Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.39
      1  1.39     rmind /*	$NetBSD: kern_sleepq.c,v 1.39 2011/05/13 22:19:41 rmind Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2        ad  * interfaces.
     35   1.2        ad  */
     36   1.2        ad 
     37   1.2        ad #include <sys/cdefs.h>
     38  1.39     rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.39 2011/05/13 22:19:41 rmind Exp $");
     39   1.2        ad 
     40   1.2        ad #include <sys/param.h>
     41   1.2        ad #include <sys/kernel.h>
     42   1.9      yamt #include <sys/cpu.h>
     43   1.2        ad #include <sys/pool.h>
     44   1.2        ad #include <sys/proc.h>
     45   1.2        ad #include <sys/resourcevar.h>
     46  1.35  wrstuden #include <sys/sa.h>
     47  1.35  wrstuden #include <sys/savar.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/systm.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/ktrace.h>
     52   1.2        ad 
     53   1.4        ad #include <uvm/uvm_extern.h>
     54   1.4        ad 
     55  1.35  wrstuden #include "opt_sa.h"
     56  1.35  wrstuden 
     57  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     58   1.2        ad 
     59   1.2        ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     60  1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     61   1.2        ad 
     62   1.2        ad /*
     63   1.2        ad  * sleeptab_init:
     64   1.2        ad  *
     65   1.2        ad  *	Initialize a sleep table.
     66   1.2        ad  */
     67   1.2        ad void
     68   1.2        ad sleeptab_init(sleeptab_t *st)
     69   1.2        ad {
     70   1.2        ad 	sleepq_t *sq;
     71   1.2        ad 	int i;
     72   1.2        ad 
     73   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     74   1.2        ad 		sq = &st->st_queues[i].st_queue;
     75  1.36        ad 		st->st_queues[i].st_mutex =
     76  1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     77  1.30        ad 		sleepq_init(sq);
     78   1.2        ad 	}
     79   1.2        ad }
     80   1.2        ad 
     81   1.2        ad /*
     82   1.2        ad  * sleepq_init:
     83   1.2        ad  *
     84   1.2        ad  *	Prepare a sleep queue for use.
     85   1.2        ad  */
     86   1.2        ad void
     87  1.30        ad sleepq_init(sleepq_t *sq)
     88   1.2        ad {
     89   1.2        ad 
     90  1.30        ad 	TAILQ_INIT(sq);
     91   1.2        ad }
     92   1.2        ad 
     93   1.2        ad /*
     94   1.2        ad  * sleepq_remove:
     95   1.2        ad  *
     96  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
     97   1.2        ad  */
     98  1.37     rmind void
     99   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    100   1.2        ad {
    101   1.9      yamt 	struct schedstate_percpu *spc;
    102   1.2        ad 	struct cpu_info *ci;
    103   1.2        ad 
    104  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    105   1.2        ad 
    106  1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    107   1.2        ad 	l->l_syncobj = &sched_syncobj;
    108   1.2        ad 	l->l_wchan = NULL;
    109   1.2        ad 	l->l_sleepq = NULL;
    110   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    111   1.2        ad 
    112   1.9      yamt 	ci = l->l_cpu;
    113   1.9      yamt 	spc = &ci->ci_schedstate;
    114   1.9      yamt 
    115   1.2        ad 	/*
    116   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    117   1.2        ad 	 * holds it stopped set it running again.
    118   1.2        ad 	 */
    119   1.2        ad 	if (l->l_stat != LSSLEEP) {
    120  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    121  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    122  1.37     rmind 		return;
    123   1.2        ad 	}
    124   1.2        ad 
    125   1.2        ad 	/*
    126   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    127   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    128   1.2        ad 	 */
    129  1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    130   1.2        ad 		l->l_stat = LSONPROC;
    131   1.2        ad 		l->l_slptime = 0;
    132  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    133  1.37     rmind 		return;
    134   1.2        ad 	}
    135   1.2        ad 
    136  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    137  1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    138  1.16     rmind 	sched_wakeup(l);
    139  1.29     rmind 
    140  1.29     rmind 	/* Look for a CPU to wake up */
    141  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    142  1.16     rmind 	ci = l->l_cpu;
    143  1.16     rmind 	spc = &ci->ci_schedstate;
    144  1.16     rmind 
    145  1.16     rmind 	/*
    146  1.17      yamt 	 * Set it running.
