Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.29
      1  1.29  rmind /*	$NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $	*/
      2   1.2     ad 
      3   1.2     ad /*-
      4  1.22     ad  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2     ad  * All rights reserved.
      6   1.2     ad  *
      7   1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2     ad  * by Andrew Doran.
      9   1.2     ad  *
     10   1.2     ad  * Redistribution and use in source and binary forms, with or without
     11   1.2     ad  * modification, are permitted provided that the following conditions
     12   1.2     ad  * are met:
     13   1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2     ad  *    documentation and/or other materials provided with the distribution.
     18   1.2     ad  *
     19   1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2     ad  */
     31   1.2     ad 
     32   1.2     ad /*
     33   1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2     ad  * interfaces.
     35   1.2     ad  */
     36   1.2     ad 
     37   1.2     ad #include <sys/cdefs.h>
     38  1.29  rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $");
     39   1.2     ad 
     40   1.2     ad #include <sys/param.h>
     41   1.2     ad #include <sys/kernel.h>
     42   1.9   yamt #include <sys/cpu.h>
     43   1.2     ad #include <sys/pool.h>
     44   1.2     ad #include <sys/proc.h>
     45   1.2     ad #include <sys/resourcevar.h>
     46   1.2     ad #include <sys/sched.h>
     47   1.2     ad #include <sys/systm.h>
     48   1.2     ad #include <sys/sleepq.h>
     49   1.2     ad #include <sys/ktrace.h>
     50   1.2     ad 
     51   1.4     ad #include <uvm/uvm_extern.h>
     52   1.4     ad 
     53   1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     54   1.2     ad 
     55   1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     56   1.2     ad sleeptab_t	sleeptab;
     57   1.2     ad 
     58   1.2     ad /*
     59   1.2     ad  * sleeptab_init:
     60   1.2     ad  *
     61   1.2     ad  *	Initialize a sleep table.
     62   1.2     ad  */
     63   1.2     ad void
     64   1.2     ad sleeptab_init(sleeptab_t *st)
     65   1.2     ad {
     66   1.2     ad 	sleepq_t *sq;
     67   1.2     ad 	int i;
     68   1.2     ad 
     69   1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     70   1.2     ad 		sq = &st->st_queues[i].st_queue;
     71  1.19     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     72  1.19     ad 		    IPL_SCHED);
     73   1.2     ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     74   1.2     ad 	}
     75   1.2     ad }
     76   1.2     ad 
     77   1.2     ad /*
     78   1.2     ad  * sleepq_init:
     79   1.2     ad  *
     80   1.2     ad  *	Prepare a sleep queue for use.
     81   1.2     ad  */
     82   1.2     ad void
     83   1.2     ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     84   1.2     ad {
     85   1.2     ad 
     86   1.2     ad 	sq->sq_waiters = 0;
     87   1.2     ad 	sq->sq_mutex = mtx;
     88   1.2     ad 	TAILQ_INIT(&sq->sq_queue);
     89   1.2     ad }
     90   1.2     ad 
     91   1.2     ad /*
     92   1.2     ad  * sleepq_remove:
     93   1.2     ad  *
     94   1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     95   1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     96   1.2     ad  *	to bring the LWP into memory.
     97   1.2     ad  */
     98   1.2     ad int
     99   1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    100   1.2     ad {
    101   1.9   yamt 	struct schedstate_percpu *spc;
    102   1.2     ad 	struct cpu_info *ci;
    103   1.2     ad 
    104   1.4     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    105   1.2     ad 	KASSERT(sq->sq_waiters > 0);
    106   1.2     ad 
    107   1.2     ad 	sq->sq_waiters--;
    108   1.2     ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    109   1.2     ad 
    110   1.2     ad #ifdef DIAGNOSTIC
    111   1.2     ad 	if (sq->sq_waiters == 0)
    112   1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    113   1.2     ad 	else
    114   1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    115   1.2     ad #endif
    116   1.2     ad 
    117   1.2     ad 	l->l_syncobj = &sched_syncobj;
    118   1.2     ad 	l->l_wchan = NULL;
    119   1.2     ad 	l->l_sleepq = NULL;
    120   1.5  pavel 	l->l_flag &= ~LW_SINTR;
    121   1.2     ad 
    122   1.9   yamt 	ci = l->l_cpu;
    123   1.9   yamt 	spc = &ci->ci_schedstate;
    124   1.9   yamt 
    125   1.2     ad 	/*
    126   1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    127   1.2     ad 	 * holds it stopped set it running again.
