kern_sleepq.c revision 1.27.2.2 1 1.27.2.2 yamt /* $NetBSD: kern_sleepq.c,v 1.27.2.2 2009/05/04 08:13:47 yamt Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.27.2.2 yamt * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.27.2.2 yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27.2.2 2009/05/04 08:13:47 yamt Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.2 ad #include <sys/pool.h>
44 1.2 ad #include <sys/proc.h>
45 1.2 ad #include <sys/resourcevar.h>
46 1.27.2.2 yamt #include <sys/sa.h>
47 1.27.2.2 yamt #include <sys/savar.h>
48 1.2 ad #include <sys/sched.h>
49 1.2 ad #include <sys/systm.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/ktrace.h>
52 1.2 ad
53 1.4 ad #include <uvm/uvm_extern.h>
54 1.4 ad
55 1.27.2.2 yamt #include "opt_sa.h"
56 1.27.2.2 yamt
57 1.8 ad int sleepq_sigtoerror(lwp_t *, int);
58 1.2 ad
59 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
60 1.2 ad sleeptab_t sleeptab;
61 1.2 ad
62 1.2 ad /*
63 1.2 ad * sleeptab_init:
64 1.2 ad *
65 1.2 ad * Initialize a sleep table.
66 1.2 ad */
67 1.2 ad void
68 1.2 ad sleeptab_init(sleeptab_t *st)
69 1.2 ad {
70 1.2 ad sleepq_t *sq;
71 1.2 ad int i;
72 1.2 ad
73 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
74 1.2 ad sq = &st->st_queues[i].st_queue;
75 1.27.2.2 yamt st->st_queues[i].st_mutex =
76 1.27.2.2 yamt mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
77 1.27.2.2 yamt sleepq_init(sq);
78 1.2 ad }
79 1.2 ad }
80 1.2 ad
81 1.2 ad /*
82 1.2 ad * sleepq_init:
83 1.2 ad *
84 1.2 ad * Prepare a sleep queue for use.
85 1.2 ad */
86 1.2 ad void
87 1.27.2.2 yamt sleepq_init(sleepq_t *sq)
88 1.2 ad {
89 1.2 ad
90 1.27.2.2 yamt TAILQ_INIT(sq);
91 1.2 ad }
92 1.2 ad
93 1.2 ad /*
94 1.2 ad * sleepq_remove:
95 1.2 ad *
96 1.2 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
97 1.2 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
98 1.2 ad * to bring the LWP into memory.
99 1.2 ad */
100 1.2 ad int
101 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
102 1.2 ad {
103 1.9 yamt struct schedstate_percpu *spc;
104 1.2 ad struct cpu_info *ci;
105 1.2 ad
106 1.27.2.2 yamt KASSERT(lwp_locked(l, NULL));
107 1.2 ad
108 1.27.2.2 yamt TAILQ_REMOVE(sq, l, l_sleepchain);
109 1.2 ad l->l_syncobj = &sched_syncobj;
110 1.2 ad l->l_wchan = NULL;
111 1.2 ad l->l_sleepq = NULL;
112 1.5 pavel l->l_flag &= ~LW_SINTR;
113 1.2 ad
114 1.9 yamt ci = l->l_cpu;
115 1.9 yamt spc = &ci->ci_schedstate;
116 1.9 yamt
117 1.2 ad /*
118 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
119 1.2 ad * holds it stopped set it running again.
120 1.2 ad */
121 1.2 ad if (l->l_stat != LSSLEEP) {
122 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
123 1.21 ad lwp_setlock(l, spc->spc_lwplock);
124 1.2 ad return 0;
125 1.2 ad }
126 1.2 ad
127 1.2 ad /*
128 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
129 1.2 ad * about to call mi_switch(), in which case it will yield.
