kern_sleepq.c revision 1.4.2.13 1 1.4.2.13 ad /* $NetBSD: kern_sleepq.c,v 1.4.2.13 2007/04/19 04:19:44 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.2 ad * interfaces.
42 1.2 ad */
43 1.2 ad
44 1.2 ad #include <sys/cdefs.h>
45 1.4.2.13 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.4.2.13 2007/04/19 04:19:44 ad Exp $");
46 1.2 ad
47 1.2 ad #include "opt_ktrace.h"
48 1.2 ad
49 1.2 ad #include <sys/param.h>
50 1.2 ad #include <sys/lock.h>
51 1.2 ad #include <sys/kernel.h>
52 1.4.2.2 yamt #include <sys/cpu.h>
53 1.2 ad #include <sys/pool.h>
54 1.2 ad #include <sys/proc.h>
55 1.2 ad #include <sys/resourcevar.h>
56 1.2 ad #include <sys/sched.h>
57 1.2 ad #include <sys/systm.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #ifdef KTRACE
60 1.2 ad #include <sys/ktrace.h>
61 1.2 ad #endif
62 1.2 ad
63 1.4 ad #include <uvm/uvm_extern.h>
64 1.4 ad
65 1.4.2.11 yamt int sleepq_sigtoerror(lwp_t *, int);
66 1.2 ad
67 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
68 1.2 ad sleeptab_t sleeptab;
69 1.2 ad
70 1.2 ad /*
71 1.2 ad * sleeptab_init:
72 1.2 ad *
73 1.2 ad * Initialize a sleep table.
74 1.2 ad */
75 1.2 ad void
76 1.2 ad sleeptab_init(sleeptab_t *st)
77 1.2 ad {
78 1.2 ad sleepq_t *sq;
79 1.2 ad int i;
80 1.2 ad
81 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
82 1.2 ad sq = &st->st_queues[i].st_queue;
83 1.2 ad mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
84 1.2 ad sleepq_init(sq, &st->st_queues[i].st_mutex);
85 1.2 ad }
86 1.2 ad }
87 1.2 ad
88 1.2 ad /*
89 1.2 ad * sleepq_init:
90 1.2 ad *
91 1.2 ad * Prepare a sleep queue for use.
92 1.2 ad */
93 1.2 ad void
94 1.2 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
95 1.2 ad {
96 1.2 ad
97 1.2 ad sq->sq_waiters = 0;
98 1.2 ad sq->sq_mutex = mtx;
99 1.2 ad TAILQ_INIT(&sq->sq_queue);
100 1.2 ad }
101 1.2 ad
102 1.2 ad /*
103 1.2 ad * sleepq_remove:
104 1.2 ad *
105 1.2 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
106 1.2 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
107 1.2 ad * to bring the LWP into memory.
108 1.2 ad */
109 1.2 ad int
110 1.4.2.11 yamt sleepq_remove(sleepq_t *sq, lwp_t *l)
111 1.2 ad {
112 1.2 ad struct cpu_info *ci;
113 1.2 ad
114 1.4 ad KASSERT(lwp_locked(l, sq->sq_mutex));
115 1.2 ad KASSERT(sq->sq_waiters > 0);
116 1.2 ad
117 1.2 ad sq->sq_waiters--;
118 1.2 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
119 1.2 ad
120 1.2 ad #ifdef DIAGNOSTIC
121 1.2 ad if (sq->sq_waiters == 0)
122 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
123 1.2 ad else
124 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
125 1.2 ad #endif
126 1.2 ad
127 1.2 ad l->l_syncobj = &sched_syncobj;
128 1.2 ad l->l_wchan = NULL;
129 1.2 ad l->l_sleepq = NULL;
130 1.4.2.4 yamt l->l_flag &= ~LW_SINTR;
131 1.2 ad
132 1.4.2.9 rmind ci = l->l_cpu;
133 1.4.2.9 rmind
134 1.2 ad /*
135 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
136 1.2 ad * holds it stopped set it running again.
137 1.2 ad */
138 1.2 ad if (l->l_stat != LSSLEEP) {
139 1.2 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
140 1.4.2.9 rmind lwp_setlock(l, ci->ci_schedstate.spc_mutex);
141 1.2 ad return 0;
142 1.2 ad }
143 1.2 ad
144 1.2 ad /*
145 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
146 1.2 ad * about to call mi_switch(), in which case it will yield.
