Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.27.2.1
      1  1.27.2.1   yamt /*	$NetBSD: kern_sleepq.c,v 1.27.2.1 2008/05/16 02:25:25 yamt Exp $	*/
      2       1.2     ad 
      3       1.2     ad /*-
      4      1.22     ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2     ad  * All rights reserved.
      6       1.2     ad  *
      7       1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2     ad  * by Andrew Doran.
      9       1.2     ad  *
     10       1.2     ad  * Redistribution and use in source and binary forms, with or without
     11       1.2     ad  * modification, are permitted provided that the following conditions
     12       1.2     ad  * are met:
     13       1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2     ad  *    documentation and/or other materials provided with the distribution.
     18       1.2     ad  *
     19       1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2     ad  */
     31       1.2     ad 
     32       1.2     ad /*
     33       1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2     ad  * interfaces.
     35       1.2     ad  */
     36       1.2     ad 
     37       1.2     ad #include <sys/cdefs.h>
     38  1.27.2.1   yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27.2.1 2008/05/16 02:25:25 yamt Exp $");
     39       1.2     ad 
     40       1.2     ad #include <sys/param.h>
     41       1.2     ad #include <sys/kernel.h>
     42       1.9   yamt #include <sys/cpu.h>
     43       1.2     ad #include <sys/pool.h>
     44       1.2     ad #include <sys/proc.h>
     45       1.2     ad #include <sys/resourcevar.h>
     46       1.2     ad #include <sys/sched.h>
     47       1.2     ad #include <sys/systm.h>
     48       1.2     ad #include <sys/sleepq.h>
     49       1.2     ad #include <sys/ktrace.h>
     50       1.2     ad 
     51       1.4     ad #include <uvm/uvm_extern.h>
     52       1.4     ad 
     53       1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     54       1.2     ad 
     55       1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     56       1.2     ad sleeptab_t	sleeptab;
     57       1.2     ad 
     58       1.2     ad /*
     59       1.2     ad  * sleeptab_init:
     60       1.2     ad  *
     61       1.2     ad  *	Initialize a sleep table.
     62       1.2     ad  */
     63       1.2     ad void
     64       1.2     ad sleeptab_init(sleeptab_t *st)
     65       1.2     ad {
     66       1.2     ad 	sleepq_t *sq;
     67       1.2     ad 	int i;
     68       1.2     ad 
     69       1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     70       1.2     ad 		sq = &st->st_queues[i].st_queue;
     71      1.19     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     72      1.19     ad 		    IPL_SCHED);
     73       1.2     ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     74       1.2     ad 	}
     75       1.2     ad }
     76       1.2     ad 
     77       1.2     ad /*
     78       1.2     ad  * sleepq_init:
     79       1.2     ad  *
     80       1.2     ad  *	Prepare a sleep queue for use.
     81       1.2     ad  */
     82       1.2     ad void
     83       1.2     ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     84       1.2     ad {
     85       1.2     ad 
     86       1.2     ad 	sq->sq_waiters = 0;
     87       1.2     ad 	sq->sq_mutex = mtx;
     88       1.2     ad 	TAILQ_INIT(&sq->sq_queue);
     89       1.2     ad }
     90       1.2     ad 
     91       1.2     ad /*
     92       1.2     ad  * sleepq_remove:
     93       1.2     ad  *
     94       1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     95       1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     96       1.2     ad  *	to bring the LWP into memory.
     97       1.2     ad  */
     98       1.2     ad int
     99       1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    100       1.2     ad {
    101       1.9   yamt 	struct schedstate_percpu *spc;
    102       1.2     ad 	struct cpu_info *ci;
    103       1.2     ad 
    104       1.4     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    105       1.2     ad 	KASSERT(sq->sq_waiters > 0);
    106       1.2     ad 
    107       1.2     ad 	sq->sq_waiters--;
    108       1.2     ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    109       1.2     ad 
    110       1.2     ad #ifdef DIAGNOSTIC
    111       1.2     ad 	if (sq->sq_waiters == 0)
    112       1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    113       1.2     ad 	else
    114       1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    115       1.2     ad #endif
    116       1.2     ad 
    117       1.2     ad 	l->l_syncobj = &sched_syncobj;
    118       1.2     ad 	l->l_wchan = NULL;
    119       1.2     ad 	l->l_sleepq = NULL;
    120       1.5  pavel 	l->l_flag &= ~LW_SINTR;
    121       1.2     ad 
    122       1.9   yamt 	ci = l->l_cpu;
    123       1.9   yamt 	spc = &ci->ci_schedstate;
    124       1.9   yamt 
    125       1.2     ad 	/*
    126       1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    127       1.2     ad 	 * holds it stopped set it running again.
