Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.28.2.2
      1  1.28.2.2  wrstuden /*	$NetBSD: kern_sleepq.c,v 1.28.2.2 2008/06/23 04:31:51 wrstuden Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.22        ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2        ad  * interfaces.
     35       1.2        ad  */
     36       1.2        ad 
     37       1.2        ad #include <sys/cdefs.h>
     38  1.28.2.2  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.28.2.2 2008/06/23 04:31:51 wrstuden Exp $");
     39       1.2        ad 
     40       1.2        ad #include <sys/param.h>
     41       1.2        ad #include <sys/kernel.h>
     42       1.9      yamt #include <sys/cpu.h>
     43       1.2        ad #include <sys/pool.h>
     44       1.2        ad #include <sys/proc.h>
     45       1.2        ad #include <sys/resourcevar.h>
     46  1.28.2.1  wrstuden #include <sys/sa.h>
     47  1.28.2.1  wrstuden #include <sys/savar.h>
     48       1.2        ad #include <sys/sched.h>
     49       1.2        ad #include <sys/systm.h>
     50       1.2        ad #include <sys/sleepq.h>
     51       1.2        ad #include <sys/ktrace.h>
     52       1.2        ad 
     53       1.4        ad #include <uvm/uvm_extern.h>
     54       1.4        ad 
     55       1.8        ad int	sleepq_sigtoerror(lwp_t *, int);
     56       1.2        ad 
     57       1.2        ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     58       1.2        ad sleeptab_t	sleeptab;
     59       1.2        ad 
     60       1.2        ad /*
     61       1.2        ad  * sleeptab_init:
     62       1.2        ad  *
     63       1.2        ad  *	Initialize a sleep table.
     64       1.2        ad  */
     65       1.2        ad void
     66       1.2        ad sleeptab_init(sleeptab_t *st)
     67       1.2        ad {
     68       1.2        ad 	sleepq_t *sq;
     69       1.2        ad 	int i;
     70       1.2        ad 
     71       1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     72       1.2        ad 		sq = &st->st_queues[i].st_queue;
     73      1.19        ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     74      1.19        ad 		    IPL_SCHED);
     75  1.28.2.2  wrstuden 		sleepq_init(sq);
     76       1.2        ad 	}
     77       1.2        ad }
     78       1.2        ad 
     79       1.2        ad /*
     80       1.2        ad  * sleepq_init:
     81       1.2        ad  *
     82       1.2        ad  *	Prepare a sleep queue for use.
     83       1.2        ad  */
     84       1.2        ad void
     85  1.28.2.2  wrstuden sleepq_init(sleepq_t *sq)
     86       1.2        ad {
     87       1.2        ad 
     88  1.28.2.2  wrstuden 	TAILQ_INIT(sq);
     89       1.2        ad }
     90       1.2        ad 
     91       1.2        ad /*
     92       1.2        ad  * sleepq_remove:
     93       1.2        ad  *
     94       1.2        ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     95       1.2        ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     96       1.2        ad  *	to bring the LWP into memory.
     97       1.2        ad  */
     98       1.2        ad int
     99       1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    100       1.2        ad {
    101       1.9      yamt 	struct schedstate_percpu *spc;
    102       1.2        ad 	struct cpu_info *ci;
    103       1.2        ad 
    104  1.28.2.2  wrstuden 	KASSERT(lwp_locked(l, NULL));
    105       1.2        ad 
    106  1.28.2.2  wrstuden 	TAILQ_REMOVE(sq, l, l_sleepchain);
    107       1.2        ad 	l->l_syncobj = &sched_syncobj;
    108       1.2        ad 	l->l_wchan = NULL;
    109       1.2        ad 	l->l_sleepq = NULL;
    110       1.5     pavel 	l->l_flag &= ~LW_SINTR;
    111       1.2        ad 
    112       1.9      yamt 	ci = l->l_cpu;
    113       1.9      yamt 	spc = &ci->ci_schedstate;
    114       1.9      yamt 
    115       1.2        ad 	/*
    116       1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    117       1.2        ad 	 * holds it stopped set it running again.