147 1.2 ad */
148 1.4.2.7 ad if ((l->l_flag & LW_RUNNING) != 0) {
149 1.2 ad l->l_stat = LSONPROC;
150 1.2 ad l->l_slptime = 0;
151 1.4.2.9 rmind lwp_setlock(l, ci->ci_schedstate.spc_mutex);
152 1.2 ad return 0;
153 1.2 ad }
154 1.2 ad
155 1.2 ad /*
156 1.2 ad * Set it running. We'll try to get the last CPU that ran
157 1.2 ad * this LWP to pick it up again.
158 1.2 ad */
159 1.4.2.12 ad spc_lock(ci);
160 1.4.2.9 rmind lwp_setlock(l, ci->ci_schedstate.spc_mutex);
161 1.4.2.1 rmind sched_setrunnable(l);
162 1.2 ad l->l_stat = LSRUN;
163 1.2 ad l->l_slptime = 0;
164 1.4.2.4 yamt if ((l->l_flag & LW_INMEM) != 0) {
165 1.4.2.6 rmind sched_enqueue(l, false);
166 1.4.2.4 yamt if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
167 1.4.2.3 yamt cpu_need_resched(ci, 0);
168 1.4.2.12 ad spc_unlock(ci);
169 1.2 ad return 0;
170 1.2 ad }
171 1.2 ad
172 1.4.2.12 ad spc_unlock(ci);
173 1.2 ad return 1;
174 1.2 ad }
175 1.2 ad
176 1.2 ad /*
177 1.2 ad * sleepq_insert:
178 1.2 ad *
179 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
180 1.2 ad */
181 1.2 ad inline void
182 1.4.2.11 yamt sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
183 1.2 ad {
184 1.4.2.11 yamt lwp_t *l2;
185 1.4.2.4 yamt const int pri = lwp_eprio(l);
186 1.2 ad
187 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
188 1.2 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
189 1.4.2.4 yamt if (lwp_eprio(l2) > pri) {
190 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
191 1.2 ad return;
192 1.2 ad }
193 1.2 ad }
194 1.2 ad }
195 1.2 ad
196 1.2 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
197 1.2 ad }
198 1.2 ad
199 1.4.2.13 ad /*
200 1.4.2.13 ad * sleepq_enqueue:
201 1.4.2.13 ad *
202 1.4.2.13 ad * Enter an LWP into the sleep queue and prepare for sleep. The sleep
203 1.4.2.13 ad * queue must already be locked, and any interlock (such as the kernel
204 1.4.2.13 ad * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
205 1.4.2.13 ad */
206 1.2 ad void
207 1.4.2.4 yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
208 1.4.2.13 ad syncobj_t *sobj)
209 1.2 ad {
210 1.4.2.11 yamt lwp_t *l = curlwp;
211 1.2 ad
212 1.4 ad KASSERT(mutex_owned(sq->sq_mutex));
213 1.2 ad KASSERT(l->l_stat == LSONPROC);
214 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
215 1.2 ad
216 1.2 ad l->l_syncobj = sobj;
217 1.2 ad l->l_wchan = wchan;
218 1.2 ad l->l_sleepq = sq;
219 1.2 ad l->l_wmesg = wmesg;
220 1.2 ad l->l_slptime = 0;
221 1.2 ad l->l_priority = pri;
222 1.2 ad l->l_stat = LSSLEEP;
223 1.2 ad l->l_sleeperr = 0;
224 1.2 ad l->l_nvcsw++;
225 1.2 ad
226 1.2 ad sq->sq_waiters++;
227 1.4.2.4 yamt sleepq_insert(sq, l, sobj);
228 1.4.2.4 yamt }
229 1.4.2.4 yamt
230 1.4.2.13 ad /*
231 1.4.2.13 ad * sleepq_block:
232 1.4.2.13 ad *
233 1.4.2.13 ad * After any intermediate step such as releasing an interlock, switch.
234 1.4.2.13 ad * sleepq_block() may return early under exceptional conditions, for
235 1.4.2.13 ad * example if the LWP's containing process is exiting.
236 1.4.2.13 ad */
237 1.4.2.13 ad int
238 1.4.2.13 ad sleepq_block(int timo, bool catch)
239 1.4.2.4 yamt {
240 1.4.2.13 ad int error = 0, expired, sig;
241 1.4.2.13 ad struct proc *p;
242 1.4.2.11 yamt lwp_t *l = curlwp;
243 1.2 ad
244 1.4 ad #ifdef KTRACE
245 1.4 ad if (KTRPOINT(l->l_proc, KTR_CSW))
246 1.4 ad ktrcsw(l, 1, 0);
247 1.4 ad #endif
248 1.4 ad
249 1.2 ad /*
250 1.2 ad * If sleeping interruptably, check for pending signals, exits or
251 1.2 ad * core dump events.