    128   1.2     ad 	 */
    129   1.2     ad 	if (l->l_stat != LSSLEEP) {
    130  1.16  rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    131  1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    132   1.2     ad 		return 0;
    133   1.2     ad 	}
    134   1.2     ad 
    135   1.2     ad 	/*
    136   1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    137   1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    138   1.2     ad 	 */
    139   1.9   yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    140   1.2     ad 		l->l_stat = LSONPROC;
    141   1.2     ad 		l->l_slptime = 0;
    142  1.21     ad 		lwp_setlock(l, spc->spc_lwplock);
    143   1.2     ad 		return 0;
    144   1.2     ad 	}
    145   1.2     ad 
    146  1.29  rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    147  1.29  rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    148  1.16  rmind 	sched_wakeup(l);
    149  1.29  rmind 
    150  1.29  rmind 	/* Look for a CPU to wake up */
    151  1.29  rmind 	l->l_cpu = sched_takecpu(l);
    152  1.16  rmind 	ci = l->l_cpu;
    153  1.16  rmind 	spc = &ci->ci_schedstate;
    154  1.16  rmind 
    155  1.16  rmind 	/*
    156  1.17   yamt 	 * Set it running.
    157   1.2     ad 	 */
    158   1.9   yamt 	spc_lock(ci);
    159   1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    160   1.9   yamt 	sched_setrunnable(l);
    161   1.2     ad 	l->l_stat = LSRUN;
    162   1.2     ad 	l->l_slptime = 0;
    163   1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    164   1.9   yamt 		sched_enqueue(l, false);
    165   1.9   yamt 		spc_unlock(ci);
    166   1.2     ad 		return 0;
    167   1.2     ad 	}
    168   1.9   yamt 	spc_unlock(ci);
    169   1.2     ad 	return 1;
    170   1.2     ad }
    171   1.2     ad 
    172   1.2     ad /*
    173   1.2     ad  * sleepq_insert:
    174   1.2     ad  *
    175   1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    176   1.2     ad  */
    177   1.2     ad inline void
    178   1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    179   1.2     ad {
    180   1.8     ad 	lwp_t *l2;
    181   1.6   yamt 	const int pri = lwp_eprio(l);
    182   1.2     ad 
    183   1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    184   1.2     ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    185  1.18     ad 			if (lwp_eprio(l2) < pri) {
    186   1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    187   1.2     ad 				return;
    188   1.2     ad 			}
    189   1.2     ad 		}
    190   1.2     ad 	}
    191   1.2     ad 
    192  1.14     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    193  1.14     ad 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    194  1.14     ad 	else
    195  1.14     ad 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    196   1.2     ad }
    197   1.2     ad 
    198   1.9   yamt /*
    199   1.9   yamt  * sleepq_enqueue:
    200   1.9   yamt  *
    201   1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    202   1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    203   1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    204   1.9   yamt  */
    205   1.2     ad void
    206  1.18     ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    207   1.2     ad {
    208   1.8     ad 	lwp_t *l = curlwp;
    209   1.2     ad 
    210  1.24   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    211   1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    212   1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    213   1.2     ad 
    214   1.2     ad 	l->l_syncobj = sobj;
    215   1.2     ad 	l->l_wchan = wchan;
    216   1.2     ad 	l->l_sleepq = sq;
    217   1.2     ad 	l->l_wmesg = wmesg;
    218   1.2     ad 	l->l_slptime = 0;
    219   1.2     ad 	l->l_stat = LSSLEEP;
    220   1.2     ad 	l->l_sleeperr = 0;
    221   1.2     ad 
    222   1.2     ad 	sq->sq_waiters++;
    223   1.6   yamt 	sleepq_insert(sq, l, sobj);
    224  1.29  rmind 
    225  1.29  rmind 	/* Save the time when thread has slept */
    226  1.29  rmind 	l->l_slpticks = hardclock_ticks;
    227  1.15  rmind 	sched_slept(l);
    228   1.6   yamt }
    229   1.6   yamt 
    230   1.9   yamt /*
    231   1.9   yamt  * sleepq_block:
    232   1.9   yamt  *
    233   1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    234   1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    235   1.9   yamt  * 	example if the LWP's containing process is exiting.
    236   1.9   yamt  */
    237   1.9   yamt int
    238   1.9   yamt sleepq_block(int timo, bool catch)
    239   1.6   yamt {
    240  1.10     ad 	int error = 0, sig;
    241   1.9   yamt 	struct proc *p;
    242   1.8     ad 	lwp_t *l = curlwp;
    243  1.11     ad 	bool early = false;
    244   1.2     ad 
    245  1.12     ad 	ktrcsw(1, 0);
    246   1.4     ad 
    247   1.2     ad 	/*
    248   1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    249   1.2     ad 	 * core dump events.