    118       1.2        ad 	 */
    119       1.2        ad 	if (l->l_stat != LSSLEEP) {
    120      1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    121      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    122       1.2        ad 		return 0;
    123       1.2        ad 	}
    124       1.2        ad 
    125       1.2        ad 	/*
    126       1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    127       1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    128       1.2        ad 	 */
    129  1.28.2.2  wrstuden 	if ((l->l_pflag & LP_RUNNING) != 0) {
    130       1.2        ad 		l->l_stat = LSONPROC;
    131       1.2        ad 		l->l_slptime = 0;
    132      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    133       1.2        ad 		return 0;
    134       1.2        ad 	}
    135       1.2        ad 
    136  1.28.2.2  wrstuden 	/* Update sleep time delta, call the wake-up handler of scheduler */
    137  1.28.2.2  wrstuden 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    138      1.16     rmind 	sched_wakeup(l);
    139  1.28.2.2  wrstuden 
    140  1.28.2.2  wrstuden 	/* Look for a CPU to wake up */
    141  1.28.2.2  wrstuden 	l->l_cpu = sched_takecpu(l);
    142      1.16     rmind 	ci = l->l_cpu;
    143      1.16     rmind 	spc = &ci->ci_schedstate;
    144      1.16     rmind 
    145      1.16     rmind 	/*
    146      1.17      yamt 	 * Set it running.
    147       1.2        ad 	 */
    148       1.9      yamt 	spc_lock(ci);
    149       1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    150  1.28.2.1  wrstuden 	if (l->l_proc->p_sa != NULL)
    151  1.28.2.1  wrstuden 		sa_awaken(l);
    152       1.9      yamt 	sched_setrunnable(l);
    153       1.2        ad 	l->l_stat = LSRUN;
    154       1.2        ad 	l->l_slptime = 0;
    155       1.5     pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    156       1.9      yamt 		sched_enqueue(l, false);
    157       1.9      yamt 		spc_unlock(ci);
    158       1.2        ad 		return 0;
    159       1.2        ad 	}
    160       1.9      yamt 	spc_unlock(ci);
    161       1.2        ad 	return 1;
    162       1.2        ad }
    163       1.2        ad 
    164       1.2        ad /*
    165       1.2        ad  * sleepq_insert:
    166       1.2        ad  *
    167       1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    168       1.2        ad  */
    169       1.2        ad inline void
    170       1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    171       1.2        ad {
    172       1.8        ad 	lwp_t *l2;
    173       1.6      yamt 	const int pri = lwp_eprio(l);
    174       1.2        ad 
    175       1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    176  1.28.2.2  wrstuden 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    177      1.18        ad 			if (lwp_eprio(l2) < pri) {
    178       1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    179       1.2        ad 				return;
    180       1.2        ad 			}
    181       1.2        ad 		}
    182       1.2        ad 	}
    183       1.2        ad 
    184      1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    185  1.28.2.2  wrstuden 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    186      1.14        ad 	else
    187  1.28.2.2  wrstuden 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    188       1.2        ad }
    189       1.2        ad 
    190       1.9      yamt /*
    191       1.9      yamt  * sleepq_enqueue:
    192       1.9      yamt  *
    193       1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    194       1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    195       1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    196       1.9      yamt  */
    197       1.2        ad void
    198      1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    199       1.2        ad {
    200       1.8        ad 	lwp_t *l = curlwp;
    201       1.2        ad 
    202  1.28.2.2  wrstuden 	KASSERT(lwp_locked(l, NULL));
    203       1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    204       1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    205       1.2        ad 
    206       1.2        ad 	l->l_syncobj = sobj;
    207       1.2        ad 	l->l_wchan = wchan;
    208       1.2        ad 	l->l_sleepq = sq;
    209       1.2        ad 	l->l_wmesg = wmesg;
    210       1.2        ad 	l->l_slptime = 0;
    211       1.2        ad 	l->l_stat = LSSLEEP;
    212       1.2        ad 	l->l_sleeperr = 0;
    213       1.2        ad 
    214       1.6      yamt 	sleepq_insert(sq, l, sobj);
    215  1.28.2.2  wrstuden 
    216  1.28.2.2  wrstuden 	/* Save the time when thread has slept */
    217  1.28.2.2  wrstuden 	l->l_slpticks = hardclock_ticks;
    218      1.15     rmind 	sched_slept(l);
    219       1.6      yamt }
    220       1.6      yamt 
    221       1.9      yamt /*
    222       1.9      yamt  * sleepq_block:
    223       1.9      yamt  *
    224       1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    225       1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    226       1.9      yamt  * 	example if the LWP's containing process is exiting.