252 1.2 ad */
253 1.2 ad if (catch) {
254 1.4.2.4 yamt l->l_flag |= LW_SINTR;
255 1.4.2.4 yamt if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
256 1.2 ad /* lwp_unsleep() will release the lock */
257 1.2 ad lwp_unsleep(l);
258 1.4.2.13 ad error = EINTR;
259 1.4.2.13 ad goto catchit;
260 1.2 ad }
261 1.4.2.4 yamt if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
262 1.4.2.4 yamt l->l_flag &= ~LW_CANCELLED;
263 1.2 ad /* lwp_unsleep() will release the lock */
264 1.2 ad lwp_unsleep(l);
265 1.4.2.13 ad error = EINTR;
266 1.4.2.13 ad goto catchit;
267 1.2 ad }
268 1.2 ad }
269 1.2 ad
270 1.2 ad if (timo)
271 1.2 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
272 1.2 ad
273 1.4.2.5 rmind mi_switch(l);
274 1.2 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
275 1.2 ad
276 1.2 ad /*
277 1.2 ad * When we reach this point, the LWP and sleep queue are unlocked.
278 1.2 ad */
279 1.2 ad if (timo) {
280 1.2 ad /*
281 1.2 ad * Even if the callout appears to have fired, we need to
282 1.2 ad * stop it in order to synchronise with other CPUs.
283 1.2 ad */
284 1.2 ad expired = callout_expired(&l->l_tsleep_ch);
285 1.2 ad callout_stop(&l->l_tsleep_ch);
286 1.4.2.13 ad if (expired)
287 1.2 ad error = EWOULDBLOCK;
288 1.2 ad }
289 1.2 ad
290 1.4.2.13 ad if (catch && error == 0) {
291 1.4.2.13 ad catchit:
292 1.2 ad p = l->l_proc;
293 1.4.2.4 yamt if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
294 1.2 ad error = EINTR;
295 1.4.2.4 yamt else if ((l->l_flag & LW_PENDSIG) != 0) {
296 1.2 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
297 1.2 ad mutex_enter(&p->p_smutex);
298 1.2 ad if ((sig = issignal(l)) != 0)
299 1.2 ad error = sleepq_sigtoerror(l, sig);
300 1.2 ad mutex_exit(&p->p_smutex);
301 1.2 ad KERNEL_UNLOCK_LAST(l);
302 1.2 ad }
303 1.2 ad }
304 1.2 ad
305 1.2 ad #ifdef KTRACE
306 1.2 ad if (KTRPOINT(l->l_proc, KTR_CSW))
307 1.2 ad ktrcsw(l, 0, 0);
308 1.2 ad #endif
309 1.2 ad
310 1.2 ad KERNEL_LOCK(l->l_biglocks, l);
311 1.2 ad return error;
312 1.2 ad }
313 1.2 ad
314 1.2 ad /*
315 1.2 ad * sleepq_wake:
316 1.2 ad *
317 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
318 1.2 ad */
319 1.4.2.11 yamt lwp_t *
320 1.2 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
321 1.2 ad {
322 1.4.2.11 yamt lwp_t *l, *next;
323 1.2 ad int swapin = 0;
324 1.2 ad
325 1.4 ad KASSERT(mutex_owned(sq->sq_mutex));
326 1.2 ad
327 1.2 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
328 1.2 ad KASSERT(l->l_sleepq == sq);
329 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
330 1.2 ad if (l->l_wchan != wchan)
331 1.2 ad continue;
332 1.2 ad swapin |= sleepq_remove(sq, l);
333 1.2 ad if (--expected == 0)
334 1.2 ad break;
335 1.2 ad }
336 1.2 ad
337 1.2 ad sleepq_unlock(sq);
338 1.2 ad
339 1.2 ad /*
340 1.2 ad * If there are newly awakend threads that need to be swapped in,
341 1.2 ad * then kick the swapper into action.
342 1.2 ad */
343 1.2 ad if (swapin)
344 1.4 ad uvm_kick_scheduler();
345 1.4.2.11 yamt
346 1.4.2.11 yamt return l;
347 1.2 ad }
348 1.2 ad
349 1.2 ad /*
350 1.2 ad * sleepq_unsleep:
351 1.2 ad *
352 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
353 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
354 1.2 ad * always release it.