    147   1.2        ad 	 */
    148   1.9      yamt 	spc_lock(ci);
    149   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    150  1.35  wrstuden #ifdef KERN_SA
    151  1.35  wrstuden 	if (l->l_proc->p_sa != NULL)
    152  1.35  wrstuden 		sa_awaken(l);
    153  1.35  wrstuden #endif /* KERN_SA */
    154   1.9      yamt 	sched_setrunnable(l);
    155   1.2        ad 	l->l_stat = LSRUN;
    156   1.2        ad 	l->l_slptime = 0;
    157  1.37     rmind 	sched_enqueue(l, false);
    158   1.9      yamt 	spc_unlock(ci);
    159   1.2        ad }
    160   1.2        ad 
    161   1.2        ad /*
    162   1.2        ad  * sleepq_insert:
    163   1.2        ad  *
    164   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    165   1.2        ad  */
    166  1.38    plunky void
    167   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    168   1.2        ad {
    169   1.8        ad 	lwp_t *l2;
    170   1.6      yamt 	const int pri = lwp_eprio(l);
    171   1.2        ad 
    172   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    173  1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    174  1.18        ad 			if (lwp_eprio(l2) < pri) {
    175   1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    176   1.2        ad 				return;
    177   1.2        ad 			}
    178   1.2        ad 		}
    179   1.2        ad 	}
    180   1.2        ad 
    181  1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    182  1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    183  1.14        ad 	else
    184  1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    185   1.2        ad }
    186   1.2        ad 
    187   1.9      yamt /*
    188   1.9      yamt  * sleepq_enqueue:
    189   1.9      yamt  *
    190   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    191   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    192   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    193   1.9      yamt  */
    194   1.2        ad void
    195  1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    196   1.2        ad {
    197   1.8        ad 	lwp_t *l = curlwp;
    198   1.2        ad 
    199  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    200   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    201   1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    202   1.2        ad 
    203   1.2        ad 	l->l_syncobj = sobj;
    204   1.2        ad 	l->l_wchan = wchan;
    205   1.2        ad 	l->l_sleepq = sq;
    206   1.2        ad 	l->l_wmesg = wmesg;
    207   1.2        ad 	l->l_slptime = 0;
    208   1.2        ad 	l->l_stat = LSSLEEP;
    209   1.2        ad 	l->l_sleeperr = 0;
    210   1.2        ad 
    211   1.6      yamt 	sleepq_insert(sq, l, sobj);
    212  1.29     rmind 
    213  1.29     rmind 	/* Save the time when thread has slept */
    214  1.29     rmind 	l->l_slpticks = hardclock_ticks;
    215  1.15     rmind 	sched_slept(l);
    216   1.6      yamt }
    217   1.6      yamt 
    218   1.9      yamt /*
    219   1.9      yamt  * sleepq_block:
    220   1.9      yamt  *
    221   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    222   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    223   1.9      yamt  * 	example if the LWP's containing process is exiting.
    224   1.9      yamt  */
    225   1.9      yamt int
    226   1.9      yamt sleepq_block(int timo, bool catch)
    227   1.6      yamt {
    228  1.10        ad 	int error = 0, sig;
    229   1.9      yamt 	struct proc *p;
    230   1.8        ad 	lwp_t *l = curlwp;
    231  1.11        ad 	bool early = false;
    232  1.34      yamt 	int biglocks = l->l_biglocks;
    233   1.2        ad 
    234  1.12        ad 	ktrcsw(1, 0);
    235   1.4        ad 
    236   1.2        ad 	/*
    237   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    238   1.2        ad 	 * core dump events.
    239   1.2        ad 	 */
    240   1.2        ad 	if (catch) {
    241   1.5     pavel 		l->l_flag |= LW_SINTR;
    242   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    243   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    244  1.14        ad 			error = EINTR;
    245  1.14        ad 			early = true;
    246  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    247  1.11        ad 			early = true;
    248   1.2        ad 	}
    249   1.2        ad 
    250  1.13      yamt 	if (early) {
    251  1.13      yamt 		/* lwp_unsleep() will release the lock */
    252  1.22        ad 		lwp_unsleep(l, true);
    253  1.13      yamt 	} else {
    254  1.11        ad 		if (timo)
    255  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    256  1.35  wrstuden 
    257  1.35  wrstuden #ifdef KERN_SA
    258  1.35  wrstuden 		if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
    259  1.35  wrstuden 			sa_switch(l);
    260  1.35  wrstuden 		else
    261  1.35  wrstuden #endif
    262  1.35  wrstuden 			mi_switch(l);
    263  1.11        ad 
    264  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    265  1.11        ad 		if (timo) {
    266  1.11        ad 			/*
    267  1.11        ad 			 * Even if the callout appears to have fired, we need to
    268  1.11        ad 			 * stop it in order to synchronise with other CPUs.
