Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.28.2.1
      1  1.28.2.1  wrstuden /*	$NetBSD: kern_sleepq.c,v 1.28.2.1 2008/05/23 05:24:16 wrstuden Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.22        ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2        ad  * interfaces.
     35       1.2        ad  */
     36       1.2        ad 
     37       1.2        ad #include <sys/cdefs.h>
     38  1.28.2.1  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.28.2.1 2008/05/23 05:24:16 wrstuden Exp $");
     39       1.2        ad 
     40       1.2        ad #include <sys/param.h>
     41       1.2        ad #include <sys/kernel.h>
     42       1.9      yamt #include <sys/cpu.h>
     43       1.2        ad #include <sys/pool.h>
     44       1.2        ad #include <sys/proc.h>
     45       1.2        ad #include <sys/resourcevar.h>
     46  1.28.2.1  wrstuden #include <sys/sa.h>
     47  1.28.2.1  wrstuden #include <sys/savar.h>
     48       1.2        ad #include <sys/sched.h>
     49       1.2        ad #include <sys/systm.h>
     50       1.2        ad #include <sys/sleepq.h>
     51       1.2        ad #include <sys/ktrace.h>
     52       1.2        ad 
     53       1.4        ad #include <uvm/uvm_extern.h>
     54       1.4        ad 
     55       1.8        ad int	sleepq_sigtoerror(lwp_t *, int);
     56       1.2        ad 
     57       1.2        ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     58       1.2        ad sleeptab_t	sleeptab;
     59       1.2        ad 
     60       1.2        ad /*
     61       1.2        ad  * sleeptab_init:
     62       1.2        ad  *
     63       1.2        ad  *	Initialize a sleep table.
     64       1.2        ad  */
     65       1.2        ad void
     66       1.2        ad sleeptab_init(sleeptab_t *st)
     67       1.2        ad {
     68       1.2        ad 	sleepq_t *sq;
     69       1.2        ad 	int i;
     70       1.2        ad 
     71       1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     72       1.2        ad 		sq = &st->st_queues[i].st_queue;
     73      1.19        ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     74      1.19        ad 		    IPL_SCHED);
     75       1.2        ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     76       1.2        ad 	}
     77       1.2        ad }
     78       1.2        ad 
     79       1.2        ad /*
     80       1.2        ad  * sleepq_init:
     81       1.2        ad  *
     82       1.2        ad  *	Prepare a sleep queue for use.
     83       1.2        ad  */
     84       1.2        ad void
     85       1.2        ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     86       1.2        ad {
     87       1.2        ad 
     88       1.2        ad 	sq->sq_waiters = 0;
     89       1.2        ad 	sq->sq_mutex = mtx;
     90       1.2        ad 	TAILQ_INIT(&sq->sq_queue);
     91       1.2        ad }
     92       1.2        ad 
     93       1.2        ad /*
     94       1.2        ad  * sleepq_remove:
     95       1.2        ad  *
     96       1.2        ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     97       1.2        ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     98       1.2        ad  *	to bring the LWP into memory.
     99       1.2        ad  */
    100       1.2        ad int
    101       1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    102       1.2        ad {
    103       1.9      yamt 	struct schedstate_percpu *spc;
    104       1.2        ad 	struct cpu_info *ci;
    105       1.2        ad 
    106       1.4        ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    107       1.2        ad 	KASSERT(sq->sq_waiters > 0);
    108       1.2        ad 
    109       1.2        ad 	sq->sq_waiters--;
    110       1.2        ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    111       1.2        ad 
    112       1.2        ad #ifdef DIAGNOSTIC
    113       1.2        ad 	if (sq->sq_waiters == 0)
    114       1.2        ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    115       1.2        ad 	else
    116       1.2        ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    117       1.2        ad #endif
    118       1.2        ad 
    119       1.2        ad 	l->l_syncobj = &sched_syncobj;
    120       1.2        ad 	l->l_wchan = NULL;
    121       1.2        ad 	l->l_sleepq = NULL;
    122       1.5     pavel 	l->l_flag &= ~LW_SINTR;
    123       1.2        ad 
    124       1.9      yamt 	ci = l->l_cpu;
    125       1.9      yamt 	spc = &ci->ci_schedstate;
    126       1.9      yamt 
    127       1.2        ad 	/*
    128       1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    129       1.2        ad 	 * holds it stopped set it running again.