130 1.2 ad */
131 1.27.2.2 yamt if ((l->l_pflag & LP_RUNNING) != 0) {
132 1.2 ad l->l_stat = LSONPROC;
133 1.2 ad l->l_slptime = 0;
134 1.21 ad lwp_setlock(l, spc->spc_lwplock);
135 1.2 ad return 0;
136 1.2 ad }
137 1.2 ad
138 1.27.2.2 yamt /* Update sleep time delta, call the wake-up handler of scheduler */
139 1.27.2.2 yamt l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
140 1.16 rmind sched_wakeup(l);
141 1.27.2.2 yamt
142 1.27.2.2 yamt /* Look for a CPU to wake up */
143 1.27.2.2 yamt l->l_cpu = sched_takecpu(l);
144 1.16 rmind ci = l->l_cpu;
145 1.16 rmind spc = &ci->ci_schedstate;
146 1.16 rmind
147 1.16 rmind /*
148 1.17 yamt * Set it running.
149 1.2 ad */
150 1.9 yamt spc_lock(ci);
151 1.9 yamt lwp_setlock(l, spc->spc_mutex);
152 1.27.2.2 yamt #ifdef KERN_SA
153 1.27.2.2 yamt if (l->l_proc->p_sa != NULL)
154 1.27.2.2 yamt sa_awaken(l);
155 1.27.2.2 yamt #endif /* KERN_SA */
156 1.9 yamt sched_setrunnable(l);
157 1.2 ad l->l_stat = LSRUN;
158 1.2 ad l->l_slptime = 0;
159 1.5 pavel if ((l->l_flag & LW_INMEM) != 0) {
160 1.9 yamt sched_enqueue(l, false);
161 1.9 yamt spc_unlock(ci);
162 1.2 ad return 0;
163 1.2 ad }
164 1.9 yamt spc_unlock(ci);
165 1.2 ad return 1;
166 1.2 ad }
167 1.2 ad
168 1.2 ad /*
169 1.2 ad * sleepq_insert:
170 1.2 ad *
171 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
172 1.2 ad */
173 1.2 ad inline void
174 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
175 1.2 ad {
176 1.8 ad lwp_t *l2;
177 1.6 yamt const int pri = lwp_eprio(l);
178 1.2 ad
179 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
180 1.27.2.2 yamt TAILQ_FOREACH(l2, sq, l_sleepchain) {
181 1.18 ad if (lwp_eprio(l2) < pri) {
182 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
183 1.2 ad return;
184 1.2 ad }
185 1.2 ad }
186 1.2 ad }
187 1.2 ad
188 1.14 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
189 1.27.2.2 yamt TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
190 1.14 ad else
191 1.27.2.2 yamt TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
192 1.2 ad }
193 1.2 ad
194 1.9 yamt /*
195 1.9 yamt * sleepq_enqueue:
196 1.9 yamt *
197 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
198 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
199 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
200 1.9 yamt */
201 1.2 ad void
202 1.18 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
203 1.2 ad {
204 1.8 ad lwp_t *l = curlwp;
205 1.2 ad
206 1.27.2.2 yamt KASSERT(lwp_locked(l, NULL));
207 1.2 ad KASSERT(l->l_stat == LSONPROC);
208 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
209 1.2 ad
210 1.2 ad l->l_syncobj = sobj;
211 1.2 ad l->l_wchan = wchan;
212 1.2 ad l->l_sleepq = sq;
213 1.2 ad l->l_wmesg = wmesg;
214 1.2 ad l->l_slptime = 0;
215 1.2 ad l->l_stat = LSSLEEP;
216 1.2 ad l->l_sleeperr = 0;
217 1.2 ad
218 1.6 yamt sleepq_insert(sq, l, sobj);
219 1.27.2.2 yamt
220 1.27.2.2 yamt /* Save the time when thread has slept */
221 1.27.2.2 yamt l->l_slpticks = hardclock_ticks;
222 1.15 rmind sched_slept(l);
223 1.6 yamt }
224 1.6 yamt
225 1.9 yamt /*
226 1.9 yamt * sleepq_block:
227 1.9 yamt *
228 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
229 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
230 1.9 yamt * example if the LWP's containing process is exiting.
