kern_sleepq.c revision 1.28.2.2 1 1.28.2.2 wrstuden /* $NetBSD: kern_sleepq.c,v 1.28.2.2 2008/06/23 04:31:51 wrstuden Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.22 ad * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.28.2.2 wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.28.2.2 2008/06/23 04:31:51 wrstuden Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.2 ad #include <sys/pool.h>
44 1.2 ad #include <sys/proc.h>
45 1.2 ad #include <sys/resourcevar.h>
46 1.28.2.1 wrstuden #include <sys/sa.h>
47 1.28.2.1 wrstuden #include <sys/savar.h>
48 1.2 ad #include <sys/sched.h>
49 1.2 ad #include <sys/systm.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/ktrace.h>
52 1.2 ad
53 1.4 ad #include <uvm/uvm_extern.h>
54 1.4 ad
55 1.8 ad int sleepq_sigtoerror(lwp_t *, int);
56 1.2 ad
57 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
58 1.2 ad sleeptab_t sleeptab;
59 1.2 ad
60 1.2 ad /*
61 1.2 ad * sleeptab_init:
62 1.2 ad *
63 1.2 ad * Initialize a sleep table.
64 1.2 ad */
65 1.2 ad void
66 1.2 ad sleeptab_init(sleeptab_t *st)
67 1.2 ad {
68 1.2 ad sleepq_t *sq;
69 1.2 ad int i;
70 1.2 ad
71 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
72 1.2 ad sq = &st->st_queues[i].st_queue;
73 1.19 ad mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
74 1.19 ad IPL_SCHED);
75 1.28.2.2 wrstuden sleepq_init(sq);
76 1.2 ad }
77 1.2 ad }
78 1.2 ad
79 1.2 ad /*
80 1.2 ad * sleepq_init:
81 1.2 ad *
82 1.2 ad * Prepare a sleep queue for use.
83 1.2 ad */
84 1.2 ad void
85 1.28.2.2 wrstuden sleepq_init(sleepq_t *sq)
86 1.2 ad {
87 1.2 ad
88 1.28.2.2 wrstuden TAILQ_INIT(sq);
89 1.2 ad }
90 1.2 ad
91 1.2 ad /*
92 1.2 ad * sleepq_remove:
93 1.2 ad *
94 1.2 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
95 1.2 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
96 1.2 ad * to bring the LWP into memory.
97 1.2 ad */
98 1.2 ad int
99 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
100 1.2 ad {
101 1.9 yamt struct schedstate_percpu *spc;
102 1.2 ad struct cpu_info *ci;
103 1.2 ad
104 1.28.2.2 wrstuden KASSERT(lwp_locked(l, NULL));
105 1.2 ad
106 1.28.2.2 wrstuden TAILQ_REMOVE(sq, l, l_sleepchain);
107 1.2 ad l->l_syncobj = &sched_syncobj;
108 1.2 ad l->l_wchan = NULL;
109 1.2 ad l->l_sleepq = NULL;
110 1.5 pavel l->l_flag &= ~LW_SINTR;
111 1.2 ad
112 1.9 yamt ci = l->l_cpu;
113 1.9 yamt spc = &ci->ci_schedstate;
114 1.9 yamt
115 1.2 ad /*
116 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
117 1.2 ad * holds it stopped set it running again.
118 1.2 ad */
119 1.2 ad if (l->l_stat != LSSLEEP) {
120 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
121 1.21 ad lwp_setlock(l, spc->spc_lwplock);
122 1.2 ad return 0;
123 1.2 ad }
124 1.2 ad
125 1.2 ad /*
126 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
127 1.2 ad * about to call mi_switch(), in which case it will yield.
