Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.27.2.2
      1  1.27.2.2   yamt /*	$NetBSD: kern_sleepq.c,v 1.27.2.2 2009/05/04 08:13:47 yamt Exp $	*/
      2       1.2     ad 
      3       1.2     ad /*-
      4  1.27.2.2   yamt  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.2     ad  * All rights reserved.
      6       1.2     ad  *
      7       1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2     ad  * by Andrew Doran.
      9       1.2     ad  *
     10       1.2     ad  * Redistribution and use in source and binary forms, with or without
     11       1.2     ad  * modification, are permitted provided that the following conditions
     12       1.2     ad  * are met:
     13       1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2     ad  *    documentation and/or other materials provided with the distribution.
     18       1.2     ad  *
     19       1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2     ad  */
     31       1.2     ad 
     32       1.2     ad /*
     33       1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2     ad  * interfaces.
     35       1.2     ad  */
     36       1.2     ad 
     37       1.2     ad #include <sys/cdefs.h>
     38  1.27.2.2   yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27.2.2 2009/05/04 08:13:47 yamt Exp $");
     39       1.2     ad 
     40       1.2     ad #include <sys/param.h>
     41       1.2     ad #include <sys/kernel.h>
     42       1.9   yamt #include <sys/cpu.h>
     43       1.2     ad #include <sys/pool.h>
     44       1.2     ad #include <sys/proc.h>
     45       1.2     ad #include <sys/resourcevar.h>
     46  1.27.2.2   yamt #include <sys/sa.h>
     47  1.27.2.2   yamt #include <sys/savar.h>
     48       1.2     ad #include <sys/sched.h>
     49       1.2     ad #include <sys/systm.h>
     50       1.2     ad #include <sys/sleepq.h>
     51       1.2     ad #include <sys/ktrace.h>
     52       1.2     ad 
     53       1.4     ad #include <uvm/uvm_extern.h>
     54       1.4     ad 
     55  1.27.2.2   yamt #include "opt_sa.h"
     56  1.27.2.2   yamt 
     57       1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     58       1.2     ad 
     59       1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     60       1.2     ad sleeptab_t	sleeptab;
     61       1.2     ad 
     62       1.2     ad /*
     63       1.2     ad  * sleeptab_init:
     64       1.2     ad  *
     65       1.2     ad  *	Initialize a sleep table.
     66       1.2     ad  */
     67       1.2     ad void
     68       1.2     ad sleeptab_init(sleeptab_t *st)
     69       1.2     ad {
     70       1.2     ad 	sleepq_t *sq;
     71       1.2     ad 	int i;
     72       1.2     ad 
     73       1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     74       1.2     ad 		sq = &st->st_queues[i].st_queue;
     75  1.27.2.2   yamt 		st->st_queues[i].st_mutex =
     76  1.27.2.2   yamt 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     77  1.27.2.2   yamt 		sleepq_init(sq);
     78       1.2     ad 	}
     79       1.2     ad }
     80       1.2     ad 
     81       1.2     ad /*
     82       1.2     ad  * sleepq_init:
     83       1.2     ad  *
     84       1.2     ad  *	Prepare a sleep queue for use.
     85       1.2     ad  */
     86       1.2     ad void
     87  1.27.2.2   yamt sleepq_init(sleepq_t *sq)
     88       1.2     ad {
     89       1.2     ad 
     90  1.27.2.2   yamt 	TAILQ_INIT(sq);
     91       1.2     ad }
     92       1.2     ad 
     93       1.2     ad /*
     94       1.2     ad  * sleepq_remove:
     95       1.2     ad  *
     96       1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     97       1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     98       1.2     ad  *	to bring the LWP into memory.
     99       1.2     ad  */
    100       1.2     ad int
    101       1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    102       1.2     ad {
    103       1.9   yamt 	struct schedstate_percpu *spc;
    104       1.2     ad 	struct cpu_info *ci;
    105       1.2     ad 
    106  1.27.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    107       1.2     ad 
    108  1.27.2.2   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    109       1.2     ad 	l->l_syncobj = &sched_syncobj;
    110       1.2     ad 	l->l_wchan = NULL;
    111       1.2     ad 	l->l_sleepq = NULL;
    112       1.5  pavel 	l->l_flag &= ~LW_SINTR;
    113       1.2     ad 
    114       1.9   yamt 	ci = l->l_cpu;
    115       1.9   yamt 	spc = &ci->ci_schedstate;
    116       1.9   yamt 
    117       1.2     ad 	/*
    118       1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    119       1.2     ad 	 * holds it stopped set it running again.