231 1.9 yamt */
232 1.9 yamt int
233 1.9 yamt sleepq_block(int timo, bool catch)
234 1.6 yamt {
235 1.10 ad int error = 0, sig;
236 1.9 yamt struct proc *p;
237 1.8 ad lwp_t *l = curlwp;
238 1.11 ad bool early = false;
239 1.27.2.2 yamt int biglocks = l->l_biglocks;
240 1.2 ad
241 1.12 ad ktrcsw(1, 0);
242 1.4 ad
243 1.2 ad /*
244 1.2 ad * If sleeping interruptably, check for pending signals, exits or
245 1.2 ad * core dump events.
246 1.2 ad */
247 1.2 ad if (catch) {
248 1.5 pavel l->l_flag |= LW_SINTR;
249 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
250 1.5 pavel l->l_flag &= ~LW_CANCELLED;
251 1.14 ad error = EINTR;
252 1.14 ad early = true;
253 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
254 1.11 ad early = true;
255 1.2 ad }
256 1.2 ad
257 1.13 yamt if (early) {
258 1.13 yamt /* lwp_unsleep() will release the lock */
259 1.22 ad lwp_unsleep(l, true);
260 1.13 yamt } else {
261 1.11 ad if (timo)
262 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
263 1.27.2.2 yamt
264 1.27.2.2 yamt #ifdef KERN_SA
265 1.27.2.2 yamt if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
266 1.27.2.2 yamt sa_switch(l);
267 1.27.2.2 yamt else
268 1.27.2.2 yamt #endif
269 1.27.2.2 yamt mi_switch(l);
270 1.11 ad
271 1.11 ad /* The LWP and sleep queue are now unlocked. */
272 1.11 ad if (timo) {
273 1.11 ad /*
274 1.11 ad * Even if the callout appears to have fired, we need to
275 1.11 ad * stop it in order to synchronise with other CPUs.
276 1.11 ad */
277 1.26 ad if (callout_halt(&l->l_timeout_ch, NULL))
278 1.11 ad error = EWOULDBLOCK;
279 1.11 ad }
280 1.2 ad }
281 1.2 ad
282 1.9 yamt if (catch && error == 0) {
283 1.2 ad p = l->l_proc;
284 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
285 1.2 ad error = EINTR;
286 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
287 1.27.2.2 yamt /*
288 1.27.2.2 yamt * Acquiring p_lock may cause us to recurse
289 1.27.2.2 yamt * through the sleep path and back into this
290 1.27.2.2 yamt * routine, but is safe because LWPs sleeping
291 1.27.2.2 yamt * on locks are non-interruptable. We will
292 1.27.2.2 yamt * not recurse again.
293 1.27.2.2 yamt */
294 1.27 ad mutex_enter(p->p_lock);
295 1.2 ad if ((sig = issignal(l)) != 0)
296 1.2 ad error = sleepq_sigtoerror(l, sig);
297 1.27 ad mutex_exit(p->p_lock);
298 1.2 ad }
299 1.2 ad }
300 1.2 ad
301 1.12 ad ktrcsw(0, 0);
302 1.27.2.2 yamt if (__predict_false(biglocks != 0)) {
303 1.27.2.2 yamt KERNEL_LOCK(biglocks, NULL);
304 1.27.2.2 yamt }
305 1.2 ad return error;
306 1.2 ad }
307 1.2 ad
308 1.2 ad /*
309 1.2 ad * sleepq_wake:
310 1.2 ad *
311 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
312 1.2 ad */
313 1.8 ad lwp_t *
314 1.27.2.2 yamt sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
315 1.2 ad {
316 1.8 ad lwp_t *l, *next;
317 1.2 ad int swapin = 0;
318 1.2 ad
319 1.27.2.2 yamt KASSERT(mutex_owned(mp));
320 1.2 ad
321 1.27.2.2 yamt for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
322 1.2 ad KASSERT(l->l_sleepq == sq);
323 1.27.2.2 yamt KASSERT(l->l_mutex == mp);
324 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
325 1.2 ad if (l->l_wchan != wchan)
326 1.2 ad continue;
327 1.2 ad swapin |= sleepq_remove(sq, l);
328 1.2 ad if (--expected == 0)
329 1.2 ad break;
330 1.2 ad }
331 1.2 ad
332 1.27.2.2 yamt mutex_spin_exit(mp);
333 1.2 ad
334 1.2 ad /*
335 1.2 ad * If there are newly awakend threads that need to be swapped in,
336 1.2 ad * then kick the swapper into action.