    128       1.2     ad 	 */
    129       1.2     ad 	if (l->l_stat != LSSLEEP) {
    130      1.16  rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    131      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    132       1.2     ad 		return 0;
    133       1.2     ad 	}
    134       1.2     ad 
    135       1.2     ad 	/*
    136       1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    137       1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    138       1.2     ad 	 */
    139       1.9   yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    140       1.2     ad 		l->l_stat = LSONPROC;
    141       1.2     ad 		l->l_slptime = 0;
    142      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    143       1.2     ad 		return 0;
    144       1.2     ad 	}
    145       1.2     ad 
    146       1.2     ad 	/*
    147      1.16  rmind 	 * Call the wake-up handler of scheduler.
    148      1.16  rmind 	 * It might change the CPU for this thread.
    149      1.16  rmind 	 */
    150      1.16  rmind 	sched_wakeup(l);
    151      1.16  rmind 	ci = l->l_cpu;
    152      1.16  rmind 	spc = &ci->ci_schedstate;
    153      1.16  rmind 
    154      1.16  rmind 	/*
    155      1.17   yamt 	 * Set it running.
    156       1.2     ad 	 */
    157       1.9   yamt 	spc_lock(ci);
    158       1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    159       1.9   yamt 	sched_setrunnable(l);
    160       1.2     ad 	l->l_stat = LSRUN;
    161       1.2     ad 	l->l_slptime = 0;
    162       1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    163       1.9   yamt 		sched_enqueue(l, false);
    164       1.9   yamt 		spc_unlock(ci);
    165       1.2     ad 		return 0;
    166       1.2     ad 	}
    167       1.9   yamt 	spc_unlock(ci);
    168       1.2     ad 	return 1;
    169       1.2     ad }
    170       1.2     ad 
    171       1.2     ad /*
    172       1.2     ad  * sleepq_insert:
    173       1.2     ad  *
    174       1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    175       1.2     ad  */
    176       1.2     ad inline void
    177       1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    178       1.2     ad {
    179       1.8     ad 	lwp_t *l2;
    180       1.6   yamt 	const int pri = lwp_eprio(l);
    181       1.2     ad 
    182       1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    183       1.2     ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    184      1.18     ad 			if (lwp_eprio(l2) < pri) {
    185       1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    186       1.2     ad 				return;
    187       1.2     ad 			}
    188       1.2     ad 		}
    189       1.2     ad 	}
    190       1.2     ad 
    191      1.14     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    192      1.14     ad 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    193      1.14     ad 	else
    194      1.14     ad 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    195       1.2     ad }
    196       1.2     ad 
    197       1.9   yamt /*
    198       1.9   yamt  * sleepq_enqueue:
    199       1.9   yamt  *
    200       1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    201       1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    202       1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    203       1.9   yamt  */
    204       1.2     ad void
    205      1.18     ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    206       1.2     ad {
    207       1.8     ad 	lwp_t *l = curlwp;
    208       1.2     ad 
    209      1.24   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    210       1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    211       1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    212       1.2     ad 
    213       1.2     ad 	l->l_syncobj = sobj;
    214       1.2     ad 	l->l_wchan = wchan;
    215       1.2     ad 	l->l_sleepq = sq;
    216       1.2     ad 	l->l_wmesg = wmesg;
    217       1.2     ad 	l->l_slptime = 0;
    218       1.2     ad 	l->l_stat = LSSLEEP;
    219       1.2     ad 	l->l_sleeperr = 0;
    220       1.2     ad 
    221       1.2     ad 	sq->sq_waiters++;
    222       1.6   yamt 	sleepq_insert(sq, l, sobj);
    223      1.15  rmind 	sched_slept(l);
    224       1.6   yamt }
    225       1.6   yamt 
    226       1.9   yamt /*
    227       1.9   yamt  * sleepq_block:
    228       1.9   yamt  *
    229       1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    230       1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    231       1.9   yamt  * 	example if the LWP's containing process is exiting.
    232       1.9   yamt  */
    233       1.9   yamt int
    234       1.9   yamt sleepq_block(int timo, bool catch)
    235       1.6   yamt {
    236      1.10     ad 	int error = 0, sig;
    237       1.9   yamt 	struct proc *p;
    238       1.8     ad 	lwp_t *l = curlwp;
    239      1.11     ad 	bool early = false;
    240       1.2     ad 
    241      1.12     ad 	ktrcsw(1, 0);
    242       1.4     ad 
    243       1.2     ad 	/*
    244       1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    245       1.2     ad 	 * core dump events.