    120       1.2     ad 	 */
    121       1.2     ad 	if (l->l_stat != LSSLEEP) {
    122      1.16  rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    123      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    124       1.2     ad 		return 0;
    125       1.2     ad 	}
    126       1.2     ad 
    127       1.2     ad 	/*
    128       1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    129       1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    130       1.2     ad 	 */
    131  1.27.2.2   yamt 	if ((l->l_pflag & LP_RUNNING) != 0) {
    132       1.2     ad 		l->l_stat = LSONPROC;
    133       1.2     ad 		l->l_slptime = 0;
    134      1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    135       1.2     ad 		return 0;
    136       1.2     ad 	}
    137       1.2     ad 
    138  1.27.2.2   yamt 	/* Update sleep time delta, call the wake-up handler of scheduler */
    139  1.27.2.2   yamt 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    140      1.16  rmind 	sched_wakeup(l);
    141  1.27.2.2   yamt 
    142  1.27.2.2   yamt 	/* Look for a CPU to wake up */
    143  1.27.2.2   yamt 	l->l_cpu = sched_takecpu(l);
    144      1.16  rmind 	ci = l->l_cpu;
    145      1.16  rmind 	spc = &ci->ci_schedstate;
    146      1.16  rmind 
    147      1.16  rmind 	/*
    148      1.17   yamt 	 * Set it running.
    149       1.2     ad 	 */
    150       1.9   yamt 	spc_lock(ci);
    151       1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    152  1.27.2.2   yamt #ifdef KERN_SA
    153  1.27.2.2   yamt 	if (l->l_proc->p_sa != NULL)
    154  1.27.2.2   yamt 		sa_awaken(l);
    155  1.27.2.2   yamt #endif /* KERN_SA */
    156       1.9   yamt 	sched_setrunnable(l);
    157       1.2     ad 	l->l_stat = LSRUN;
    158       1.2     ad 	l->l_slptime = 0;
    159       1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    160       1.9   yamt 		sched_enqueue(l, false);
    161       1.9   yamt 		spc_unlock(ci);
    162       1.2     ad 		return 0;
    163       1.2     ad 	}
    164       1.9   yamt 	spc_unlock(ci);
    165       1.2     ad 	return 1;
    166       1.2     ad }
    167       1.2     ad 
    168       1.2     ad /*
    169       1.2     ad  * sleepq_insert:
    170       1.2     ad  *
    171       1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    172       1.2     ad  */
    173       1.2     ad inline void
    174       1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    175       1.2     ad {
    176       1.8     ad 	lwp_t *l2;
    177       1.6   yamt 	const int pri = lwp_eprio(l);
    178       1.2     ad 
    179       1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    180  1.27.2.2   yamt 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    181      1.18     ad 			if (lwp_eprio(l2) < pri) {
    182       1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    183       1.2     ad 				return;
    184       1.2     ad 			}
    185       1.2     ad 		}
    186       1.2     ad 	}
    187       1.2     ad 
    188      1.14     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    189  1.27.2.2   yamt 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    190      1.14     ad 	else
    191  1.27.2.2   yamt 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    192       1.2     ad }
    193       1.2     ad 
    194       1.9   yamt /*
    195       1.9   yamt  * sleepq_enqueue:
    196       1.9   yamt  *
    197       1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    198       1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    199       1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    200       1.9   yamt  */
    201       1.2     ad void
    202      1.18     ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    203       1.2     ad {
    204       1.8     ad 	lwp_t *l = curlwp;
    205       1.2     ad 
    206  1.27.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    207       1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    208       1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    209       1.2     ad 
    210       1.2     ad 	l->l_syncobj = sobj;
    211       1.2     ad 	l->l_wchan = wchan;
    212       1.2     ad 	l->l_sleepq = sq;
    213       1.2     ad 	l->l_wmesg = wmesg;
    214       1.2     ad 	l->l_slptime = 0;
    215       1.2     ad 	l->l_stat = LSSLEEP;
    216       1.2     ad 	l->l_sleeperr = 0;
    217       1.2     ad 
    218       1.6   yamt 	sleepq_insert(sq, l, sobj);
    219  1.27.2.2   yamt 
    220  1.27.2.2   yamt 	/* Save the time when thread has slept */
    221  1.27.2.2   yamt 	l->l_slpticks = hardclock_ticks;
    222      1.15  rmind 	sched_slept(l);
    223       1.6   yamt }
    224       1.6   yamt 
    225       1.9   yamt /*
    226       1.9   yamt  * sleepq_block:
    227       1.9   yamt  *
    228       1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    229       1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    230       1.9   yamt  * 	example if the LWP's containing process is exiting.
