			if (callout_halt(&l->l_timeout_ch, NULL))
    263      1.11     ad 				error = EWOULDBLOCK;
    264      1.11     ad 		}
    265       1.2     ad 	}
    266       1.2     ad 
    267       1.9   yamt 	if (catch && error == 0) {
    268       1.2     ad 		p = l->l_proc;
    269       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    270       1.2     ad 			error = EINTR;
    271       1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    272  1.25.2.1   yamt 			mutex_enter(p->p_lock);
    273       1.2     ad 			if ((sig = issignal(l)) != 0)
    274       1.2     ad 				error = sleepq_sigtoerror(l, sig);
    275  1.25.2.1   yamt 			mutex_exit(p->p_lock);
    276       1.2     ad 		}
    277       1.2     ad 	}
    278       1.2     ad 
    279      1.12     ad 	ktrcsw(0, 0);
    280  1.25.2.2   yamt 	if (__predict_false(l->l_biglocks != 0)) {
    281  1.25.2.2   yamt 		KERNEL_LOCK(l->l_biglocks, NULL);
    282  1.25.2.2   yamt 	}
    283       1.2     ad 	return error;
    284       1.2     ad }
    285       1.2     ad 
    286       1.2     ad /*
    287       1.2     ad  * sleepq_wake:
    288       1.2     ad  *
    289       1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    290       1.2     ad  */
    291       1.8     ad lwp_t *
    292  1.25.2.2   yamt sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    293       1.2     ad {
    294       1.8     ad 	lwp_t *l, *next;
    295       1.2     ad 	int swapin = 0;
    296       1.2     ad 
    297  1.25.2.2   yamt 	KASSERT(mutex_owned(mp));
    298       1.2     ad 
    299  1.25.2.2   yamt 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    300       1.2     ad 		KASSERT(l->l_sleepq == sq);
    301  1.25.2.2   yamt 		KASSERT(l->l_mutex == mp);
    302       1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    303       1.2     ad 		if (l->l_wchan != wchan)
    304       1.2     ad 			continue;
    305       1.2     ad 		swapin |= sleepq_remove(sq, l);
    306       1.2     ad 		if (--expected == 0)
    307       1.2     ad 			break;
    308       1.2     ad 	}
    309       1.2     ad 
    310  1.25.2.2   yamt 	mutex_spin_exit(mp);
    311       1.2     ad 
    312       1.2     ad 	/*
    313       1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    314       1.2     ad 	 * then kick the swapper into action.
    315       1.2     ad 	 */
    316       1.2     ad 	if (swapin)
    317       1.4     ad 		uvm_kick_scheduler();
    318       1.8     ad 
    319       1.8     ad 	return l;
    320       1.2     ad }
    321       1.2     ad 
    322       1.2     ad /*
    323       1.2     ad  * sleepq_unsleep:
    324       1.2     ad  *
    325       1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    326       1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    327       1.2     ad  *	always release it.
    328       1.2     ad  */
    329      1.22     ad u_int
    330      1.22     ad sleepq_unsleep(lwp_t *l, bool cleanup)
    331       1.2     ad {
    332       1.2     ad 	sleepq_t *sq = l->l_sleepq;
    333  1.25.2.2   yamt 	kmutex_t *mp = l->l_mutex;
    334       1.2     ad 	int swapin;
    335       1.2     ad 
    336  1.25.2.2   yamt 	KASSERT(lwp_locked(l, mp));
    337       1.2     ad 	KASSERT(l->l_wchan != NULL);
    338       1.2     ad 
    339       1.2     ad 	swapin = sleepq_remove(sq, l);
    340       1.2     ad 
    341      1.22     ad 	if (cleanup) {
    342  1.25.2.2   yamt 		mutex_spin_exit(mp);
    343      1.22     ad 		if (swapin)
    344      1.22     ad 			uvm_kick_scheduler();
    345      1.22     ad 	}
    346      1.22     ad 
    347      1.22     ad 	return swapin;
    348       1.2     ad }
    349       1.2     ad 
    350       1.2     ad /*
    351       1.2     ad  * sleepq_timeout:
    352       1.2     ad  *
    353       1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    354       1.2     ad  *	sleep queue.
    355       1.2     ad  */
    356       1.2     ad void
    357       1.2     ad sleepq_timeout(void *arg)
    358       1.2     ad {
    359       1.8     ad 	lwp_t *l = arg;
    360       1.2     ad 
    361       1.2     ad 	/*
    362       1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    363       1.2     ad 	 * current mutex will also be the sleep queue mutex.
    364       1.2     ad 	 */
    365       1.2     ad 	lwp_lock(l);
    366       1.2     ad 
    367       1.2     ad 	if (l->l_wchan == NULL) {
    368       1.2     ad 		/* Somebody beat us to it. */
    369       1.2     ad 		lwp_unlock(l);
    370       1.2     ad 		return;
    371       1.2     ad 	}
    372       1.2     ad 
    373      1.22     ad 	lwp_unsleep(l, true);
    374       1.2     ad }
    375       1.2     ad 
    376       1.2     ad /*
    377       1.2     ad  * sleepq_sigtoerror:
    378       1.2     ad  *
    379       1.2     ad  *	Given a signal number, interpret and return an error code.
