kern_sleepq.c revision 1.29 1 1.29 rmind /* $NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.22 ad * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.29 rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.2 ad #include <sys/pool.h>
44 1.2 ad #include <sys/proc.h>
45 1.2 ad #include <sys/resourcevar.h>
46 1.2 ad #include <sys/sched.h>
47 1.2 ad #include <sys/systm.h>
48 1.2 ad #include <sys/sleepq.h>
49 1.2 ad #include <sys/ktrace.h>
50 1.2 ad
51 1.4 ad #include <uvm/uvm_extern.h>
52 1.4 ad
53 1.8 ad int sleepq_sigtoerror(lwp_t *, int);
54 1.2 ad
55 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
56 1.2 ad sleeptab_t sleeptab;
57 1.2 ad
58 1.2 ad /*
59 1.2 ad * sleeptab_init:
60 1.2 ad *
61 1.2 ad * Initialize a sleep table.
62 1.2 ad */
63 1.2 ad void
64 1.2 ad sleeptab_init(sleeptab_t *st)
65 1.2 ad {
66 1.2 ad sleepq_t *sq;
67 1.2 ad int i;
68 1.2 ad
69 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
70 1.2 ad sq = &st->st_queues[i].st_queue;
71 1.19 ad mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
72 1.19 ad IPL_SCHED);
73 1.2 ad sleepq_init(sq, &st->st_queues[i].st_mutex);
74 1.2 ad }
75 1.2 ad }
76 1.2 ad
77 1.2 ad /*
78 1.2 ad * sleepq_init:
79 1.2 ad *
80 1.2 ad * Prepare a sleep queue for use.
81 1.2 ad */
82 1.2 ad void
83 1.2 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
84 1.2 ad {
85 1.2 ad
86 1.2 ad sq->sq_waiters = 0;
87 1.2 ad sq->sq_mutex = mtx;
88 1.2 ad TAILQ_INIT(&sq->sq_queue);
89 1.2 ad }
90 1.2 ad
91 1.2 ad /*
92 1.2 ad * sleepq_remove:
93 1.2 ad *
94 1.2 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
95 1.2 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
96 1.2 ad * to bring the LWP into memory.
97 1.2 ad */
98 1.2 ad int
99 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
100 1.2 ad {
101 1.9 yamt struct schedstate_percpu *spc;
102 1.2 ad struct cpu_info *ci;
103 1.2 ad
104 1.4 ad KASSERT(lwp_locked(l, sq->sq_mutex));
105 1.2 ad KASSERT(sq->sq_waiters > 0);
106 1.2 ad
107 1.2 ad sq->sq_waiters--;
108 1.2 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
109 1.2 ad
110 1.2 ad #ifdef DIAGNOSTIC
111 1.2 ad if (sq->sq_waiters == 0)
112 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
113 1.2 ad else
114 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
115 1.2 ad #endif
116 1.2 ad
117 1.2 ad l->l_syncobj = &sched_syncobj;
118 1.2 ad l->l_wchan = NULL;
119 1.2 ad l->l_sleepq = NULL;
120 1.5 pavel l->l_flag &= ~LW_SINTR;
121 1.2 ad
122 1.9 yamt ci = l->l_cpu;
123 1.9 yamt spc = &ci->ci_schedstate;
124 1.9 yamt
125 1.2 ad /*
126 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
127 1.2 ad * holds it stopped set it running again.
128 1.2 ad */
129 1.2 ad if (l->l_stat != LSSLEEP) {
130 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
131 1.21 ad lwp_setlock(l, spc->spc_lwplock);
132 1.2 ad return 0;
133 1.2 ad }
134 1.2 ad
135 1.2 ad /*
136 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
137 1.2 ad * about to call mi_switch(), in which case it will yield.