    231       1.9   yamt  */
    232       1.9   yamt int
    233       1.9   yamt sleepq_block(int timo, bool catch)
    234       1.6   yamt {
    235      1.10     ad 	int error = 0, sig;
    236       1.9   yamt 	struct proc *p;
    237       1.8     ad 	lwp_t *l = curlwp;
    238      1.11     ad 	bool early = false;
    239  1.27.2.2   yamt 	int biglocks = l->l_biglocks;
    240       1.2     ad 
    241      1.12     ad 	ktrcsw(1, 0);
    242       1.4     ad 
    243       1.2     ad 	/*
    244       1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    245       1.2     ad 	 * core dump events.
    246       1.2     ad 	 */
    247       1.2     ad 	if (catch) {
    248       1.5  pavel 		l->l_flag |= LW_SINTR;
    249       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250       1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    251      1.14     ad 			error = EINTR;
    252      1.14     ad 			early = true;
    253      1.14     ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254      1.11     ad 			early = true;
    255       1.2     ad 	}
    256       1.2     ad 
    257      1.13   yamt 	if (early) {
    258      1.13   yamt 		/* lwp_unsleep() will release the lock */
    259      1.22     ad 		lwp_unsleep(l, true);
    260      1.13   yamt 	} else {
    261      1.11     ad 		if (timo)
    262      1.14     ad 			callout_schedule(&l->l_timeout_ch, timo);
    263  1.27.2.2   yamt 
    264  1.27.2.2   yamt #ifdef KERN_SA
    265  1.27.2.2   yamt 		if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
    266  1.27.2.2   yamt 			sa_switch(l);
    267  1.27.2.2   yamt 		else
    268  1.27.2.2   yamt #endif
    269  1.27.2.2   yamt 			mi_switch(l);
    270      1.11     ad 
    271      1.11     ad 		/* The LWP and sleep queue are now unlocked. */
    272      1.11     ad 		if (timo) {
    273      1.11     ad 			/*
    274      1.11     ad 			 * Even if the callout appears to have fired, we need to
    275      1.11     ad 			 * stop it in order to synchronise with other CPUs.
    276      1.11     ad 			 */
    277      1.26     ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    278      1.11     ad 				error = EWOULDBLOCK;
    279      1.11     ad 		}
    280       1.2     ad 	}
    281       1.2     ad 
    282       1.9   yamt 	if (catch && error == 0) {
    283       1.2     ad 		p = l->l_proc;
    284       1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    285       1.2     ad 			error = EINTR;
    286       1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    287  1.27.2.2   yamt 			/*
    288  1.27.2.2   yamt 			 * Acquiring p_lock may cause us to recurse
    289  1.27.2.2   yamt 			 * through the sleep path and back into this
    290  1.27.2.2   yamt 			 * routine, but is safe because LWPs sleeping
    291  1.27.2.2   yamt 			 * on locks are non-interruptable.  We will
    292  1.27.2.2   yamt 			 * not recurse again.