128 1.2 ad */
129 1.28.2.2 wrstuden if ((l->l_pflag & LP_RUNNING) != 0) {
130 1.2 ad l->l_stat = LSONPROC;
131 1.2 ad l->l_slptime = 0;
132 1.21 ad lwp_setlock(l, spc->spc_lwplock);
133 1.2 ad return 0;
134 1.2 ad }
135 1.2 ad
136 1.28.2.2 wrstuden /* Update sleep time delta, call the wake-up handler of scheduler */
137 1.28.2.2 wrstuden l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
138 1.16 rmind sched_wakeup(l);
139 1.28.2.2 wrstuden
140 1.28.2.2 wrstuden /* Look for a CPU to wake up */
141 1.28.2.2 wrstuden l->l_cpu = sched_takecpu(l);
142 1.16 rmind ci = l->l_cpu;
143 1.16 rmind spc = &ci->ci_schedstate;
144 1.16 rmind
145 1.16 rmind /*
146 1.17 yamt * Set it running.
147 1.2 ad */
148 1.9 yamt spc_lock(ci);
149 1.9 yamt lwp_setlock(l, spc->spc_mutex);
150 1.28.2.1 wrstuden if (l->l_proc->p_sa != NULL)
151 1.28.2.1 wrstuden sa_awaken(l);
152 1.9 yamt sched_setrunnable(l);
153 1.2 ad l->l_stat = LSRUN;
154 1.2 ad l->l_slptime = 0;
155 1.5 pavel if ((l->l_flag & LW_INMEM) != 0) {
156 1.9 yamt sched_enqueue(l, false);
157 1.9 yamt spc_unlock(ci);
158 1.2 ad return 0;
159 1.2 ad }
160 1.9 yamt spc_unlock(ci);
161 1.2 ad return 1;
162 1.2 ad }
163 1.2 ad
164 1.2 ad /*
165 1.2 ad * sleepq_insert:
166 1.2 ad *
167 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
168 1.2 ad */
169 1.2 ad inline void
170 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
171 1.2 ad {
172 1.8 ad lwp_t *l2;
173 1.6 yamt const int pri = lwp_eprio(l);
174 1.2 ad
175 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
176 1.28.2.2 wrstuden TAILQ_FOREACH(l2, sq, l_sleepchain) {
177 1.18 ad if (lwp_eprio(l2) < pri) {
178 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
179 1.2 ad return;
180 1.2 ad }
181 1.2 ad }
182 1.2 ad }
183 1.2 ad
184 1.14 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
185 1.28.2.2 wrstuden TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
186 1.14 ad else
187 1.28.2.2 wrstuden TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
188 1.2 ad }
189 1.2 ad
190 1.9 yamt /*
191 1.9 yamt * sleepq_enqueue:
192 1.9 yamt *
193 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
194 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
195 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
196 1.9 yamt */
197 1.2 ad void
198 1.18 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
199 1.2 ad {
200 1.8 ad lwp_t *l = curlwp;
201 1.2 ad
202 1.28.2.2 wrstuden KASSERT(lwp_locked(l, NULL));
203 1.2 ad KASSERT(l->l_stat == LSONPROC);
204 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
205 1.2 ad
206 1.2 ad l->l_syncobj = sobj;
207 1.2 ad l->l_wchan = wchan;
208 1.2 ad l->l_sleepq = sq;
209 1.2 ad l->l_wmesg = wmesg;
210 1.2 ad l->l_slptime = 0;
211 1.2 ad l->l_stat = LSSLEEP;
212 1.2 ad l->l_sleeperr = 0;
213 1.2 ad
214 1.6 yamt sleepq_insert(sq, l, sobj);
215 1.28.2.2 wrstuden
216 1.28.2.2 wrstuden /* Save the time when thread has slept */
217 1.28.2.2 wrstuden l->l_slpticks = hardclock_ticks;
218 1.15 rmind sched_slept(l);
219 1.6 yamt }
220 1.6 yamt
221 1.9 yamt /*
222 1.9 yamt * sleepq_block:
223 1.9 yamt *
224 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
225 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
226 1.9 yamt * example if the LWP's containing process is exiting.