    130       1.2        ad 	 */
    131       1.2        ad 	if (l->l_stat != LSSLEEP) {
    132      1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    133      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    134       1.2        ad 		return 0;
    135       1.2        ad 	}
    136       1.2        ad 
    137       1.2        ad 	/*
    138       1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    139       1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    140       1.2        ad 	 */
    141       1.9      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    142       1.2        ad 		l->l_stat = LSONPROC;
    143       1.2        ad 		l->l_slptime = 0;
    144      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    145       1.2        ad 		return 0;
    146       1.2        ad 	}
    147       1.2        ad 
    148       1.2        ad 	/*
    149      1.16     rmind 	 * Call the wake-up handler of scheduler.
    150      1.16     rmind 	 * It might change the CPU for this thread.
    151      1.16     rmind 	 */
    152      1.16     rmind 	sched_wakeup(l);
    153      1.16     rmind 	ci = l->l_cpu;
    154      1.16     rmind 	spc = &ci->ci_schedstate;
    155      1.16     rmind 
    156      1.16     rmind 	/*
    157      1.17      yamt 	 * Set it running.
    158       1.2        ad 	 */
    159       1.9      yamt 	spc_lock(ci);
    160       1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    161  1.28.2.1  wrstuden 	if (l->l_proc->p_sa != NULL)
    162  1.28.2.1  wrstuden 		sa_awaken(l);
    163       1.9      yamt 	sched_setrunnable(l);
    164       1.2        ad 	l->l_stat = LSRUN;
    165       1.2        ad 	l->l_slptime = 0;
    166       1.5     pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    167       1.9      yamt 		sched_enqueue(l, false);
    168       1.9      yamt 		spc_unlock(ci);
    169       1.2        ad 		return 0;
    170       1.2        ad 	}
    171       1.9      yamt 	spc_unlock(ci);
    172       1.2        ad 	return 1;
    173       1.2        ad }
    174       1.2        ad 
    175       1.2        ad /*
    176       1.2        ad  * sleepq_insert:
    177       1.2        ad  *
    178       1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179       1.2        ad  */
    180       1.2        ad inline void
    181       1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182       1.2        ad {
    183       1.8        ad 	lwp_t *l2;
    184       1.6      yamt 	const int pri = lwp_eprio(l);
    185       1.2        ad 
    186       1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    187       1.2        ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    188      1.18        ad 			if (lwp_eprio(l2) < pri) {
    189       1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    190       1.2        ad 				return;
    191       1.2        ad 			}
    192       1.2        ad 		}
    193       1.2        ad 	}
    194       1.2        ad 
    195      1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    196      1.14        ad 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    197      1.14        ad 	else
    198      1.14        ad 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    199       1.2        ad }
    200       1.2        ad 
    201       1.9      yamt /*
    202       1.9      yamt  * sleepq_enqueue:
    203       1.9      yamt  *
    204       1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    205       1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    206       1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    207       1.9      yamt  */
    208       1.2        ad void
    209      1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    210       1.2        ad {
    211       1.8        ad 	lwp_t *l = curlwp;
    212       1.2        ad 
    213      1.24      yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    214       1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    215       1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    216       1.2        ad 
    217       1.2        ad 	l->l_syncobj = sobj;
    218       1.2        ad 	l->l_wchan = wchan;
    219       1.2        ad 	l->l_sleepq = sq;
    220       1.2        ad 	l->l_wmesg = wmesg;
    221       1.2        ad 	l->l_slptime = 0;
    222       1.2        ad 	l->l_stat = LSSLEEP;
    223       1.2        ad 	l->l_sleeperr = 0;
    224       1.2        ad 
    225       1.2        ad 	sq->sq_waiters++;
    226       1.6      yamt 	sleepq_insert(sq, l, sobj);
    227      1.15     rmind 	sched_slept(l);
    228       1.6      yamt }
    229       1.6      yamt 
    230       1.9      yamt /*
    231       1.9      yamt  * sleepq_block:
    232       1.9      yamt  *
    233       1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    234       1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    235       1.9      yamt  * 	example if the LWP's containing process is exiting.
    236       1.9      yamt  */
    237       1.9      yamt int
    238       1.9      yamt sleepq_block(int timo, bool catch)
    239       1.6      yamt {
    240      1.10        ad 	int error = 0, sig;
    241       1.9      yamt 	struct proc *p;
    242       1.8        ad 	lwp_t *l = curlwp;
    243      1.11        ad 	bool early = false;
    244       1.2        ad 
    245      1.12        ad 	ktrcsw(1, 0);
    246       1.4        ad 
    247       1.2        ad 	/*
    248       1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    249       1.2        ad 	 * core dump events.