    293  1.27.2.2   yamt 			 */
    294      1.27     ad 			mutex_enter(p->p_lock);
    295       1.2     ad 			if ((sig = issignal(l)) != 0)
    296       1.2     ad 				error = sleepq_sigtoerror(l, sig);
    297      1.27     ad 			mutex_exit(p->p_lock);
    298       1.2     ad 		}
    299       1.2     ad 	}
    300       1.2     ad 
    301      1.12     ad 	ktrcsw(0, 0);
    302  1.27.2.2   yamt 	if (__predict_false(biglocks != 0)) {
    303  1.27.2.2   yamt 		KERNEL_LOCK(biglocks, NULL);
    304  1.27.2.2   yamt 	}
    305       1.2     ad 	return error;
    306       1.2     ad }
    307       1.2     ad 
    308       1.2     ad /*
    309       1.2     ad  * sleepq_wake:
    310       1.2     ad  *
    311       1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    312       1.2     ad  */
    313       1.8     ad lwp_t *
    314  1.27.2.2   yamt sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    315       1.2     ad {
    316       1.8     ad 	lwp_t *l, *next;
    317       1.2     ad 	int swapin = 0;
    318       1.2     ad 
    319  1.27.2.2   yamt 	KASSERT(mutex_owned(mp));
    320       1.2     ad 
    321  1.27.2.2   yamt 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    322       1.2     ad 		KASSERT(l->l_sleepq == sq);
    323  1.27.2.2   yamt 		KASSERT(l->l_mutex == mp);
    324       1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    325       1.2     ad 		if (l->l_wchan != wchan)
    326       1.2     ad 			continue;
    327       1.2     ad 		swapin |= sleepq_remove(sq, l);
    328       1.2     ad 		if (--expected == 0)
    329       1.2     ad 			break;
    330       1.2     ad 	}
    331       1.2     ad 
    332  1.27.2.2   yamt 	mutex_spin_exit(mp);
    333       1.2     ad 
    334       1.2     ad 	/*
    335       1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    336       1.2     ad 	 * then kick the swapper into action.
    337       1.2     ad 	 */
    338       1.2     ad 	if (swapin)
    339       1.4     ad 		uvm_kick_scheduler();
    340       1.8     ad 
    341       1.8     ad 	return l;
    342       1.2     ad }
    343       1.2     ad 
    344       1.2     ad /*
    345       1.2     ad  * sleepq_unsleep:
    346       1.2     ad  *
    347       1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    348       1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    349       1.2     ad  *	always release it.
    350       1.2     ad  */
    351      1.22     ad u_int
    352      1.22     ad sleepq_unsleep(lwp_t *l, bool cleanup)
    353       1.2     ad {
    354       1.2     ad 	sleepq_t *sq = l->l_sleepq;
    355  1.27.2.2   yamt 	kmutex_t *mp = l->l_mutex;
    356       1.2     ad 	int swapin;
    357       1.2     ad 
    358  1.27.2.2   yamt 	KASSERT(lwp_locked(l, mp));
    359       1.2     ad 	KASSERT(l->l_wchan != NULL);
    360       1.2     ad 
    361       1.2     ad 	swapin = sleepq_remove(sq, l);
    362       1.2     ad 
    363      1.22     ad 	if (cleanup) {
    364  1.27.2.2   yamt 		mutex_spin_exit(mp);
    365      1.22     ad 		if (swapin)
    366      1.22     ad 			uvm_kick_scheduler();
    367      1.22     ad 	}
    368      1.22     ad 
    369      1.22     ad 	return swapin;
    370       1.2     ad }
    371       1.2     ad 
    372       1.2     ad /*
    373       1.2     ad  * sleepq_timeout:
    374       1.2     ad  *
    375       1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    376       1.2     ad  *	sleep queue.
    377       1.2     ad  */
    378       1.2     ad void
    379       1.2     ad sleepq_timeout(void *arg)
    380       1.2     ad {
    381       1.8     ad 	lwp_t *l = arg;
    382       1.2     ad 
    383       1.2     ad 	/*
    384       1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    385       1.2     ad 	 * current mutex will also be the sleep queue mutex.
    386       1.2     ad 	 */
    387       1.2     ad 	lwp_lock(l);
    388       1.2     ad 
    389       1.2     ad 	if (l->l_wchan == NULL) {
    390       1.2     ad 		/* Somebody beat us to it. */
    391       1.2     ad 		lwp_unlock(l);
    392       1.2     ad 		return;
    393       1.2     ad 	}
    394       1.2     ad 
    395      1.22     ad 	lwp_unsleep(l, true);
    396       1.2     ad }
    397       1.2     ad 
    398       1.2     ad /*
    399       1.2     ad  * sleepq_sigtoerror:
    400       1.2     ad  *
    401       1.2     ad  *	Given a signal number, interpret and return an error code.
    402       1.2     ad  */
    403       1.2     ad int
    404       1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    405       1.2     ad {
    406       1.2     ad 	struct proc *p = l->l_proc;
    407       1.2     ad 	int error;
    408       1.2     ad 
    409      1.27     ad 	KASSERT(mutex_owned(p->p_lock));
    410       1.2     ad 
    411       1.2     ad 	/*
    412       1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    413       1.2     ad 	 */
    414       1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    415       1.2     ad 		error = EINTR;
    416       1.2     ad 	else
    417       1.2     ad 		error = ERESTART;
    418       1.2     ad 
    419       1.2     ad 	return error;
    420       1.2     ad }
    421       1.2     ad 
    422       1.2     ad /*
    423       1.2     ad  * sleepq_abort:
    424       1.2     ad  *
    425       1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    426       1.2     ad  *	priority level to give pending interrupts a chance to run, and
    427       1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    428       1.2     ad  *	always returns zero.