227 1.9 yamt */
228 1.9 yamt int
229 1.9 yamt sleepq_block(int timo, bool catch)
230 1.6 yamt {
231 1.10 ad int error = 0, sig;
232 1.9 yamt struct proc *p;
233 1.8 ad lwp_t *l = curlwp;
234 1.11 ad bool early = false;
235 1.2 ad
236 1.12 ad ktrcsw(1, 0);
237 1.4 ad
238 1.2 ad /*
239 1.2 ad * If sleeping interruptably, check for pending signals, exits or
240 1.2 ad * core dump events.
241 1.2 ad */
242 1.2 ad if (catch) {
243 1.5 pavel l->l_flag |= LW_SINTR;
244 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
245 1.5 pavel l->l_flag &= ~LW_CANCELLED;
246 1.14 ad error = EINTR;
247 1.14 ad early = true;
248 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
249 1.11 ad early = true;
250 1.2 ad }
251 1.2 ad
252 1.13 yamt if (early) {
253 1.13 yamt /* lwp_unsleep() will release the lock */
254 1.22 ad lwp_unsleep(l, true);
255 1.13 yamt } else {
256 1.11 ad if (timo)
257 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
258 1.28.2.1 wrstuden
259 1.28.2.1 wrstuden if ((l->l_flag & LW_SA) != 0)
260 1.28.2.1 wrstuden sa_switch(l);
261 1.28.2.1 wrstuden else
262 1.28.2.1 wrstuden mi_switch(l);
263 1.11 ad
264 1.11 ad /* The LWP and sleep queue are now unlocked. */
265 1.11 ad if (timo) {
266 1.11 ad /*
267 1.11 ad * Even if the callout appears to have fired, we need to
268 1.11 ad * stop it in order to synchronise with other CPUs.
269 1.11 ad */
270 1.26 ad if (callout_halt(&l->l_timeout_ch, NULL))
271 1.11 ad error = EWOULDBLOCK;
272 1.11 ad }
273 1.2 ad }
274 1.2 ad
275 1.9 yamt if (catch && error == 0) {
276 1.2 ad p = l->l_proc;
277 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
278 1.2 ad error = EINTR;
279 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
280 1.28.2.2 wrstuden /*
281 1.28.2.2 wrstuden * Acquiring p_lock may cause us to recurse
282 1.28.2.2 wrstuden * through the sleep path and back into this
283 1.28.2.2 wrstuden * routine, but is safe because LWPs sleeping
284 1.28.2.2 wrstuden * on locks are non-interruptable. We will
285 1.28.2.2 wrstuden * not recurse again.
286 1.28.2.2 wrstuden */
287 1.27 ad mutex_enter(p->p_lock);
288 1.2 ad if ((sig = issignal(l)) != 0)
289 1.2 ad error = sleepq_sigtoerror(l, sig);
290 1.27 ad mutex_exit(p->p_lock);
291 1.2 ad }
292 1.2 ad }
293 1.2 ad
294 1.12 ad ktrcsw(0, 0);
295 1.28.2.2 wrstuden if (__predict_false(l->l_biglocks != 0)) {
296 1.28.2.2 wrstuden KERNEL_LOCK(l->l_biglocks, NULL);
297 1.28.2.2 wrstuden }
298 1.2 ad return error;
299 1.2 ad }
300 1.2 ad
301 1.2 ad /*
302 1.2 ad * sleepq_wake:
303 1.2 ad *
304 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
305 1.2 ad */
306 1.8 ad lwp_t *
307 1.28.2.2 wrstuden sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
308 1.2 ad {
309 1.8 ad lwp_t *l, *next;
310 1.2 ad int swapin = 0;
311 1.2 ad
312 1.28.2.2 wrstuden KASSERT(mutex_owned(mp));
313 1.2 ad
314 1.28.2.2 wrstuden for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
315 1.2 ad KASSERT(l->l_sleepq == sq);
316 1.28.2.2 wrstuden KASSERT(l->l_mutex == mp);
317 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
318 1.2 ad if (l->l_wchan != wchan)
319 1.2 ad continue;
320 1.2 ad swapin |= sleepq_remove(sq, l);
321 1.2 ad if (--expected == 0)
322 1.2 ad break;
323 1.2 ad }
324 1.2 ad
325 1.28.2.2 wrstuden mutex_spin_exit(mp);
326 1.2 ad
327 1.2 ad /*
328 1.2 ad * If there are newly awakend threads that need to be swapped in,
329 1.2 ad * then kick the swapper into action.