355 1.2 ad */
356 1.2 ad void
357 1.4.2.11 yamt sleepq_unsleep(lwp_t *l)
358 1.2 ad {
359 1.2 ad sleepq_t *sq = l->l_sleepq;
360 1.2 ad int swapin;
361 1.2 ad
362 1.4 ad KASSERT(lwp_locked(l, NULL));
363 1.2 ad KASSERT(l->l_wchan != NULL);
364 1.2 ad KASSERT(l->l_mutex == sq->sq_mutex);
365 1.2 ad
366 1.2 ad swapin = sleepq_remove(sq, l);
367 1.2 ad sleepq_unlock(sq);
368 1.2 ad
369 1.2 ad if (swapin)
370 1.4 ad uvm_kick_scheduler();
371 1.2 ad }
372 1.2 ad
373 1.2 ad /*
374 1.2 ad * sleepq_timeout:
375 1.2 ad *
376 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
377 1.2 ad * sleep queue.
378 1.2 ad */
379 1.2 ad void
380 1.2 ad sleepq_timeout(void *arg)
381 1.2 ad {
382 1.4.2.11 yamt lwp_t *l = arg;
383 1.2 ad
384 1.2 ad /*
385 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
386 1.2 ad * current mutex will also be the sleep queue mutex.
387 1.2 ad */
388 1.2 ad lwp_lock(l);
389 1.2 ad
390 1.2 ad if (l->l_wchan == NULL) {
391 1.2 ad /* Somebody beat us to it. */
392 1.2 ad lwp_unlock(l);
393 1.2 ad return;
394 1.2 ad }
395 1.2 ad
396 1.2 ad lwp_unsleep(l);
397 1.2 ad }
398 1.2 ad
399 1.2 ad /*
400 1.2 ad * sleepq_sigtoerror:
401 1.2 ad *
402 1.2 ad * Given a signal number, interpret and return an error code.
403 1.2 ad */
404 1.2 ad int
405 1.4.2.11 yamt sleepq_sigtoerror(lwp_t *l, int sig)
406 1.2 ad {
407 1.2 ad struct proc *p = l->l_proc;
408 1.2 ad int error;
409 1.2 ad
410 1.4 ad KASSERT(mutex_owned(&p->p_smutex));
411 1.2 ad
412 1.2 ad /*
413 1.2 ad * If this sleep was canceled, don't let the syscall restart.
414 1.2 ad */
415 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
416 1.2 ad error = EINTR;
417 1.2 ad else
418 1.2 ad error = ERESTART;
419 1.2 ad
420 1.2 ad return error;
421 1.2 ad }
422 1.2 ad
423 1.2 ad /*
424 1.2 ad * sleepq_abort:
425 1.2 ad *
426 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
427 1.2 ad * priority level to give pending interrupts a chance to run, and
428 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
429 1.2 ad * always returns zero.
430 1.2 ad */
431 1.2 ad int
432 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
433 1.2 ad {
434 1.2 ad extern int safepri;
435 1.2 ad int s;
436 1.2 ad
437 1.2 ad s = splhigh();
438 1.2 ad splx(safepri);
439 1.2 ad splx(s);
440 1.2 ad if (mtx != NULL && unlock != 0)
441 1.2 ad mutex_exit(mtx);
442 1.2 ad
443 1.2 ad return 0;
444 1.2 ad }
445 1.2 ad
446 1.2 ad /*
447 1.2 ad * sleepq_changepri:
448 1.2 ad *
449 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
450 1.2 ad * will only alter the user priority; the effective priority is
451 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
452 1.2 ad */
453 1.2 ad void
454 1.4.2.11 yamt sleepq_changepri(lwp_t *l, pri_t pri)
455 1.2 ad {
456 1.2 ad
457 1.2 ad KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
458 1.2 ad l->l_usrpri = pri;
459 1.2 ad }
460 1.4.2.4 yamt
461 1.4.2.4 yamt void
462 1.4.2.11 yamt sleepq_lendpri(lwp_t *l, pri_t pri)
463 1.4.2.4 yamt {
464 1.4.2.4 yamt sleepq_t *sq = l->l_sleepq;
465 1.4.2.4 yamt pri_t opri;
466 1.4.2.4 yamt
467 1.4.2.4 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
468 1.4.2.4 yamt
469 1.4.2.4 yamt opri = lwp_eprio(l);
470 1.4.2.4 yamt l->l_inheritedprio = pri;
471 1.4.2.4 yamt
472 1.4.2.4 yamt if (lwp_eprio(l) != opri &&
473 1.4.2.4 yamt (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
474 1.4.2.4 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
475 1.4.2.4 yamt sleepq_insert(sq, l, l->l_syncobj);
476 1.4.2.4 yamt }
477 1.4.2.4 yamt }
478