kern_sleepq.c revision 1.39 1 1.39 rmind /* $NetBSD: kern_sleepq.c,v 1.39 2011/05/13 22:19:41 rmind Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.36 ad * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.39 rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.39 2011/05/13 22:19:41 rmind Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.2 ad #include <sys/pool.h>
44 1.2 ad #include <sys/proc.h>
45 1.2 ad #include <sys/resourcevar.h>
46 1.35 wrstuden #include <sys/sa.h>
47 1.35 wrstuden #include <sys/savar.h>
48 1.2 ad #include <sys/sched.h>
49 1.2 ad #include <sys/systm.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/ktrace.h>
52 1.2 ad
53 1.4 ad #include <uvm/uvm_extern.h>
54 1.4 ad
55 1.35 wrstuden #include "opt_sa.h"
56 1.35 wrstuden
57 1.39 rmind static int sleepq_sigtoerror(lwp_t *, int);
58 1.2 ad
59 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
60 1.39 rmind sleeptab_t sleeptab __cacheline_aligned;
61 1.2 ad
62 1.2 ad /*
63 1.2 ad * sleeptab_init:
64 1.2 ad *
65 1.2 ad * Initialize a sleep table.
66 1.2 ad */
67 1.2 ad void
68 1.2 ad sleeptab_init(sleeptab_t *st)
69 1.2 ad {
70 1.2 ad sleepq_t *sq;
71 1.2 ad int i;
72 1.2 ad
73 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
74 1.2 ad sq = &st->st_queues[i].st_queue;
75 1.36 ad st->st_queues[i].st_mutex =
76 1.36 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
77 1.30 ad sleepq_init(sq);
78 1.2 ad }
79 1.2 ad }
80 1.2 ad
81 1.2 ad /*
82 1.2 ad * sleepq_init:
83 1.2 ad *
84 1.2 ad * Prepare a sleep queue for use.
85 1.2 ad */
86 1.2 ad void
87 1.30 ad sleepq_init(sleepq_t *sq)
88 1.2 ad {
89 1.2 ad
90 1.30 ad TAILQ_INIT(sq);
91 1.2 ad }
92 1.2 ad
93 1.2 ad /*
94 1.2 ad * sleepq_remove:
95 1.2 ad *
96 1.37 rmind * Remove an LWP from a sleep queue and wake it up.
97 1.2 ad */
98 1.37 rmind void
99 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
100 1.2 ad {
101 1.9 yamt struct schedstate_percpu *spc;
102 1.2 ad struct cpu_info *ci;
103 1.2 ad
104 1.30 ad KASSERT(lwp_locked(l, NULL));
105 1.2 ad
106 1.30 ad TAILQ_REMOVE(sq, l, l_sleepchain);
107 1.2 ad l->l_syncobj = &sched_syncobj;
108 1.2 ad l->l_wchan = NULL;
109 1.2 ad l->l_sleepq = NULL;
110 1.5 pavel l->l_flag &= ~LW_SINTR;
111 1.2 ad
112 1.9 yamt ci = l->l_cpu;
113 1.9 yamt spc = &ci->ci_schedstate;
114 1.9 yamt
115 1.2 ad /*
116 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
117 1.2 ad * holds it stopped set it running again.
118 1.2 ad */
119 1.2 ad if (l->l_stat != LSSLEEP) {
120 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
121 1.21 ad lwp_setlock(l, spc->spc_lwplock);
122 1.37 rmind return;
123 1.2 ad }
124 1.2 ad
125 1.2 ad /*
126 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
127 1.2 ad * about to call mi_switch(), in which case it will yield.
128 1.2 ad */
129 1.31 ad if ((l->l_pflag & LP_RUNNING) != 0) {
130 1.2 ad l->l_stat = LSONPROC;
131 1.2 ad l->l_slptime = 0;
132 1.21 ad lwp_setlock(l, spc->spc_lwplock);
133 1.37 rmind return;
134 1.2 ad }
135 1.2 ad
136 1.29 rmind /* Update sleep time delta, call the wake-up handler of scheduler */
137 1.29 rmind l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
138 1.16 rmind sched_wakeup(l);
139 1.29 rmind
140 1.29 rmind /* Look for a CPU to wake up */
141 1.29 rmind l->l_cpu = sched_takecpu(l);
142 1.16 rmind ci = l->l_cpu;
143 1.16 rmind spc = &ci->ci_schedstate;
144 1.16 rmind
145 1.16 rmind /*
146 1.17 yamt * Set it running.