330 1.2 ad */
331 1.2 ad if (swapin)
332 1.4 ad uvm_kick_scheduler();
333 1.8 ad
334 1.8 ad return l;
335 1.2 ad }
336 1.2 ad
337 1.2 ad /*
338 1.2 ad * sleepq_unsleep:
339 1.2 ad *
340 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
341 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
342 1.2 ad * always release it.
343 1.2 ad */
344 1.22 ad u_int
345 1.22 ad sleepq_unsleep(lwp_t *l, bool cleanup)
346 1.2 ad {
347 1.2 ad sleepq_t *sq = l->l_sleepq;
348 1.28.2.2 wrstuden kmutex_t *mp = l->l_mutex;
349 1.2 ad int swapin;
350 1.2 ad
351 1.28.2.2 wrstuden KASSERT(lwp_locked(l, mp));
352 1.2 ad KASSERT(l->l_wchan != NULL);
353 1.2 ad
354 1.2 ad swapin = sleepq_remove(sq, l);
355 1.2 ad
356 1.22 ad if (cleanup) {
357 1.28.2.2 wrstuden mutex_spin_exit(mp);
358 1.22 ad if (swapin)
359 1.22 ad uvm_kick_scheduler();
360 1.22 ad }
361 1.22 ad
362 1.22 ad return swapin;
363 1.2 ad }
364 1.2 ad
365 1.2 ad /*
366 1.2 ad * sleepq_timeout:
367 1.2 ad *
368 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
369 1.2 ad * sleep queue.
370 1.2 ad */
371 1.2 ad void
372 1.2 ad sleepq_timeout(void *arg)
373 1.2 ad {
374 1.8 ad lwp_t *l = arg;
375 1.2 ad
376 1.2 ad /*
377 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
378 1.2 ad * current mutex will also be the sleep queue mutex.
379 1.2 ad */
380 1.2 ad lwp_lock(l);
381 1.2 ad
382 1.2 ad if (l->l_wchan == NULL) {
383 1.2 ad /* Somebody beat us to it. */
384 1.2 ad lwp_unlock(l);
385 1.2 ad return;
386 1.2 ad }
387 1.2 ad
388 1.22 ad lwp_unsleep(l, true);
389 1.2 ad }
390 1.2 ad
391 1.2 ad /*
392 1.2 ad * sleepq_sigtoerror:
393 1.2 ad *
394 1.2 ad * Given a signal number, interpret and return an error code.
395 1.2 ad */
396 1.2 ad int
397 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
398 1.2 ad {
399 1.2 ad struct proc *p = l->l_proc;
400 1.2 ad int error;
401 1.2 ad
402 1.27 ad KASSERT(mutex_owned(p->p_lock));
403 1.2 ad
404 1.2 ad /*
405 1.2 ad * If this sleep was canceled, don't let the syscall restart.
406 1.2 ad */
407 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
408 1.2 ad error = EINTR;
409 1.2 ad else
410 1.2 ad error = ERESTART;
411 1.2 ad
412 1.2 ad return error;
413 1.2 ad }
414 1.2 ad
415 1.2 ad /*
416 1.2 ad * sleepq_abort:
417 1.2 ad *
418 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
419 1.2 ad * priority level to give pending interrupts a chance to run, and
420 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
421 1.2 ad * always returns zero.