    269  1.11        ad 			 */
    270  1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    271  1.11        ad 				error = EWOULDBLOCK;
    272  1.11        ad 		}
    273   1.2        ad 	}
    274   1.2        ad 
    275   1.9      yamt 	if (catch && error == 0) {
    276   1.2        ad 		p = l->l_proc;
    277   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    278   1.2        ad 			error = EINTR;
    279   1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    280  1.33        ad 			/*
    281  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    282  1.33        ad 			 * through the sleep path and back into this
    283  1.33        ad 			 * routine, but is safe because LWPs sleeping
    284  1.33        ad 			 * on locks are non-interruptable.  We will
    285  1.33        ad 			 * not recurse again.
    286  1.33        ad 			 */
    287  1.27        ad 			mutex_enter(p->p_lock);
    288   1.2        ad 			if ((sig = issignal(l)) != 0)
    289   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    290  1.27        ad 			mutex_exit(p->p_lock);
    291   1.2        ad 		}
    292   1.2        ad 	}
    293   1.2        ad 
    294  1.12        ad 	ktrcsw(0, 0);
    295  1.34      yamt 	if (__predict_false(biglocks != 0)) {
    296  1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    297  1.30        ad 	}
    298   1.2        ad 	return error;
    299   1.2        ad }
    300   1.2        ad 
    301   1.2        ad /*
    302   1.2        ad  * sleepq_wake:
    303   1.2        ad  *
    304   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    305   1.2        ad  */
    306   1.8        ad lwp_t *
    307  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    308   1.2        ad {
    309   1.8        ad 	lwp_t *l, *next;
    310   1.2        ad 
    311  1.30        ad 	KASSERT(mutex_owned(mp));
    312   1.2        ad 
    313  1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    314   1.2        ad 		KASSERT(l->l_sleepq == sq);
    315  1.30        ad 		KASSERT(l->l_mutex == mp);
    316   1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    317   1.2        ad 		if (l->l_wchan != wchan)
    318   1.2        ad 			continue;
    319  1.37     rmind 		sleepq_remove(sq, l);
    320   1.2        ad 		if (--expected == 0)
    321   1.2        ad 			break;
    322   1.2        ad 	}
    323   1.2        ad 
    324  1.30        ad 	mutex_spin_exit(mp);
    325   1.8        ad 	return l;
    326   1.2        ad }
    327   1.2        ad 
    328   1.2        ad /*
    329   1.2        ad  * sleepq_unsleep:
    330   1.2        ad  *
    331   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    332   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    333   1.2        ad  *	always release it.
    334   1.2        ad  */
    335  1.37     rmind void
    336  1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    337   1.2        ad {
    338   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    339  1.30        ad 	kmutex_t *mp = l->l_mutex;
    340   1.2        ad 
    341  1.30        ad 	KASSERT(lwp_locked(l, mp));
    342   1.2        ad 	KASSERT(l->l_wchan != NULL);
    343   1.2        ad 
    344  1.37     rmind 	sleepq_remove(sq, l);
    345  1.22        ad 	if (cleanup) {
    346  1.30        ad 		mutex_spin_exit(mp);
    347  1.22        ad 	}
    348   1.2        ad }
    349   1.2        ad 
    350   1.2        ad /*
    351   1.2        ad  * sleepq_timeout:
    352   1.2        ad  *
    353   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    354   1.2        ad  *	sleep queue.