147 1.2 ad */
148 1.9 yamt spc_lock(ci);
149 1.9 yamt lwp_setlock(l, spc->spc_mutex);
150 1.35 wrstuden #ifdef KERN_SA
151 1.35 wrstuden if (l->l_proc->p_sa != NULL)
152 1.35 wrstuden sa_awaken(l);
153 1.35 wrstuden #endif /* KERN_SA */
154 1.9 yamt sched_setrunnable(l);
155 1.2 ad l->l_stat = LSRUN;
156 1.2 ad l->l_slptime = 0;
157 1.37 rmind sched_enqueue(l, false);
158 1.9 yamt spc_unlock(ci);
159 1.2 ad }
160 1.2 ad
161 1.2 ad /*
162 1.2 ad * sleepq_insert:
163 1.2 ad *
164 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
165 1.2 ad */
166 1.38 plunky void
167 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
168 1.2 ad {
169 1.8 ad lwp_t *l2;
170 1.6 yamt const int pri = lwp_eprio(l);
171 1.2 ad
172 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
173 1.30 ad TAILQ_FOREACH(l2, sq, l_sleepchain) {
174 1.18 ad if (lwp_eprio(l2) < pri) {
175 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
176 1.2 ad return;
177 1.2 ad }
178 1.2 ad }
179 1.2 ad }
180 1.2 ad
181 1.14 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
182 1.30 ad TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
183 1.14 ad else
184 1.30 ad TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
185 1.2 ad }
186 1.2 ad
187 1.9 yamt /*
188 1.9 yamt * sleepq_enqueue:
189 1.9 yamt *
190 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
191 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
192 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
193 1.9 yamt */
194 1.2 ad void
195 1.18 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
196 1.2 ad {
197 1.8 ad lwp_t *l = curlwp;
198 1.2 ad
199 1.30 ad KASSERT(lwp_locked(l, NULL));
200 1.2 ad KASSERT(l->l_stat == LSONPROC);
201 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
202 1.2 ad
203 1.2 ad l->l_syncobj = sobj;
204 1.2 ad l->l_wchan = wchan;
205 1.2 ad l->l_sleepq = sq;
206 1.2 ad l->l_wmesg = wmesg;
207 1.2 ad l->l_slptime = 0;
208 1.2 ad l->l_stat = LSSLEEP;
209 1.2 ad l->l_sleeperr = 0;
210 1.2 ad
211 1.6 yamt sleepq_insert(sq, l, sobj);
212 1.29 rmind
213 1.29 rmind /* Save the time when thread has slept */
214 1.29 rmind l->l_slpticks = hardclock_ticks;
215 1.15 rmind sched_slept(l);
216 1.6 yamt }
217 1.6 yamt
218 1.9 yamt /*
219 1.9 yamt * sleepq_block:
220 1.9 yamt *
221 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
222 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
223 1.9 yamt * example if the LWP's containing process is exiting.
224 1.9 yamt */
225 1.9 yamt int
226 1.9 yamt sleepq_block(int timo, bool catch)
227 1.6 yamt {
228 1.10 ad int error = 0, sig;
229 1.9 yamt struct proc *p;
230 1.8 ad lwp_t *l = curlwp;
231 1.11 ad bool early = false;
232 1.34 yamt int biglocks = l->l_biglocks;
233 1.2 ad
234 1.12 ad ktrcsw(1, 0);
235 1.4 ad
236 1.2 ad /*
237 1.2 ad * If sleeping interruptably, check for pending signals, exits or
238 1.2 ad * core dump events.
239 1.2 ad */
240 1.2 ad if (catch) {
241 1.5 pavel l->l_flag |= LW_SINTR;
242 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
243 1.5 pavel l->l_flag &= ~LW_CANCELLED;
244 1.14 ad error = EINTR;
245 1.14 ad early = true;
246 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
247 1.11 ad early = true;
248 1.2 ad }
249 1.2 ad
250 1.13 yamt if (early) {
251 1.13 yamt /* lwp_unsleep() will release the lock */
252 1.22 ad lwp_unsleep(l, true);
253 1.13 yamt } else {
254 1.11 ad if (timo)
255 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
256 1.35 wrstuden
257 1.35 wrstuden #ifdef KERN_SA
258 1.35 wrstuden if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
259 1.35 wrstuden sa_switch(l);
260 1.35 wrstuden else
261 1.35 wrstuden #endif
262 1.35 wrstuden mi_switch(l);
263 1.11 ad
264 1.11 ad /* The LWP and sleep queue are now unlocked. */
265 1.11 ad if (timo) {
266 1.11 ad /*
267 1.11 ad * Even if the callout appears to have fired, we need to
268 1.11 ad * stop it in order to synchronise with other CPUs.