    246       1.2     ad 	 */
    247       1.2     ad 	if (catch) {
    248       1.5  pavel 		l->l_flag |= LW_SINTR;
    249       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250       1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    251      1.14     ad 			error = EINTR;
    252      1.14     ad 			early = true;
    253      1.14     ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254      1.11     ad 			early = true;
    255       1.2     ad 	}
    256       1.2     ad 
    257      1.13   yamt 	if (early) {
    258      1.13   yamt 		/* lwp_unsleep() will release the lock */
    259      1.22     ad 		lwp_unsleep(l, true);
    260      1.13   yamt 	} else {
    261      1.11     ad 		if (timo)
    262      1.14     ad 			callout_schedule(&l->l_timeout_ch, timo);
    263      1.11     ad 		mi_switch(l);
    264      1.11     ad 
    265      1.11     ad 		/* The LWP and sleep queue are now unlocked. */
    266      1.11     ad 		if (timo) {
    267      1.11     ad 			/*
    268      1.11     ad 			 * Even if the callout appears to have fired, we need to
    269      1.11     ad 			 * stop it in order to synchronise with other CPUs.
    270      1.11     ad 			 */
    271      1.26     ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    272      1.11     ad 				error = EWOULDBLOCK;
    273      1.11     ad 		}
    274       1.2     ad 	}
    275       1.2     ad 
    276       1.9   yamt 	if (catch && error == 0) {
    277       1.2     ad 		p = l->l_proc;
    278       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    279       1.2     ad 			error = EINTR;
    280       1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    281      1.27     ad 			mutex_enter(p->p_lock);
    282       1.2     ad 			if ((sig = issignal(l)) != 0)
    283       1.2     ad 				error = sleepq_sigtoerror(l, sig);
    284      1.27     ad 			mutex_exit(p->p_lock);
    285       1.2     ad 		}
    286       1.2     ad 	}
    287       1.2     ad 
    288      1.12     ad 	ktrcsw(0, 0);
    289       1.2     ad 
    290       1.2     ad 	KERNEL_LOCK(l->l_biglocks, l);
    291       1.2     ad 	return error;
    292       1.2     ad }
    293       1.2     ad 
    294       1.2     ad /*
    295       1.2     ad  * sleepq_wake:
    296       1.2     ad  *
    297       1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    298       1.2     ad  */
    299       1.8     ad lwp_t *
    300       1.2     ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    301       1.2     ad {
    302       1.8     ad 	lwp_t *l, *next;
    303       1.2     ad 	int swapin = 0;
    304       1.2     ad 
    305       1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    306       1.2     ad 
    307       1.2     ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    308       1.2     ad 		KASSERT(l->l_sleepq == sq);
    309      1.24   yamt 		KASSERT(l->l_mutex == sq->sq_mutex);
    310       1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    311       1.2     ad 		if (l->l_wchan != wchan)
    312       1.2     ad 			continue;
    313       1.2     ad 		swapin |= sleepq_remove(sq, l);
    314       1.2     ad 		if (--expected == 0)
    315       1.2     ad 			break;
    316       1.2     ad 	}
    317       1.2     ad 
    318       1.2     ad 	sleepq_unlock(sq);
    319       1.2     ad 
    320       1.2     ad 	/*
    321       1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    322       1.2     ad 	 * then kick the swapper into action.
    323       1.2     ad 	 */
    324       1.2     ad 	if (swapin)
    325       1.4     ad 		uvm_kick_scheduler();
    326       1.8     ad 
    327       1.8     ad 	return l;
    328       1.2     ad }
    329       1.2     ad 
    330       1.2     ad /*
    331       1.2     ad  * sleepq_unsleep:
    332       1.2     ad  *
    333       1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    334       1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    335       1.2     ad  *	always release it.
    336       1.2     ad  */
    337      1.22     ad u_int
    338      1.22     ad sleepq_unsleep(lwp_t *l, bool cleanup)
    339       1.2     ad {
    340       1.2     ad 	sleepq_t *sq = l->l_sleepq;
    341       1.2     ad 	int swapin;
    342       1.2     ad 
    343      1.24   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    344       1.2     ad 	KASSERT(l->l_wchan != NULL);
    345       1.2     ad 
    346       1.2     ad 	swapin = sleepq_remove(sq, l);
    347       1.2     ad 
    348      1.22     ad 	if (cleanup) {
    349      1.22     ad 		sleepq_unlock(sq);
    350      1.22     ad 		if (swapin)
    351      1.22     ad 			uvm_kick_scheduler();
    352      1.22     ad 	}
    353      1.22     ad 
    354      1.22     ad 	return swapin;
    355       1.2     ad }
    356       1.2     ad 
    357       1.2     ad /*
    358       1.2     ad  * sleepq_timeout:
    359       1.2     ad  *
    360       1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    361       1.2     ad  *	sleep queue.