    227       1.9      yamt  */
    228       1.9      yamt int
    229       1.9      yamt sleepq_block(int timo, bool catch)
    230       1.6      yamt {
    231      1.10        ad 	int error = 0, sig;
    232       1.9      yamt 	struct proc *p;
    233       1.8        ad 	lwp_t *l = curlwp;
    234      1.11        ad 	bool early = false;
    235       1.2        ad 
    236      1.12        ad 	ktrcsw(1, 0);
    237       1.4        ad 
    238       1.2        ad 	/*
    239       1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    240       1.2        ad 	 * core dump events.
    241       1.2        ad 	 */
    242       1.2        ad 	if (catch) {
    243       1.5     pavel 		l->l_flag |= LW_SINTR;
    244       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    245       1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    246      1.14        ad 			error = EINTR;
    247      1.14        ad 			early = true;
    248      1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    249      1.11        ad 			early = true;
    250       1.2        ad 	}
    251       1.2        ad 
    252      1.13      yamt 	if (early) {
    253      1.13      yamt 		/* lwp_unsleep() will release the lock */
    254      1.22        ad 		lwp_unsleep(l, true);
    255      1.13      yamt 	} else {
    256      1.11        ad 		if (timo)
    257      1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    258  1.28.2.1  wrstuden 
    259  1.28.2.1  wrstuden 		if ((l->l_flag & LW_SA) != 0)
    260  1.28.2.1  wrstuden 			sa_switch(l);
    261  1.28.2.1  wrstuden 		else
    262  1.28.2.1  wrstuden 			mi_switch(l);
    263      1.11        ad 
    264      1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    265      1.11        ad 		if (timo) {
    266      1.11        ad 			/*
    267      1.11        ad 			 * Even if the callout appears to have fired, we need to
    268      1.11        ad 			 * stop it in order to synchronise with other CPUs.
    269      1.11        ad 			 */
    270      1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    271      1.11        ad 				error = EWOULDBLOCK;
    272      1.11        ad 		}
    273       1.2        ad 	}
    274       1.2        ad 
    275       1.9      yamt 	if (catch && error == 0) {
    276       1.2        ad 		p = l->l_proc;
    277       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    278       1.2        ad 			error = EINTR;
    279       1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    280  1.28.2.2  wrstuden 			/*
    281  1.28.2.2  wrstuden 			 * Acquiring p_lock may cause us to recurse
    282  1.28.2.2  wrstuden 			 * through the sleep path and back into this
    283  1.28.2.2  wrstuden 			 * routine, but is safe because LWPs sleeping
    284  1.28.2.2  wrstuden 			 * on locks are non-interruptable.  We will
    285  1.28.2.2  wrstuden 			 * not recurse again.
    286  1.28.2.2  wrstuden 			 */
    287      1.27        ad 			mutex_enter(p->p_lock);
    288       1.2        ad 			if ((sig = issignal(l)) != 0)
    289       1.2        ad 				error = sleepq_sigtoerror(l, sig);
    290      1.27        ad 			mutex_exit(p->p_lock);
    291       1.2        ad 		}
    292       1.2        ad 	}
    293       1.2        ad 
    294      1.12        ad 	ktrcsw(0, 0);
    295  1.28.2.2  wrstuden 	if (__predict_false(l->l_biglocks != 0)) {
    296  1.28.2.2  wrstuden 		KERNEL_LOCK(l->l_biglocks, NULL);
    297  1.28.2.2  wrstuden 	}
    298       1.2        ad 	return error;
    299       1.2        ad }
    300       1.2        ad 
    301       1.2        ad /*
    302       1.2        ad  * sleepq_wake:
    303       1.2        ad  *
    304       1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    305       1.2        ad  */
    306       1.8        ad lwp_t *
    307  1.28.2.2  wrstuden sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    308       1.2        ad {
    309       1.8        ad 	lwp_t *l, *next;
    310       1.2        ad 	int swapin = 0;
    311       1.2        ad 
    312  1.28.2.2  wrstuden 	KASSERT(mutex_owned(mp));
    313       1.2        ad 
    314  1.28.2.2  wrstuden 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    315       1.2        ad 		KASSERT(l->l_sleepq == sq);
    316  1.28.2.2  wrstuden 		KASSERT(l->l_mutex == mp);
    317       1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    318       1.2        ad 		if (l->l_wchan != wchan)
    319       1.2        ad 			continue;
    320       1.2        ad 		swapin |= sleepq_remove(sq, l);
    321       1.2        ad 		if (--expected == 0)
    322       1.2        ad 			break;
    323       1.2        ad 	}
    324       1.2        ad 
    325  1.28.2.2  wrstuden 	mutex_spin_exit(mp);
    326       1.2        ad 
    327       1.2        ad 	/*
    328       1.2        ad 	 * If there are newly awakend threads that need to be swapped in,
    329       1.2        ad 	 * then kick the swapper into action.