337 1.2 ad */
338 1.2 ad if (swapin)
339 1.4 ad uvm_kick_scheduler();
340 1.8 ad
341 1.8 ad return l;
342 1.2 ad }
343 1.2 ad
344 1.2 ad /*
345 1.2 ad * sleepq_unsleep:
346 1.2 ad *
347 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
348 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
349 1.2 ad * always release it.
350 1.2 ad */
351 1.22 ad u_int
352 1.22 ad sleepq_unsleep(lwp_t *l, bool cleanup)
353 1.2 ad {
354 1.2 ad sleepq_t *sq = l->l_sleepq;
355 1.27.2.2 yamt kmutex_t *mp = l->l_mutex;
356 1.2 ad int swapin;
357 1.2 ad
358 1.27.2.2 yamt KASSERT(lwp_locked(l, mp));
359 1.2 ad KASSERT(l->l_wchan != NULL);
360 1.2 ad
361 1.2 ad swapin = sleepq_remove(sq, l);
362 1.2 ad
363 1.22 ad if (cleanup) {
364 1.27.2.2 yamt mutex_spin_exit(mp);
365 1.22 ad if (swapin)
366 1.22 ad uvm_kick_scheduler();
367 1.22 ad }
368 1.22 ad
369 1.22 ad return swapin;
370 1.2 ad }
371 1.2 ad
372 1.2 ad /*
373 1.2 ad * sleepq_timeout:
374 1.2 ad *
375 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
376 1.2 ad * sleep queue.
377 1.2 ad */
378 1.2 ad void
379 1.2 ad sleepq_timeout(void *arg)
380 1.2 ad {
381 1.8 ad lwp_t *l = arg;
382 1.2 ad
383 1.2 ad /*
384 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
385 1.2 ad * current mutex will also be the sleep queue mutex.
386 1.2 ad */
387 1.2 ad lwp_lock(l);
388 1.2 ad
389 1.2 ad if (l->l_wchan == NULL) {
390 1.2 ad /* Somebody beat us to it. */
391 1.2 ad lwp_unlock(l);
392 1.2 ad return;
393 1.2 ad }
394 1.2 ad
395 1.22 ad lwp_unsleep(l, true);
396 1.2 ad }
397 1.2 ad
398 1.2 ad /*
399 1.2 ad * sleepq_sigtoerror:
400 1.2 ad *
401 1.2 ad * Given a signal number, interpret and return an error code.
402 1.2 ad */
403 1.2 ad int
404 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
405 1.2 ad {
406 1.2 ad struct proc *p = l->l_proc;
407 1.2 ad int error;
408 1.2 ad
409 1.27 ad KASSERT(mutex_owned(p->p_lock));
410 1.2 ad
411 1.2 ad /*
412 1.2 ad * If this sleep was canceled, don't let the syscall restart.
413 1.2 ad */
414 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
415 1.2 ad error = EINTR;
416 1.2 ad else
417 1.2 ad error = ERESTART;
418 1.2 ad
419 1.2 ad return error;
420 1.2 ad }
421 1.2 ad
422 1.2 ad /*
423 1.2 ad * sleepq_abort:
424 1.2 ad *
425 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
426 1.2 ad * priority level to give pending interrupts a chance to run, and
427 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
428 1.2 ad * always returns zero.