    250       1.2        ad 	 */
    251       1.2        ad 	if (catch) {
    252       1.5     pavel 		l->l_flag |= LW_SINTR;
    253       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    254       1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    255      1.14        ad 			error = EINTR;
    256      1.14        ad 			early = true;
    257      1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    258      1.11        ad 			early = true;
    259       1.2        ad 	}
    260       1.2        ad 
    261      1.13      yamt 	if (early) {
    262      1.13      yamt 		/* lwp_unsleep() will release the lock */
    263      1.22        ad 		lwp_unsleep(l, true);
    264      1.13      yamt 	} else {
    265      1.11        ad 		if (timo)
    266      1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    267  1.28.2.1  wrstuden 
    268  1.28.2.1  wrstuden 		if ((l->l_flag & LW_SA) != 0)
    269  1.28.2.1  wrstuden 			sa_switch(l);
    270  1.28.2.1  wrstuden 		else
    271  1.28.2.1  wrstuden 			mi_switch(l);
    272      1.11        ad 
    273      1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    274      1.11        ad 		if (timo) {
    275      1.11        ad 			/*
    276      1.11        ad 			 * Even if the callout appears to have fired, we need to
    277      1.11        ad 			 * stop it in order to synchronise with other CPUs.
    278      1.11        ad 			 */
    279      1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    280      1.11        ad 				error = EWOULDBLOCK;
    281      1.11        ad 		}
    282       1.2        ad 	}
    283       1.2        ad 
    284       1.9      yamt 	if (catch && error == 0) {
    285       1.2        ad 		p = l->l_proc;
    286       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    287       1.2        ad 			error = EINTR;
    288       1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    289      1.27        ad 			mutex_enter(p->p_lock);
    290       1.2        ad 			if ((sig = issignal(l)) != 0)
    291       1.2        ad 				error = sleepq_sigtoerror(l, sig);
    292      1.27        ad 			mutex_exit(p->p_lock);
    293       1.2        ad 		}
    294       1.2        ad 	}
    295       1.2        ad 
    296      1.12        ad 	ktrcsw(0, 0);
    297       1.2        ad 
    298       1.2        ad 	KERNEL_LOCK(l->l_biglocks, l);
    299       1.2        ad 	return error;
    300       1.2        ad }
    301       1.2        ad 
    302       1.2        ad /*
    303       1.2        ad  * sleepq_wake:
    304       1.2        ad  *
    305       1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    306       1.2        ad  */
    307       1.8        ad lwp_t *
    308       1.2        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    309       1.2        ad {
    310       1.8        ad 	lwp_t *l, *next;
    311       1.2        ad 	int swapin = 0;
    312       1.2        ad 
    313       1.4        ad 	KASSERT(mutex_owned(sq->sq_mutex));
    314       1.2        ad 
    315       1.2        ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    316       1.2        ad 		KASSERT(l->l_sleepq == sq);
    317      1.24      yamt 		KASSERT(l->l_mutex == sq->sq_mutex);
    318       1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    319       1.2        ad 		if (l->l_wchan != wchan)
    320       1.2        ad 			continue;
    321       1.2        ad 		swapin |= sleepq_remove(sq, l);
    322       1.2        ad 		if (--expected == 0)
    323       1.2        ad 			break;
    324       1.2        ad 	}
    325       1.2        ad 
    326       1.2        ad 	sleepq_unlock(sq);
    327       1.2        ad 
    328       1.2        ad 	/*
    329       1.2        ad 	 * If there are newly awakend threads that need to be swapped in,
    330       1.2        ad 	 * then kick the swapper into action.
    331       1.2        ad 	 */
    332       1.2        ad 	if (swapin)
    333       1.4        ad 		uvm_kick_scheduler();
    334       1.8        ad 
    335       1.8        ad 	return l;
    336       1.2        ad }
    337       1.2        ad 
    338       1.2        ad /*
    339       1.2        ad  * sleepq_unsleep:
    340       1.2        ad  *
    341       1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    342       1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    343       1.2        ad  *	always release it.
    344       1.2        ad  */
    345      1.22        ad u_int
    346      1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    347       1.2        ad {
    348       1.2        ad 	sleepq_t *sq = l->l_sleepq;
    349       1.2        ad 	int swapin;
    350       1.2        ad 
    351      1.24      yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    352       1.2        ad 	KASSERT(l->l_wchan != NULL);
    353       1.2        ad 
    354       1.2        ad 	swapin = sleepq_remove(sq, l);
    355       1.2        ad 
    356      1.22        ad 	if (cleanup) {
    357      1.22        ad 		sleepq_unlock(sq);
    358      1.22        ad 		if (swapin)
    359      1.22        ad 			uvm_kick_scheduler();
    360      1.22        ad 	}
    361      1.22        ad 
    362      1.22        ad 	return swapin;
    363       1.2        ad }
    364       1.2        ad 
    365       1.2        ad /*
    366       1.2        ad  * sleepq_timeout:
    367       1.2        ad  *
    368       1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    369       1.2        ad  *	sleep queue.