269 1.11 ad */
270 1.26 ad if (callout_halt(&l->l_timeout_ch, NULL))
271 1.11 ad error = EWOULDBLOCK;
272 1.11 ad }
273 1.2 ad }
274 1.2 ad
275 1.9 yamt if (catch && error == 0) {
276 1.2 ad p = l->l_proc;
277 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
278 1.2 ad error = EINTR;
279 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
280 1.33 ad /*
281 1.33 ad * Acquiring p_lock may cause us to recurse
282 1.33 ad * through the sleep path and back into this
283 1.33 ad * routine, but is safe because LWPs sleeping
284 1.33 ad * on locks are non-interruptable. We will
285 1.33 ad * not recurse again.
286 1.33 ad */
287 1.27 ad mutex_enter(p->p_lock);
288 1.2 ad if ((sig = issignal(l)) != 0)
289 1.2 ad error = sleepq_sigtoerror(l, sig);
290 1.27 ad mutex_exit(p->p_lock);
291 1.2 ad }
292 1.2 ad }
293 1.2 ad
294 1.12 ad ktrcsw(0, 0);
295 1.34 yamt if (__predict_false(biglocks != 0)) {
296 1.34 yamt KERNEL_LOCK(biglocks, NULL);
297 1.30 ad }
298 1.2 ad return error;
299 1.2 ad }
300 1.2 ad
301 1.2 ad /*
302 1.2 ad * sleepq_wake:
303 1.2 ad *
304 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
305 1.2 ad */
306 1.8 ad lwp_t *
307 1.30 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
308 1.2 ad {
309 1.8 ad lwp_t *l, *next;
310 1.2 ad
311 1.30 ad KASSERT(mutex_owned(mp));
312 1.2 ad
313 1.30 ad for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
314 1.2 ad KASSERT(l->l_sleepq == sq);
315 1.30 ad KASSERT(l->l_mutex == mp);
316 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
317 1.2 ad if (l->l_wchan != wchan)
318 1.2 ad continue;
319 1.37 rmind sleepq_remove(sq, l);
320 1.2 ad if (--expected == 0)
321 1.2 ad break;
322 1.2 ad }
323 1.2 ad
324 1.30 ad mutex_spin_exit(mp);
325 1.8 ad return l;
326 1.2 ad }
327 1.2 ad
328 1.2 ad /*
329 1.2 ad * sleepq_unsleep:
330 1.2 ad *
331 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
332 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
333 1.2 ad * always release it.
334 1.2 ad */
335 1.37 rmind void
336 1.22 ad sleepq_unsleep(lwp_t *l, bool cleanup)
337 1.2 ad {
338 1.2 ad sleepq_t *sq = l->l_sleepq;
339 1.30 ad kmutex_t *mp = l->l_mutex;
340 1.2 ad
341 1.30 ad KASSERT(lwp_locked(l, mp));
342 1.2 ad KASSERT(l->l_wchan != NULL);
343 1.2 ad
344 1.37 rmind sleepq_remove(sq, l);
345 1.22 ad if (cleanup) {
346 1.30 ad mutex_spin_exit(mp);
347 1.22 ad }
348 1.2 ad }
349 1.2 ad
350 1.2 ad /*
351 1.2 ad * sleepq_timeout:
352 1.2 ad *
353 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
354 1.2 ad * sleep queue.
355 1.2 ad */
356 1.2 ad void
357 1.2 ad sleepq_timeout(void *arg)
358 1.2 ad {
359 1.8 ad lwp_t *l = arg;
360 1.2 ad
361 1.2 ad /*
362 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
363 1.2 ad * current mutex will also be the sleep queue mutex.
364 1.2 ad */
365 1.2 ad lwp_lock(l);
366 1.2 ad
367 1.2 ad if (l->l_wchan == NULL) {
368 1.2 ad /* Somebody beat us to it. */
369 1.2 ad lwp_unlock(l);
370 1.2 ad return;
371 1.2 ad }
372 1.2 ad
373 1.22 ad lwp_unsleep(l, true);
374 1.2 ad }
375 1.2 ad
376 1.2 ad /*
377 1.2 ad * sleepq_sigtoerror:
378 1.2 ad *
379 1.2 ad * Given a signal number, interpret and return an error code.