429 1.2 ad */
430 1.2 ad int
431 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
432 1.2 ad {
433 1.2 ad extern int safepri;
434 1.2 ad int s;
435 1.2 ad
436 1.2 ad s = splhigh();
437 1.2 ad splx(safepri);
438 1.2 ad splx(s);
439 1.2 ad if (mtx != NULL && unlock != 0)
440 1.2 ad mutex_exit(mtx);
441 1.2 ad
442 1.2 ad return 0;
443 1.2 ad }
444 1.2 ad
445 1.2 ad /*
446 1.2 ad * sleepq_changepri:
447 1.2 ad *
448 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
449 1.2 ad * will only alter the user priority; the effective priority is
450 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
451 1.2 ad */
452 1.2 ad void
453 1.8 ad sleepq_changepri(lwp_t *l, pri_t pri)
454 1.2 ad {
455 1.18 ad sleepq_t *sq = l->l_sleepq;
456 1.18 ad pri_t opri;
457 1.18 ad
458 1.27.2.2 yamt KASSERT(lwp_locked(l, NULL));
459 1.2 ad
460 1.18 ad opri = lwp_eprio(l);
461 1.18 ad l->l_priority = pri;
462 1.27.2.2 yamt
463 1.27.2.2 yamt if (lwp_eprio(l) == opri) {
464 1.27.2.2 yamt return;
465 1.27.2.2 yamt }
466 1.27.2.2 yamt if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
467 1.27.2.2 yamt return;
468 1.27.2.2 yamt }
469 1.27.2.2 yamt
470 1.27.2.2 yamt /*
471 1.27.2.2 yamt * Don't let the sleep queue become empty, even briefly.
472 1.27.2.2 yamt * cv_signal() and cv_broadcast() inspect it without the
473 1.27.2.2 yamt * sleep queue lock held and need to see a non-empty queue
474 1.27.2.2 yamt * head if there are waiters.
475 1.27.2.2 yamt */
476 1.27.2.2 yamt if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
477 1.27.2.2 yamt return;
478 1.18 ad }
479 1.27.2.2 yamt TAILQ_REMOVE(sq, l, l_sleepchain);
480 1.27.2.2 yamt sleepq_insert(sq, l, l->l_syncobj);
481 1.2 ad }
482 1.6 yamt
483 1.6 yamt void
484 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
485 1.6 yamt {
486 1.6 yamt sleepq_t *sq = l->l_sleepq;
487 1.7 yamt pri_t opri;
488 1.6 yamt
489 1.27.2.2 yamt KASSERT(lwp_locked(l, NULL));
490 1.6 yamt
491 1.6 yamt opri = lwp_eprio(l);
492 1.6 yamt l->l_inheritedprio = pri;
493 1.6 yamt
494 1.27.2.2 yamt if (lwp_eprio(l) == opri) {
495 1.27.2.2 yamt return;
496 1.27.2.2 yamt }
497 1.27.2.2 yamt if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
498 1.27.2.2 yamt return;
499 1.27.2.2 yamt }
500 1.27.2.2 yamt
501 1.27.2.2 yamt /*
502 1.27.2.2 yamt * Don't let the sleep queue become empty, even briefly.
503 1.27.2.2 yamt * cv_signal() and cv_broadcast() inspect it without the
504 1.27.2.2 yamt * sleep queue lock held and need to see a non-empty queue
505 1.27.2.2 yamt * head if there are waiters.
506 1.27.2.2 yamt */
507 1.27.2.2 yamt if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
508 1.27.2.2 yamt return;
509 1.6 yamt }
510 1.27.2.2 yamt TAILQ_REMOVE(sq, l, l_sleepchain);
511 1.27.2.2 yamt sleepq_insert(sq, l, l->l_syncobj);
512 1.6 yamt }
513