    370       1.2        ad  */
    371       1.2        ad void
    372       1.2        ad sleepq_timeout(void *arg)
    373       1.2        ad {
    374       1.8        ad 	lwp_t *l = arg;
    375       1.2        ad 
    376       1.2        ad 	/*
    377       1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    378       1.2        ad 	 * current mutex will also be the sleep queue mutex.
    379       1.2        ad 	 */
    380       1.2        ad 	lwp_lock(l);
    381       1.2        ad 
    382       1.2        ad 	if (l->l_wchan == NULL) {
    383       1.2        ad 		/* Somebody beat us to it. */
    384       1.2        ad 		lwp_unlock(l);
    385       1.2        ad 		return;
    386       1.2        ad 	}
    387       1.2        ad 
    388      1.22        ad 	lwp_unsleep(l, true);
    389       1.2        ad }
    390       1.2        ad 
    391       1.2        ad /*
    392       1.2        ad  * sleepq_sigtoerror:
    393       1.2        ad  *
    394       1.2        ad  *	Given a signal number, interpret and return an error code.
    395       1.2        ad  */
    396       1.2        ad int
    397       1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    398       1.2        ad {
    399       1.2        ad 	struct proc *p = l->l_proc;
    400       1.2        ad 	int error;
    401       1.2        ad 
    402      1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    403       1.2        ad 
    404       1.2        ad 	/*
    405       1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    406       1.2        ad 	 */
    407       1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    408       1.2        ad 		error = EINTR;
    409       1.2        ad 	else
    410       1.2        ad 		error = ERESTART;
    411       1.2        ad 
    412       1.2        ad 	return error;
    413       1.2        ad }
    414       1.2        ad 
    415       1.2        ad /*
    416       1.2        ad  * sleepq_abort:
    417       1.2        ad  *
    418       1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    419       1.2        ad  *	priority level to give pending interrupts a chance to run, and
    420       1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    421       1.2        ad  *	always returns zero.
    422       1.2        ad  */
    423       1.2        ad int
    424       1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    425       1.2        ad {
    426       1.2        ad 	extern int safepri;
    427       1.2        ad 	int s;
    428       1.2        ad 
    429       1.2        ad 	s = splhigh();
    430       1.2        ad 	splx(safepri);
    431       1.2        ad 	splx(s);
    432       1.2        ad 	if (mtx != NULL && unlock != 0)
    433       1.2        ad 		mutex_exit(mtx);
    434       1.2        ad 
    435       1.2        ad 	return 0;
    436       1.2        ad }
    437       1.2        ad 
    438       1.2        ad /*
    439       1.2        ad  * sleepq_changepri:
    440       1.2        ad  *
    441       1.2        ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    442       1.2        ad  *	will only alter the user priority; the effective priority is
    443       1.2        ad  *	assumed to have been fixed at the time of insertion into the queue.
    444       1.2        ad  */
    445       1.2        ad void
    446       1.8        ad sleepq_changepri(lwp_t *l, pri_t pri)
    447       1.2        ad {
    448      1.18        ad 	sleepq_t *sq = l->l_sleepq;
    449      1.18        ad 	pri_t opri;
    450      1.18        ad 
    451      1.18        ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    452       1.2        ad 
    453      1.18        ad 	opri = lwp_eprio(l);
    454      1.18        ad 	l->l_priority = pri;
    455      1.18        ad 	if (lwp_eprio(l) != opri) {
    456      1.18        ad 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    457      1.18        ad 		sleepq_insert(sq, l, l->l_syncobj);
    458      1.18        ad 	}
    459       1.2        ad }
    460       1.6      yamt 
    461       1.6      yamt void
    462       1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    463       1.6      yamt {
    464       1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    465       1.7      yamt 	pri_t opri;
    466       1.6      yamt 
    467       1.6      yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    468       1.6      yamt 
    469       1.6      yamt 	opri = lwp_eprio(l);
    470       1.6      yamt 	l->l_inheritedprio = pri;
    471       1.6      yamt 
    472       1.6      yamt 	if (lwp_eprio(l) != opri &&
    473       1.6      yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    474       1.6      yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    475       1.6      yamt 		sleepq_insert(sq, l, l->l_syncobj);
    476       1.6      yamt 	}
    477       1.6      yamt }
    478