    330       1.2        ad 	 */
    331       1.2        ad 	if (swapin)
    332       1.4        ad 		uvm_kick_scheduler();
    333       1.8        ad 
    334       1.8        ad 	return l;
    335       1.2        ad }
    336       1.2        ad 
    337       1.2        ad /*
    338       1.2        ad  * sleepq_unsleep:
    339       1.2        ad  *
    340       1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    341       1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    342       1.2        ad  *	always release it.
    343       1.2        ad  */
    344      1.22        ad u_int
    345      1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    346       1.2        ad {
    347       1.2        ad 	sleepq_t *sq = l->l_sleepq;
    348  1.28.2.2  wrstuden 	kmutex_t *mp = l->l_mutex;
    349       1.2        ad 	int swapin;
    350       1.2        ad 
    351  1.28.2.2  wrstuden 	KASSERT(lwp_locked(l, mp));
    352       1.2        ad 	KASSERT(l->l_wchan != NULL);
    353       1.2        ad 
    354       1.2        ad 	swapin = sleepq_remove(sq, l);
    355       1.2        ad 
    356      1.22        ad 	if (cleanup) {
    357  1.28.2.2  wrstuden 		mutex_spin_exit(mp);
    358      1.22        ad 		if (swapin)
    359      1.22        ad 			uvm_kick_scheduler();
    360      1.22        ad 	}
    361      1.22        ad 
    362      1.22        ad 	return swapin;
    363       1.2        ad }
    364       1.2        ad 
    365       1.2        ad /*
    366       1.2        ad  * sleepq_timeout:
    367       1.2        ad  *
    368       1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    369       1.2        ad  *	sleep queue.
    370       1.2        ad  */
    371       1.2        ad void
    372       1.2        ad sleepq_timeout(void *arg)
    373       1.2        ad {
    374       1.8        ad 	lwp_t *l = arg;
    375       1.2        ad 
    376       1.2        ad 	/*
    377       1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    378       1.2        ad 	 * current mutex will also be the sleep queue mutex.
    379       1.2        ad 	 */
    380       1.2        ad 	lwp_lock(l);
    381       1.2        ad 
    382       1.2        ad 	if (l->l_wchan == NULL) {
    383       1.2        ad 		/* Somebody beat us to it. */
    384       1.2        ad 		lwp_unlock(l);
    385       1.2        ad 		return;
    386       1.2        ad 	}
    387       1.2        ad 
    388      1.22        ad 	lwp_unsleep(l, true);
    389       1.2        ad }
    390       1.2        ad 
    391       1.2        ad /*
    392       1.2        ad  * sleepq_sigtoerror:
    393       1.2        ad  *
    394       1.2        ad  *	Given a signal number, interpret and return an error code.
    395       1.2        ad  */
    396       1.2        ad int
    397       1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    398       1.2        ad {
    399       1.2        ad 	struct proc *p = l->l_proc;
    400       1.2        ad 	int error;
    401       1.2        ad 
    402      1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    403       1.2        ad 
    404       1.2        ad 	/*
    405       1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    406       1.2        ad 	 */
    407       1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    408       1.2        ad 		error = EINTR;
    409       1.2        ad 	else
    410       1.2        ad 		error = ERESTART;
    411       1.2        ad 
    412       1.2        ad 	return error;
    413       1.2        ad }
    414       1.2        ad 
    415       1.2        ad /*
    416       1.2        ad  * sleepq_abort:
    417       1.2        ad  *
    418       1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    419       1.2        ad  *	priority level to give pending interrupts a chance to run, and
    420       1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    421       1.2        ad  *	always returns zero.