    429       1.2     ad  */
    430       1.2     ad int
    431       1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    432       1.2     ad {
    433       1.2     ad 	extern int safepri;
    434       1.2     ad 	int s;
    435       1.2     ad 
    436       1.2     ad 	s = splhigh();
    437       1.2     ad 	splx(safepri);
    438       1.2     ad 	splx(s);
    439       1.2     ad 	if (mtx != NULL && unlock != 0)
    440       1.2     ad 		mutex_exit(mtx);
    441       1.2     ad 
    442       1.2     ad 	return 0;
    443       1.2     ad }
    444       1.2     ad 
    445       1.2     ad /*
    446       1.2     ad  * sleepq_changepri:
    447       1.2     ad  *
    448       1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    449       1.2     ad  *	will only alter the user priority; the effective priority is
    450       1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    451       1.2     ad  */
    452       1.2     ad void
    453       1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    454       1.2     ad {
    455      1.18     ad 	sleepq_t *sq = l->l_sleepq;
    456      1.18     ad 	pri_t opri;
    457      1.18     ad 
    458  1.27.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    459       1.2     ad 
    460      1.18     ad 	opri = lwp_eprio(l);
    461      1.18     ad 	l->l_priority = pri;
    462  1.27.2.2   yamt 
    463  1.27.2.2   yamt 	if (lwp_eprio(l) == opri) {
    464  1.27.2.2   yamt 		return;
    465  1.27.2.2   yamt 	}
    466  1.27.2.2   yamt 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    467  1.27.2.2   yamt 		return;
    468  1.27.2.2   yamt 	}
    469  1.27.2.2   yamt 
    470  1.27.2.2   yamt 	/*
    471  1.27.2.2   yamt 	 * Don't let the sleep queue become empty, even briefly.
    472  1.27.2.2   yamt 	 * cv_signal() and cv_broadcast() inspect it without the
    473  1.27.2.2   yamt 	 * sleep queue lock held and need to see a non-empty queue
    474  1.27.2.2   yamt 	 * head if there are waiters.
    475  1.27.2.2   yamt 	 */
    476  1.27.2.2   yamt 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    477  1.27.2.2   yamt 		return;
    478      1.18     ad 	}
    479  1.27.2.2   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    480  1.27.2.2   yamt 	sleepq_insert(sq, l, l->l_syncobj);
    481       1.2     ad }
    482       1.6   yamt 
    483       1.6   yamt void
    484       1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    485       1.6   yamt {
    486       1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    487       1.7   yamt 	pri_t opri;
    488       1.6   yamt 
    489  1.27.2.2   yamt 	KASSERT(lwp_locked(l, NULL));
    490       1.6   yamt 
    491       1.6   yamt 	opri = lwp_eprio(l);
    492       1.6   yamt 	l->l_inheritedprio = pri;
    493       1.6   yamt 
    494  1.27.2.2   yamt 	if (lwp_eprio(l) == opri) {
    495  1.27.2.2   yamt 		return;
    496  1.27.2.2   yamt 	}
    497  1.27.2.2   yamt 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    498  1.27.2.2   yamt 		return;
    499  1.27.2.2   yamt 	}
    500  1.27.2.2   yamt 
    501  1.27.2.2   yamt 	/*
    502  1.27.2.2   yamt 	 * Don't let the sleep queue become empty, even briefly.
    503  1.27.2.2   yamt 	 * cv_signal() and cv_broadcast() inspect it without the
    504  1.27.2.2   yamt 	 * sleep queue lock held and need to see a non-empty queue
    505  1.27.2.2   yamt 	 * head if there are waiters.
    506  1.27.2.2   yamt 	 */
    507  1.27.2.2   yamt 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    508  1.27.2.2   yamt 		return;
    509       1.6   yamt 	}
    510  1.27.2.2   yamt 	TAILQ_REMOVE(sq, l, l_sleepchain);
    511  1.27.2.2   yamt 	sleepq_insert(sq, l, l->l_syncobj);
    512       1.6   yamt }
    513