138 1.2 ad */
139 1.9 yamt if ((l->l_flag & LW_RUNNING) != 0) {
140 1.2 ad l->l_stat = LSONPROC;
141 1.2 ad l->l_slptime = 0;
142 1.21 ad lwp_setlock(l, spc->spc_lwplock);
143 1.2 ad return 0;
144 1.2 ad }
145 1.2 ad
146 1.29 rmind /* Update sleep time delta, call the wake-up handler of scheduler */
147 1.29 rmind l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
148 1.16 rmind sched_wakeup(l);
149 1.29 rmind
150 1.29 rmind /* Look for a CPU to wake up */
151 1.29 rmind l->l_cpu = sched_takecpu(l);
152 1.16 rmind ci = l->l_cpu;
153 1.16 rmind spc = &ci->ci_schedstate;
154 1.16 rmind
155 1.16 rmind /*
156 1.17 yamt * Set it running.
157 1.2 ad */
158 1.9 yamt spc_lock(ci);
159 1.9 yamt lwp_setlock(l, spc->spc_mutex);
160 1.9 yamt sched_setrunnable(l);
161 1.2 ad l->l_stat = LSRUN;
162 1.2 ad l->l_slptime = 0;
163 1.5 pavel if ((l->l_flag & LW_INMEM) != 0) {
164 1.9 yamt sched_enqueue(l, false);
165 1.9 yamt spc_unlock(ci);
166 1.2 ad return 0;
167 1.2 ad }
168 1.9 yamt spc_unlock(ci);
169 1.2 ad return 1;
170 1.2 ad }
171 1.2 ad
172 1.2 ad /*
173 1.2 ad * sleepq_insert:
174 1.2 ad *
175 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
176 1.2 ad */
177 1.2 ad inline void
178 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
179 1.2 ad {
180 1.8 ad lwp_t *l2;
181 1.6 yamt const int pri = lwp_eprio(l);
182 1.2 ad
183 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
184 1.2 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
185 1.18 ad if (lwp_eprio(l2) < pri) {
186 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
187 1.2 ad return;
188 1.2 ad }
189 1.2 ad }
190 1.2 ad }
191 1.2 ad
192 1.14 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
193 1.14 ad TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
194 1.14 ad else
195 1.14 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
196 1.2 ad }
197 1.2 ad
198 1.9 yamt /*
199 1.9 yamt * sleepq_enqueue:
200 1.9 yamt *
201 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
202 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
203 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
204 1.9 yamt */
205 1.2 ad void
206 1.18 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
207 1.2 ad {
208 1.8 ad lwp_t *l = curlwp;
209 1.2 ad
210 1.24 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
211 1.2 ad KASSERT(l->l_stat == LSONPROC);
212 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
213 1.2 ad
214 1.2 ad l->l_syncobj = sobj;
215 1.2 ad l->l_wchan = wchan;
216 1.2 ad l->l_sleepq = sq;
217 1.2 ad l->l_wmesg = wmesg;
218 1.2 ad l->l_slptime = 0;
219 1.2 ad l->l_stat = LSSLEEP;
220 1.2 ad l->l_sleeperr = 0;
221 1.2 ad
222 1.2 ad sq->sq_waiters++;
223 1.6 yamt sleepq_insert(sq, l, sobj);
224 1.29 rmind
225 1.29 rmind /* Save the time when thread has slept */
226 1.29 rmind l->l_slpticks = hardclock_ticks;
227 1.15 rmind sched_slept(l);
228 1.6 yamt }
229 1.6 yamt
230 1.9 yamt /*
231 1.9 yamt * sleepq_block:
232 1.9 yamt *
233 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
234 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
235 1.9 yamt * example if the LWP's containing process is exiting.
236 1.9 yamt */
237 1.9 yamt int
238 1.9 yamt sleepq_block(int timo, bool catch)
239 1.6 yamt {
240 1.10 ad int error = 0, sig;
241 1.9 yamt struct proc *p;
242 1.8 ad lwp_t *l = curlwp;
243 1.11 ad bool early = false;
244 1.2 ad
245 1.12 ad ktrcsw(1, 0);
246 1.4 ad
247 1.2 ad /*
248 1.2 ad * If sleeping interruptably, check for pending signals, exits or
249 1.2 ad * core dump events.