    422       1.2        ad  */
    423       1.2        ad int
    424       1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    425       1.2        ad {
    426       1.2        ad 	extern int safepri;
    427       1.2        ad 	int s;
    428       1.2        ad 
    429       1.2        ad 	s = splhigh();
    430       1.2        ad 	splx(safepri);
    431       1.2        ad 	splx(s);
    432       1.2        ad 	if (mtx != NULL && unlock != 0)
    433       1.2        ad 		mutex_exit(mtx);
    434       1.2        ad 
    435       1.2        ad 	return 0;
    436       1.2        ad }
    437       1.2        ad 
    438       1.2        ad /*
    439       1.2        ad  * sleepq_changepri:
    440       1.2        ad  *
    441       1.2        ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    442       1.2        ad  *	will only alter the user priority; the effective priority is
    443       1.2        ad  *	assumed to have been fixed at the time of insertion into the queue.
    444       1.2        ad  */
    445       1.2        ad void
    446       1.8        ad sleepq_changepri(lwp_t *l, pri_t pri)
    447       1.2        ad {
    448      1.18        ad 	sleepq_t *sq = l->l_sleepq;
    449      1.18        ad 	pri_t opri;
    450      1.18        ad 
    451  1.28.2.2  wrstuden 	KASSERT(lwp_locked(l, NULL));
    452       1.2        ad 
    453      1.18        ad 	opri = lwp_eprio(l);
    454      1.18        ad 	l->l_priority = pri;
    455  1.28.2.2  wrstuden 
    456  1.28.2.2  wrstuden 	if (lwp_eprio(l) == opri) {
    457  1.28.2.2  wrstuden 		return;
    458  1.28.2.2  wrstuden 	}
    459  1.28.2.2  wrstuden 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    460  1.28.2.2  wrstuden 		return;
    461      1.18        ad 	}
    462  1.28.2.2  wrstuden 
    463  1.28.2.2  wrstuden 	/*
    464  1.28.2.2  wrstuden 	 * Don't let the sleep queue become empty, even briefly.
    465  1.28.2.2  wrstuden 	 * cv_signal() and cv_broadcast() inspect it without the
    466  1.28.2.2  wrstuden 	 * sleep queue lock held and need to see a non-empty queue
    467  1.28.2.2  wrstuden 	 * head if there are waiters.
    468  1.28.2.2  wrstuden 	 */
    469  1.28.2.2  wrstuden 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    470  1.28.2.2  wrstuden 		return;
    471  1.28.2.2  wrstuden 	}
    472  1.28.2.2  wrstuden 	TAILQ_REMOVE(sq, l, l_sleepchain);
    473  1.28.2.2  wrstuden 	sleepq_insert(sq, l, l->l_syncobj);
    474       1.2        ad }
    475       1.6      yamt 
    476       1.6      yamt void
    477       1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    478       1.6      yamt {
    479       1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    480       1.7      yamt 	pri_t opri;
    481       1.6      yamt 
    482  1.28.2.2  wrstuden 	KASSERT(lwp_locked(l, NULL));
    483       1.6      yamt 
    484       1.6      yamt 	opri = lwp_eprio(l);
    485       1.6      yamt 	l->l_inheritedprio = pri;
    486       1.6      yamt 
    487  1.28.2.2  wrstuden 	if (lwp_eprio(l) == opri) {
    488  1.28.2.2  wrstuden 		return;
    489  1.28.2.2  wrstuden 	}
    490  1.28.2.2  wrstuden 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    491  1.28.2.2  wrstuden 		return;
    492  1.28.2.2  wrstuden 	}
    493  1.28.2.2  wrstuden 
    494  1.28.2.2  wrstuden 	/*
    495  1.28.2.2  wrstuden 	 * Don't let the sleep queue become empty, even briefly.
    496  1.28.2.2  wrstuden 	 * cv_signal() and cv_broadcast() inspect it without the
    497  1.28.2.2  wrstuden 	 * sleep queue lock held and need to see a non-empty queue
    498  1.28.2.2  wrstuden 	 * head if there are waiters.
    499  1.28.2.2  wrstuden 	 */
    500  1.28.2.2  wrstuden 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    501  1.28.2.2  wrstuden 		return;
    502       1.6      yamt 	}
    503  1.28.2.2  wrstuden 	TAILQ_REMOVE(sq, l, l_sleepchain);
    504  1.28.2.2  wrstuden 	sleepq_insert(sq, l, l->l_syncobj);
    505       1.6      yamt }
    506