    380       1.2     ad  */
    381       1.2     ad int
    382       1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    383       1.2     ad {
    384       1.2     ad 	struct proc *p = l->l_proc;
    385       1.2     ad 	int error;
    386       1.2     ad 
    387  1.25.2.1   yamt 	KASSERT(mutex_owned(p->p_lock));
    388       1.2     ad 
    389       1.2     ad 	/*
    390       1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    391       1.2     ad 	 */
    392       1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    393       1.2     ad 		error = EINTR;
    394       1.2     ad 	else
    395       1.2     ad 		error = ERESTART;
    396       1.2     ad 
    397       1.2     ad 	return error;
    398       1.2     ad }
    399       1.2     ad 
    400       1.2     ad /*
    401       1.2     ad  * sleepq_abort:
    402       1.2     ad  *
    403       1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    404       1.2     ad  *	priority level to give pending interrupts a chance to run, and
    405       1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    406       1.2     ad  *	always returns zero.
    407       1.2     ad  */
    408       1.2     ad int
    409       1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    410       1.2     ad {
    411       1.2     ad 	extern int safepri;
    412       1.2     ad 	int s;
    413       1.2     ad 
    414       1.2     ad 	s = splhigh();
    415       1.2     ad 	splx(safepri);
    416       1.2     ad 	splx(s);
    417       1.2     ad 	if (mtx != NULL && unlock != 0)
    418       1.2     ad 		mutex_exit(mtx);
    419       1.2     ad 
    420       1.2     ad 	return 0;
    421       1.2     ad }
    422       1.2     ad 
    423       1.2     ad /*
    424       1.2     ad  * sleepq_changepri:
    425       1.2     ad  *
    426       1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    427       1.2     ad  *	will only alter the user priority; the effective priority is
    428       1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    429       1.2     ad  */
    430       1.2     ad void
    431       1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    432       1.2     ad {
    433      1.18     ad 	sleepq_t *sq = l->l_sleepq;
    434      1.18     ad 	pri_t opri;
    435      1.18     ad 
    436  1.25.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    437       1.2     ad 
    438      1.18     ad 	opri = lwp_eprio(l);
    439      1.18     ad 	l->l_priority = pri;
    440  1.25.2.3   yamt 
    441  1.25.2.3   yamt 	if (lwp_eprio(l) == opri) {
    442  1.25.2.3   yamt 		return;
    443  1.25.2.3   yamt 	}
    444  1.25.2.3   yamt 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    445  1.25.2.3   yamt 		return;
    446  1.25.2.3   yamt 	}
    447  1.25.2.3   yamt 
    448  1.25.2.3   yamt 	/*
    449  1.25.2.3   yamt 	 * Don't let the sleep queue become empty, even briefly.
    450  1.25.2.3   yamt 	 * cv_signal() and cv_broadcast() inspect it without the
    451  1.25.2.3   yamt 	 * sleep queue lock held and need to see a non-empty queue
    452  1.25.2.3   yamt 	 * head if there are waiters.
    453  1.25.2.3   yamt 	 */
    454  1.25.2.3   yamt 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    455  1.25.2.3   yamt 		return;
    456      1.18     ad 	}
    457  1.25.2.3   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    458  1.25.2.3   yamt 	sleepq_insert(sq, l, l->l_syncobj);
    459       1.2     ad }
    460       1.6   yamt 
    461       1.6   yamt void
    462       1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    463       1.6   yamt {
    464       1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    465       1.7   yamt 	pri_t opri;
    466       1.6   yamt 
    467  1.25.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    468       1.6   yamt 
    469       1.6   yamt 	opri = lwp_eprio(l);
    470       1.6   yamt 	l->l_inheritedprio = pri;
    471       1.6   yamt 
    472  1.25.2.3   yamt 	if (lwp_eprio(l) == opri) {
    473  1.25.2.3   yamt 		return;
    474  1.25.2.3   yamt 	}
    475  1.25.2.3   yamt 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    476  1.25.2.3   yamt 		return;
    477       1.6   yamt 	}
    478  1.25.2.3   yamt 
    479  1.25.2.3   yamt 	/*
    480  1.25.2.3   yamt 	 * Don't let the sleep queue become empty, even briefly.
    481  1.25.2.3   yamt 	 * cv_signal() and cv_broadcast() inspect it without the
    482  1.25.2.3   yamt 	 * sleep queue lock held and need to see a non-empty queue
    483  1.25.2.3   yamt 	 * head if there are waiters.
    484  1.25.2.3   yamt 	 */
    485  1.25.2.3   yamt 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    486  1.25.2.3   yamt 		return;
    487  1.25.2.3   yamt 	}
    488  1.25.2.3   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    489  1.25.2.3   yamt 	sleepq_insert(sq, l, l->l_syncobj);
    490       1.6   yamt }
    491