250 1.2 ad */
251 1.2 ad if (catch) {
252 1.5 pavel l->l_flag |= LW_SINTR;
253 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
254 1.5 pavel l->l_flag &= ~LW_CANCELLED;
255 1.14 ad error = EINTR;
256 1.14 ad early = true;
257 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
258 1.11 ad early = true;
259 1.2 ad }
260 1.2 ad
261 1.13 yamt if (early) {
262 1.13 yamt /* lwp_unsleep() will release the lock */
263 1.22 ad lwp_unsleep(l, true);
264 1.13 yamt } else {
265 1.11 ad if (timo)
266 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
267 1.11 ad mi_switch(l);
268 1.11 ad
269 1.11 ad /* The LWP and sleep queue are now unlocked. */
270 1.11 ad if (timo) {
271 1.11 ad /*
272 1.11 ad * Even if the callout appears to have fired, we need to
273 1.11 ad * stop it in order to synchronise with other CPUs.
274 1.11 ad */
275 1.26 ad if (callout_halt(&l->l_timeout_ch, NULL))
276 1.11 ad error = EWOULDBLOCK;
277 1.11 ad }
278 1.2 ad }
279 1.2 ad
280 1.9 yamt if (catch && error == 0) {
281 1.2 ad p = l->l_proc;
282 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
283 1.2 ad error = EINTR;
284 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
285 1.27 ad mutex_enter(p->p_lock);
286 1.2 ad if ((sig = issignal(l)) != 0)
287 1.2 ad error = sleepq_sigtoerror(l, sig);
288 1.27 ad mutex_exit(p->p_lock);
289 1.2 ad }
290 1.2 ad }
291 1.2 ad
292 1.12 ad ktrcsw(0, 0);
293 1.2 ad
294 1.2 ad KERNEL_LOCK(l->l_biglocks, l);
295 1.2 ad return error;
296 1.2 ad }
297 1.2 ad
298 1.2 ad /*
299 1.2 ad * sleepq_wake:
300 1.2 ad *
301 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
302 1.2 ad */
303 1.8 ad lwp_t *
304 1.2 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
305 1.2 ad {
306 1.8 ad lwp_t *l, *next;
307 1.2 ad int swapin = 0;
308 1.2 ad
309 1.4 ad KASSERT(mutex_owned(sq->sq_mutex));
310 1.2 ad
311 1.2 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
312 1.2 ad KASSERT(l->l_sleepq == sq);
313 1.24 yamt KASSERT(l->l_mutex == sq->sq_mutex);
314 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
315 1.2 ad if (l->l_wchan != wchan)
316 1.2 ad continue;
317 1.2 ad swapin |= sleepq_remove(sq, l);
318 1.2 ad if (--expected == 0)
319 1.2 ad break;
320 1.2 ad }
321 1.2 ad
322 1.2 ad sleepq_unlock(sq);
323 1.2 ad
324 1.2 ad /*
325 1.2 ad * If there are newly awakend threads that need to be swapped in,
326 1.2 ad * then kick the swapper into action.
327 1.2 ad */
328 1.2 ad if (swapin)
329 1.4 ad uvm_kick_scheduler();
330 1.8 ad
331 1.8 ad return l;
332 1.2 ad }
333 1.2 ad
334 1.2 ad /*
335 1.2 ad * sleepq_unsleep:
336 1.2 ad *
337 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
338 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
339 1.2 ad * always release it.
340 1.2 ad */
341 1.22 ad u_int
342 1.22 ad sleepq_unsleep(lwp_t *l, bool cleanup)
343 1.2 ad {
344 1.2 ad sleepq_t *sq = l->l_sleepq;
345 1.2 ad int swapin;
346 1.2 ad
347 1.24 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
348 1.2 ad KASSERT(l->l_wchan != NULL);
349 1.2 ad
350 1.2 ad swapin = sleepq_remove(sq, l);
351 1.2 ad
352 1.22 ad if (cleanup) {
353 1.22 ad sleepq_unlock(sq);
354 1.22 ad if (swapin)
355 1.22 ad uvm_kick_scheduler();
356 1.22 ad }
357 1.22 ad
358 1.22 ad return swapin;
359 1.2 ad }
360 1.2 ad
361 1.2 ad /*
362 1.2 ad * sleepq_timeout:
363 1.2 ad *
364 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
365 1.2 ad * sleep queue.