422 1.2 ad */
423 1.2 ad int
424 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
425 1.2 ad {
426 1.2 ad extern int safepri;
427 1.2 ad int s;
428 1.2 ad
429 1.2 ad s = splhigh();
430 1.2 ad splx(safepri);
431 1.2 ad splx(s);
432 1.2 ad if (mtx != NULL && unlock != 0)
433 1.2 ad mutex_exit(mtx);
434 1.2 ad
435 1.2 ad return 0;
436 1.2 ad }
437 1.2 ad
438 1.2 ad /*
439 1.2 ad * sleepq_changepri:
440 1.2 ad *
441 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
442 1.2 ad * will only alter the user priority; the effective priority is
443 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
444 1.2 ad */
445 1.2 ad void
446 1.8 ad sleepq_changepri(lwp_t *l, pri_t pri)
447 1.2 ad {
448 1.18 ad sleepq_t *sq = l->l_sleepq;
449 1.18 ad pri_t opri;
450 1.18 ad
451 1.28.2.2 wrstuden KASSERT(lwp_locked(l, NULL));
452 1.2 ad
453 1.18 ad opri = lwp_eprio(l);
454 1.18 ad l->l_priority = pri;
455 1.28.2.2 wrstuden
456 1.28.2.2 wrstuden if (lwp_eprio(l) == opri) {
457 1.28.2.2 wrstuden return;
458 1.28.2.2 wrstuden }
459 1.28.2.2 wrstuden if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
460 1.28.2.2 wrstuden return;
461 1.18 ad }
462 1.28.2.2 wrstuden
463 1.28.2.2 wrstuden /*
464 1.28.2.2 wrstuden * Don't let the sleep queue become empty, even briefly.
465 1.28.2.2 wrstuden * cv_signal() and cv_broadcast() inspect it without the
466 1.28.2.2 wrstuden * sleep queue lock held and need to see a non-empty queue
467 1.28.2.2 wrstuden * head if there are waiters.
468 1.28.2.2 wrstuden */
469 1.28.2.2 wrstuden if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
470 1.28.2.2 wrstuden return;
471 1.28.2.2 wrstuden }
472 1.28.2.2 wrstuden TAILQ_REMOVE(sq, l, l_sleepchain);
473 1.28.2.2 wrstuden sleepq_insert(sq, l, l->l_syncobj);
474 1.2 ad }
475 1.6 yamt
476 1.6 yamt void
477 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
478 1.6 yamt {
479 1.6 yamt sleepq_t *sq = l->l_sleepq;
480 1.7 yamt pri_t opri;
481 1.6 yamt
482 1.28.2.2 wrstuden KASSERT(lwp_locked(l, NULL));
483 1.6 yamt
484 1.6 yamt opri = lwp_eprio(l);
485 1.6 yamt l->l_inheritedprio = pri;
486 1.6 yamt
487 1.28.2.2 wrstuden if (lwp_eprio(l) == opri) {
488 1.28.2.2 wrstuden return;
489 1.28.2.2 wrstuden }
490 1.28.2.2 wrstuden if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
491 1.28.2.2 wrstuden return;
492 1.28.2.2 wrstuden }
493 1.28.2.2 wrstuden
494 1.28.2.2 wrstuden /*
495 1.28.2.2 wrstuden * Don't let the sleep queue become empty, even briefly.
496 1.28.2.2 wrstuden * cv_signal() and cv_broadcast() inspect it without the
497 1.28.2.2 wrstuden * sleep queue lock held and need to see a non-empty queue
498 1.28.2.2 wrstuden * head if there are waiters.
499 1.28.2.2 wrstuden */
500 1.28.2.2 wrstuden if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
501 1.28.2.2 wrstuden return;
502 1.6 yamt }
503 1.28.2.2 wrstuden TAILQ_REMOVE(sq, l, l_sleepchain);
504 1.28.2.2 wrstuden sleepq_insert(sq, l, l->l_syncobj);
505 1.6 yamt }
506