    362       1.2     ad  */
    363       1.2     ad void
    364       1.2     ad sleepq_timeout(void *arg)
    365       1.2     ad {
    366       1.8     ad 	lwp_t *l = arg;
    367       1.2     ad 
    368       1.2     ad 	/*
    369       1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    370       1.2     ad 	 * current mutex will also be the sleep queue mutex.
    371       1.2     ad 	 */
    372       1.2     ad 	lwp_lock(l);
    373       1.2     ad 
    374       1.2     ad 	if (l->l_wchan == NULL) {
    375       1.2     ad 		/* Somebody beat us to it. */
    376       1.2     ad 		lwp_unlock(l);
    377       1.2     ad 		return;
    378       1.2     ad 	}
    379       1.2     ad 
    380      1.22     ad 	lwp_unsleep(l, true);
    381       1.2     ad }
    382       1.2     ad 
    383       1.2     ad /*
    384       1.2     ad  * sleepq_sigtoerror:
    385       1.2     ad  *
    386       1.2     ad  *	Given a signal number, interpret and return an error code.
    387       1.2     ad  */
    388       1.2     ad int
    389       1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    390       1.2     ad {
    391       1.2     ad 	struct proc *p = l->l_proc;
    392       1.2     ad 	int error;
    393       1.2     ad 
    394      1.27     ad 	KASSERT(mutex_owned(p->p_lock));
    395       1.2     ad 
    396       1.2     ad 	/*
    397       1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    398       1.2     ad 	 */
    399       1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    400       1.2     ad 		error = EINTR;
    401       1.2     ad 	else
    402       1.2     ad 		error = ERESTART;
    403       1.2     ad 
    404       1.2     ad 	return error;
    405       1.2     ad }
    406       1.2     ad 
    407       1.2     ad /*
    408       1.2     ad  * sleepq_abort:
    409       1.2     ad  *
    410       1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    411       1.2     ad  *	priority level to give pending interrupts a chance to run, and
    412       1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    413       1.2     ad  *	always returns zero.
    414       1.2     ad  */
    415       1.2     ad int
    416       1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    417       1.2     ad {
    418       1.2     ad 	extern int safepri;
    419       1.2     ad 	int s;
    420       1.2     ad 
    421       1.2     ad 	s = splhigh();
    422       1.2     ad 	splx(safepri);
    423       1.2     ad 	splx(s);
    424       1.2     ad 	if (mtx != NULL && unlock != 0)
    425       1.2     ad 		mutex_exit(mtx);
    426       1.2     ad 
    427       1.2     ad 	return 0;
    428       1.2     ad }
    429       1.2     ad 
    430       1.2     ad /*
    431       1.2     ad  * sleepq_changepri:
    432       1.2     ad  *
    433       1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    434       1.2     ad  *	will only alter the user priority; the effective priority is
    435       1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    436       1.2     ad  */
    437       1.2     ad void
    438       1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    439       1.2     ad {
    440      1.18     ad 	sleepq_t *sq = l->l_sleepq;
    441      1.18     ad 	pri_t opri;
    442      1.18     ad 
    443      1.18     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    444       1.2     ad 
    445      1.18     ad 	opri = lwp_eprio(l);
    446      1.18     ad 	l->l_priority = pri;
    447      1.18     ad 	if (lwp_eprio(l) != opri) {
    448      1.18     ad 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    449      1.18     ad 		sleepq_insert(sq, l, l->l_syncobj);
    450      1.18     ad 	}
    451       1.2     ad }
    452       1.6   yamt 
    453       1.6   yamt void
    454       1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    455       1.6   yamt {
    456       1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    457       1.7   yamt 	pri_t opri;
    458       1.6   yamt 
    459       1.6   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    460       1.6   yamt 
    461       1.6   yamt 	opri = lwp_eprio(l);
    462       1.6   yamt 	l->l_inheritedprio = pri;
    463       1.6   yamt 
    464       1.6   yamt 	if (lwp_eprio(l) != opri &&
    465       1.6   yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    466       1.6   yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    467       1.6   yamt 		sleepq_insert(sq, l, l->l_syncobj);
    468       1.6   yamt 	}
    469       1.6   yamt }
    470