366 1.2 ad */
367 1.2 ad void
368 1.2 ad sleepq_timeout(void *arg)
369 1.2 ad {
370 1.8 ad lwp_t *l = arg;
371 1.2 ad
372 1.2 ad /*
373 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
374 1.2 ad * current mutex will also be the sleep queue mutex.
375 1.2 ad */
376 1.2 ad lwp_lock(l);
377 1.2 ad
378 1.2 ad if (l->l_wchan == NULL) {
379 1.2 ad /* Somebody beat us to it. */
380 1.2 ad lwp_unlock(l);
381 1.2 ad return;
382 1.2 ad }
383 1.2 ad
384 1.22 ad lwp_unsleep(l, true);
385 1.2 ad }
386 1.2 ad
387 1.2 ad /*
388 1.2 ad * sleepq_sigtoerror:
389 1.2 ad *
390 1.2 ad * Given a signal number, interpret and return an error code.
391 1.2 ad */
392 1.2 ad int
393 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
394 1.2 ad {
395 1.2 ad struct proc *p = l->l_proc;
396 1.2 ad int error;
397 1.2 ad
398 1.27 ad KASSERT(mutex_owned(p->p_lock));
399 1.2 ad
400 1.2 ad /*
401 1.2 ad * If this sleep was canceled, don't let the syscall restart.
402 1.2 ad */
403 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
404 1.2 ad error = EINTR;
405 1.2 ad else
406 1.2 ad error = ERESTART;
407 1.2 ad
408 1.2 ad return error;
409 1.2 ad }
410 1.2 ad
411 1.2 ad /*
412 1.2 ad * sleepq_abort:
413 1.2 ad *
414 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
415 1.2 ad * priority level to give pending interrupts a chance to run, and
416 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
417 1.2 ad * always returns zero.
418 1.2 ad */
419 1.2 ad int
420 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
421 1.2 ad {
422 1.2 ad extern int safepri;
423 1.2 ad int s;
424 1.2 ad
425 1.2 ad s = splhigh();
426 1.2 ad splx(safepri);
427 1.2 ad splx(s);
428 1.2 ad if (mtx != NULL && unlock != 0)
429 1.2 ad mutex_exit(mtx);
430 1.2 ad
431 1.2 ad return 0;
432 1.2 ad }
433 1.2 ad
434 1.2 ad /*
435 1.2 ad * sleepq_changepri:
436 1.2 ad *
437 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
438 1.2 ad * will only alter the user priority; the effective priority is
439 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
440 1.2 ad */
441 1.2 ad void
442 1.8 ad sleepq_changepri(lwp_t *l, pri_t pri)
443 1.2 ad {
444 1.18 ad sleepq_t *sq = l->l_sleepq;
445 1.18 ad pri_t opri;
446 1.18 ad
447 1.18 ad KASSERT(lwp_locked(l, sq->sq_mutex));
448 1.2 ad
449 1.18 ad opri = lwp_eprio(l);
450 1.18 ad l->l_priority = pri;
451 1.18 ad if (lwp_eprio(l) != opri) {
452 1.18 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
453 1.18 ad sleepq_insert(sq, l, l->l_syncobj);
454 1.18 ad }
455 1.2 ad }
456 1.6 yamt
457 1.6 yamt void
458 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
459 1.6 yamt {
460 1.6 yamt sleepq_t *sq = l->l_sleepq;
461 1.7 yamt pri_t opri;
462 1.6 yamt
463 1.6 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
464 1.6 yamt
465 1.6 yamt opri = lwp_eprio(l);
466 1.6 yamt l->l_inheritedprio = pri;
467 1.6 yamt
468 1.6 yamt if (lwp_eprio(l) != opri &&
469 1.6 yamt (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
470 1.6 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
471 1.6 yamt sleepq_insert(sq, l, l->l_syncobj);
472 1.6 yamt }
473 1.6 yamt }
474