    250   1.2     ad 	 */
    251   1.2     ad 	if (catch) {
    252   1.5  pavel 		l->l_flag |= LW_SINTR;
    253   1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    254   1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    255  1.14     ad 			error = EINTR;
    256  1.14     ad 			early = true;
    257  1.14     ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    258  1.11     ad 			early = true;
    259   1.2     ad 	}
    260   1.2     ad 
    261  1.13   yamt 	if (early) {
    262  1.13   yamt 		/* lwp_unsleep() will release the lock */
    263  1.22     ad 		lwp_unsleep(l, true);
    264  1.13   yamt 	} else {
    265  1.11     ad 		if (timo)
    266  1.14     ad 			callout_schedule(&l->l_timeout_ch, timo);
    267  1.11     ad 		mi_switch(l);
    268  1.11     ad 
    269  1.11     ad 		/* The LWP and sleep queue are now unlocked. */
    270  1.11     ad 		if (timo) {
    271  1.11     ad 			/*
    272  1.11     ad 			 * Even if the callout appears to have fired, we need to
    273  1.11     ad 			 * stop it in order to synchronise with other CPUs.
    274  1.11     ad 			 */
    275  1.26     ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    276  1.11     ad 				error = EWOULDBLOCK;
    277  1.11     ad 		}
    278   1.2     ad 	}
    279   1.2     ad 
    280   1.9   yamt 	if (catch && error == 0) {
    281   1.2     ad 		p = l->l_proc;
    282   1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    283   1.2     ad 			error = EINTR;
    284   1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    285  1.27     ad 			mutex_enter(p->p_lock);
    286   1.2     ad 			if ((sig = issignal(l)) != 0)
    287   1.2     ad 				error = sleepq_sigtoerror(l, sig);
    288  1.27     ad 			mutex_exit(p->p_lock);
    289   1.2     ad 		}
    290   1.2     ad 	}
    291   1.2     ad 
    292  1.12     ad 	ktrcsw(0, 0);
    293   1.2     ad 
    294   1.2     ad 	KERNEL_LOCK(l->l_biglocks, l);
    295   1.2     ad 	return error;
    296   1.2     ad }
    297   1.2     ad 
    298   1.2     ad /*
    299   1.2     ad  * sleepq_wake:
    300   1.2     ad  *
    301   1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    302   1.2     ad  */
    303   1.8     ad lwp_t *
    304   1.2     ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    305   1.2     ad {
    306   1.8     ad 	lwp_t *l, *next;
    307   1.2     ad 	int swapin = 0;
    308   1.2     ad 
    309   1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    310   1.2     ad 
    311   1.2     ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    312   1.2     ad 		KASSERT(l->l_sleepq == sq);
    313  1.24   yamt 		KASSERT(l->l_mutex == sq->sq_mutex);
    314   1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    315   1.2     ad 		if (l->l_wchan != wchan)
    316   1.2     ad 			continue;
    317   1.2     ad 		swapin |= sleepq_remove(sq, l);
    318   1.2     ad 		if (--expected == 0)
    319   1.2     ad 			break;
    320   1.2     ad 	}
    321   1.2     ad 
    322   1.2     ad 	sleepq_unlock(sq);
    323   1.2     ad 
    324   1.2     ad 	/*
    325   1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    326   1.2     ad 	 * then kick the swapper into action.
    327   1.2     ad 	 */
    328   1.2     ad 	if (swapin)
    329   1.4     ad 		uvm_kick_scheduler();
    330   1.8     ad 
    331   1.8     ad 	return l;
    332   1.2     ad }
    333   1.2     ad 
    334   1.2     ad /*
    335   1.2     ad  * sleepq_unsleep:
    336   1.2     ad  *
    337   1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    338   1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    339   1.2     ad  *	always release it.
    340   1.2     ad  */
    341  1.22     ad u_int
    342  1.22     ad sleepq_unsleep(lwp_t *l, bool cleanup)
    343   1.2     ad {
    344   1.2     ad 	sleepq_t *sq = l->l_sleepq;
    345   1.2     ad 	int swapin;
    346   1.2     ad 
    347  1.24   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    348   1.2     ad 	KASSERT(l->l_wchan != NULL);
    349   1.2     ad 
    350   1.2     ad 	swapin = sleepq_remove(sq, l);
    351   1.2     ad 
    352  1.22     ad 	if (cleanup) {
    353  1.22     ad 		sleepq_unlock(sq);
    354  1.22     ad 		if (swapin)
    355  1.22     ad 			uvm_kick_scheduler();
    356  1.22     ad 	}
    357  1.22     ad 
    358  1.22     ad 	return swapin;
    359   1.2     ad }
    360   1.2     ad 
    361   1.2     ad /*
    362   1.2     ad  * sleepq_timeout:
    363   1.2     ad  *
    364   1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    365   1.2     ad  *	sleep queue.