    355   1.2        ad  */
    356   1.2        ad void
    357   1.2        ad sleepq_timeout(void *arg)
    358   1.2        ad {
    359   1.8        ad 	lwp_t *l = arg;
    360   1.2        ad 
    361   1.2        ad 	/*
    362   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    363   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    364   1.2        ad 	 */
    365   1.2        ad 	lwp_lock(l);
    366   1.2        ad 
    367   1.2        ad 	if (l->l_wchan == NULL) {
    368   1.2        ad 		/* Somebody beat us to it. */
    369   1.2        ad 		lwp_unlock(l);
    370   1.2        ad 		return;
    371   1.2        ad 	}
    372   1.2        ad 
    373  1.22        ad 	lwp_unsleep(l, true);
    374   1.2        ad }
    375   1.2        ad 
    376   1.2        ad /*
    377   1.2        ad  * sleepq_sigtoerror:
    378   1.2        ad  *
    379   1.2        ad  *	Given a signal number, interpret and return an error code.
    380   1.2        ad  */
    381  1.39     rmind static int
    382   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    383   1.2        ad {
    384   1.2        ad 	struct proc *p = l->l_proc;
    385   1.2        ad 	int error;
    386   1.2        ad 
    387  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    388   1.2        ad 
    389   1.2        ad 	/*
    390   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    391   1.2        ad 	 */
    392   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    393   1.2        ad 		error = EINTR;
    394   1.2        ad 	else
    395   1.2        ad 		error = ERESTART;
    396   1.2        ad 
    397   1.2        ad 	return error;
    398   1.2        ad }
    399   1.2        ad 
    400   1.2        ad /*
    401   1.2        ad  * sleepq_abort:
    402   1.2        ad  *
    403   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    404   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    405   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    406   1.2        ad  *	always returns zero.
    407   1.2        ad  */
    408   1.2        ad int
    409   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    410   1.2        ad {
    411   1.2        ad 	extern int safepri;
    412   1.2        ad 	int s;
    413   1.2        ad 
    414   1.2        ad 	s = splhigh();
    415   1.2        ad 	splx(safepri);
    416   1.2        ad 	splx(s);
    417   1.2        ad 	if (mtx != NULL && unlock != 0)
    418   1.2        ad 		mutex_exit(mtx);
    419   1.2        ad 
    420   1.2        ad 	return 0;
    421   1.2        ad }
    422   1.2        ad 
    423   1.2        ad /*
    424   1.2        ad  * sleepq_changepri:
    425   1.2        ad  *
    426   1.2        ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    427   1.2        ad  *	will only alter the user priority; the effective priority is
    428   1.2        ad  *	assumed to have been fixed at the time of insertion into the queue.
    429   1.2        ad  */
    430   1.2        ad void
    431   1.8        ad sleepq_changepri(lwp_t *l, pri_t pri)
    432   1.2        ad {
    433  1.18        ad 	sleepq_t *sq = l->l_sleepq;
    434  1.18        ad 	pri_t opri;
    435  1.18        ad 
    436  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    437   1.2        ad 
    438  1.18        ad 	opri = lwp_eprio(l);
    439  1.18        ad 	l->l_priority = pri;
    440  1.32        ad 
    441  1.32        ad 	if (lwp_eprio(l) == opri) {
    442  1.32        ad 		return;
    443  1.32        ad 	}
    444  1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    445  1.32        ad 		return;
    446  1.32        ad 	}
    447  1.32        ad 
    448  1.32        ad 	/*
    449  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    450  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    451  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    452  1.32        ad 	 * head if there are waiters.
    453  1.32        ad 	 */
    454  1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    455  1.32        ad 		return;
    456  1.18        ad 	}
    457  1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    458  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    459   1.2        ad }
    460   1.6      yamt 
    461   1.6      yamt void
    462   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    463   1.6      yamt {
    464   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    465   1.7      yamt 	pri_t opri;
    466   1.6      yamt 
    467  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    468   1.6      yamt 
    469   1.6      yamt 	opri = lwp_eprio(l);
    470   1.6      yamt 	l->l_inheritedprio = pri;
    471   1.6      yamt 
    472  1.32        ad 	if (lwp_eprio(l) == opri) {
    473  1.32        ad 		return;
    474  1.32        ad 	}
    475  1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    476  1.32        ad 		return;
    477   1.6      yamt 	}
    478  1.32        ad 
    479  1.32        ad 	/*
    480  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    481  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    482  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    483  1.32        ad 	 * head if there are waiters.
    484  1.32        ad 	 */
    485  1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    486  1.32        ad 		return;
    487  1.32        ad 	}
    488  1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    489  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    490   1.6      yamt }
    491