380 1.2 ad */
381 1.39 rmind static int
382 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
383 1.2 ad {
384 1.2 ad struct proc *p = l->l_proc;
385 1.2 ad int error;
386 1.2 ad
387 1.27 ad KASSERT(mutex_owned(p->p_lock));
388 1.2 ad
389 1.2 ad /*
390 1.2 ad * If this sleep was canceled, don't let the syscall restart.
391 1.2 ad */
392 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
393 1.2 ad error = EINTR;
394 1.2 ad else
395 1.2 ad error = ERESTART;
396 1.2 ad
397 1.2 ad return error;
398 1.2 ad }
399 1.2 ad
400 1.2 ad /*
401 1.2 ad * sleepq_abort:
402 1.2 ad *
403 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
404 1.2 ad * priority level to give pending interrupts a chance to run, and
405 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
406 1.2 ad * always returns zero.
407 1.2 ad */
408 1.2 ad int
409 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
410 1.2 ad {
411 1.2 ad extern int safepri;
412 1.2 ad int s;
413 1.2 ad
414 1.2 ad s = splhigh();
415 1.2 ad splx(safepri);
416 1.2 ad splx(s);
417 1.2 ad if (mtx != NULL && unlock != 0)
418 1.2 ad mutex_exit(mtx);
419 1.2 ad
420 1.2 ad return 0;
421 1.2 ad }
422 1.2 ad
423 1.2 ad /*
424 1.2 ad * sleepq_changepri:
425 1.2 ad *
426 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
427 1.2 ad * will only alter the user priority; the effective priority is
428 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
429 1.2 ad */
430 1.2 ad void
431 1.8 ad sleepq_changepri(lwp_t *l, pri_t pri)
432 1.2 ad {
433 1.18 ad sleepq_t *sq = l->l_sleepq;
434 1.18 ad pri_t opri;
435 1.18 ad
436 1.30 ad KASSERT(lwp_locked(l, NULL));
437 1.2 ad
438 1.18 ad opri = lwp_eprio(l);
439 1.18 ad l->l_priority = pri;
440 1.32 ad
441 1.32 ad if (lwp_eprio(l) == opri) {
442 1.32 ad return;
443 1.32 ad }
444 1.32 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
445 1.32 ad return;
446 1.32 ad }
447 1.32 ad
448 1.32 ad /*
449 1.32 ad * Don't let the sleep queue become empty, even briefly.
450 1.32 ad * cv_signal() and cv_broadcast() inspect it without the
451 1.32 ad * sleep queue lock held and need to see a non-empty queue
452 1.32 ad * head if there are waiters.
453 1.32 ad */
454 1.32 ad if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
455 1.32 ad return;
456 1.18 ad }
457 1.32 ad TAILQ_REMOVE(sq, l, l_sleepchain);
458 1.32 ad sleepq_insert(sq, l, l->l_syncobj);
459 1.2 ad }
460 1.6 yamt
461 1.6 yamt void
462 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
463 1.6 yamt {
464 1.6 yamt sleepq_t *sq = l->l_sleepq;
465 1.7 yamt pri_t opri;
466 1.6 yamt
467 1.30 ad KASSERT(lwp_locked(l, NULL));
468 1.6 yamt
469 1.6 yamt opri = lwp_eprio(l);
470 1.6 yamt l->l_inheritedprio = pri;
471 1.6 yamt
472 1.32 ad if (lwp_eprio(l) == opri) {
473 1.32 ad return;
474 1.32 ad }
475 1.32 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
476 1.32 ad return;
477 1.6 yamt }
478 1.32 ad
479 1.32 ad /*
480 1.32 ad * Don't let the sleep queue become empty, even briefly.
481 1.32 ad * cv_signal() and cv_broadcast() inspect it without the
482 1.32 ad * sleep queue lock held and need to see a non-empty queue
483 1.32 ad * head if there are waiters.
484 1.32 ad */
485 1.32 ad if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
486 1.32 ad return;
487 1.32 ad }
488 1.32 ad TAILQ_REMOVE(sq, l, l_sleepchain);
489 1.32 ad sleepq_insert(sq, l, l->l_syncobj);
490 1.6 yamt }
491