    366   1.2     ad  */
    367   1.2     ad void
    368   1.2     ad sleepq_timeout(void *arg)
    369   1.2     ad {
    370   1.8     ad 	lwp_t *l = arg;
    371   1.2     ad 
    372   1.2     ad 	/*
    373   1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    374   1.2     ad 	 * current mutex will also be the sleep queue mutex.
    375   1.2     ad 	 */
    376   1.2     ad 	lwp_lock(l);
    377   1.2     ad 
    378   1.2     ad 	if (l->l_wchan == NULL) {
    379   1.2     ad 		/* Somebody beat us to it. */
    380   1.2     ad 		lwp_unlock(l);
    381   1.2     ad 		return;
    382   1.2     ad 	}
    383   1.2     ad 
    384  1.22     ad 	lwp_unsleep(l, true);
    385   1.2     ad }
    386   1.2     ad 
    387   1.2     ad /*
    388   1.2     ad  * sleepq_sigtoerror:
    389   1.2     ad  *
    390   1.2     ad  *	Given a signal number, interpret and return an error code.
    391   1.2     ad  */
    392   1.2     ad int
    393   1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    394   1.2     ad {
    395   1.2     ad 	struct proc *p = l->l_proc;
    396   1.2     ad 	int error;
    397   1.2     ad 
    398  1.27     ad 	KASSERT(mutex_owned(p->p_lock));
    399   1.2     ad 
    400   1.2     ad 	/*
    401   1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    402   1.2     ad 	 */
    403   1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    404   1.2     ad 		error = EINTR;
    405   1.2     ad 	else
    406   1.2     ad 		error = ERESTART;
    407   1.2     ad 
    408   1.2     ad 	return error;
    409   1.2     ad }
    410   1.2     ad 
    411   1.2     ad /*
    412   1.2     ad  * sleepq_abort:
    413   1.2     ad  *
    414   1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    415   1.2     ad  *	priority level to give pending interrupts a chance to run, and
    416   1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    417   1.2     ad  *	always returns zero.
    418   1.2     ad  */
    419   1.2     ad int
    420   1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    421   1.2     ad {
    422   1.2     ad 	extern int safepri;
    423   1.2     ad 	int s;
    424   1.2     ad 
    425   1.2     ad 	s = splhigh();
    426   1.2     ad 	splx(safepri);
    427   1.2     ad 	splx(s);
    428   1.2     ad 	if (mtx != NULL && unlock != 0)
    429   1.2     ad 		mutex_exit(mtx);
    430   1.2     ad 
    431   1.2     ad 	return 0;
    432   1.2     ad }
    433   1.2     ad 
    434   1.2     ad /*
    435   1.2     ad  * sleepq_changepri:
    436   1.2     ad  *
    437   1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    438   1.2     ad  *	will only alter the user priority; the effective priority is
    439   1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    440   1.2     ad  */
    441   1.2     ad void
    442   1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    443   1.2     ad {
    444  1.18     ad 	sleepq_t *sq = l->l_sleepq;
    445  1.18     ad 	pri_t opri;
    446  1.18     ad 
    447  1.18     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    448   1.2     ad 
    449  1.18     ad 	opri = lwp_eprio(l);
    450  1.18     ad 	l->l_priority = pri;
    451  1.18     ad 	if (lwp_eprio(l) != opri) {
    452  1.18     ad 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    453  1.18     ad 		sleepq_insert(sq, l, l->l_syncobj);
    454  1.18     ad 	}
    455   1.2     ad }
    456   1.6   yamt 
    457   1.6   yamt void
    458   1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    459   1.6   yamt {
    460   1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    461   1.7   yamt 	pri_t opri;
    462   1.6   yamt 
    463   1.6   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    464   1.6   yamt 
    465   1.6   yamt 	opri = lwp_eprio(l);
    466   1.6   yamt 	l->l_inheritedprio = pri;
    467   1.6   yamt 
    468   1.6   yamt 	if (lwp_eprio(l) != opri &&
    469   1.6   yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    470   1.6   yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    471   1.6   yamt 		sleepq_insert(sq, l, l->l_syncobj);
    472   1.6   yamt 	}
    473   1.6   yamt }
    474