Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.44.2.1
      1  1.44.2.1      yamt /*	$NetBSD: kern_sleepq.c,v 1.44.2.1 2012/04/17 00:08:26 yamt Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2        ad  * interfaces.
     35       1.2        ad  */
     36       1.2        ad 
     37       1.2        ad #include <sys/cdefs.h>
     38  1.44.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.44.2.1 2012/04/17 00:08:26 yamt Exp $");
     39       1.2        ad 
     40       1.2        ad #include <sys/param.h>
     41       1.2        ad #include <sys/kernel.h>
     42       1.9      yamt #include <sys/cpu.h>
     43       1.2        ad #include <sys/pool.h>
     44       1.2        ad #include <sys/proc.h>
     45       1.2        ad #include <sys/resourcevar.h>
     46       1.2        ad #include <sys/sched.h>
     47       1.2        ad #include <sys/systm.h>
     48       1.2        ad #include <sys/sleepq.h>
     49       1.2        ad #include <sys/ktrace.h>
     50       1.2        ad 
     51      1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     52       1.2        ad 
     53  1.44.2.1      yamt /* General purpose sleep table, used by mtsleep() and condition variables. */
     54      1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     55       1.2        ad 
     56       1.2        ad /*
     57       1.2        ad  * sleeptab_init:
     58       1.2        ad  *
     59       1.2        ad  *	Initialize a sleep table.
     60       1.2        ad  */
     61       1.2        ad void
     62       1.2        ad sleeptab_init(sleeptab_t *st)
     63       1.2        ad {
     64       1.2        ad 	sleepq_t *sq;
     65       1.2        ad 	int i;
     66       1.2        ad 
     67       1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     68       1.2        ad 		sq = &st->st_queues[i].st_queue;
     69      1.36        ad 		st->st_queues[i].st_mutex =
     70      1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     71      1.30        ad 		sleepq_init(sq);
     72       1.2        ad 	}
     73       1.2        ad }
     74       1.2        ad 
     75       1.2        ad /*
     76       1.2        ad  * sleepq_init:
     77       1.2        ad  *
     78       1.2        ad  *	Prepare a sleep queue for use.
     79       1.2        ad  */
     80       1.2        ad void
     81      1.30        ad sleepq_init(sleepq_t *sq)
     82       1.2        ad {
     83       1.2        ad 
     84      1.30        ad 	TAILQ_INIT(sq);
     85       1.2        ad }
     86       1.2        ad 
     87       1.2        ad /*
     88       1.2        ad  * sleepq_remove:
     89       1.2        ad  *
     90      1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
     91       1.2        ad  */
     92      1.37     rmind void
     93       1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
     94       1.2        ad {
     95       1.9      yamt 	struct schedstate_percpu *spc;
     96       1.2        ad 	struct cpu_info *ci;
     97       1.2        ad 
     98      1.30        ad 	KASSERT(lwp_locked(l, NULL));
     99       1.2        ad 
    100      1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    101       1.2        ad 	l->l_syncobj = &sched_syncobj;
    102       1.2        ad 	l->l_wchan = NULL;
    103       1.2        ad 	l->l_sleepq = NULL;
    104       1.5     pavel 	l->l_flag &= ~LW_SINTR;
    105       1.2        ad 
    106       1.9      yamt 	ci = l->l_cpu;
    107       1.9      yamt 	spc = &ci->ci_schedstate;
    108       1.9      yamt 
    109       1.2        ad 	/*
    110       1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    111       1.2        ad 	 * holds it stopped set it running again.
    112       1.2        ad 	 */
    113       1.2        ad 	if (l->l_stat != LSSLEEP) {
    114      1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    115      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    116      1.37     rmind 		return;
    117       1.2        ad 	}
    118       1.2        ad 
    119       1.2        ad 	/*
    120       1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    121       1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    122       1.2        ad 	 */
    123      1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    124       1.2        ad 		l->l_stat = LSONPROC;
    125       1.2        ad 		l->l_slptime = 0;
    126      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    127      1.37     rmind 		return;
    128       1.2        ad 	}
    129       1.2        ad 
    130      1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    131      1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    132      1.16     rmind 	sched_wakeup(l);
    133      1.29     rmind 
    134      1.29     rmind 	/* Look for a CPU to wake up */
    135      1.29     rmind 	l->l_cpu = sched_takecpu(l);
    136      1.16     rmind 	ci = l->l_cpu;
    137      1.16     rmind 	spc = &ci->ci_schedstate;
    138      1.16     rmind 
    139      1.16     rmind 	/*
    140      1.17      yamt 	 * Set it running.
    141       1.2        ad 	 */
    142       1.9      yamt 	spc_lock(ci);
    143       1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    144       1.9      yamt 	sched_setrunnable(l);
    145       1.2        ad 	l->l_stat = LSRUN;
    146       1.2        ad 	l->l_slptime = 0;
    147      1.37     rmind 	sched_enqueue(l, false);
    148       1.9      yamt 	spc_unlock(ci);
    149       1.2        ad }
    150       1.2        ad 
    151       1.2        ad /*
    152       1.2        ad  * sleepq_insert:
    153       1.2        ad  *
    154       1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    155       1.2        ad  */
    156  1.44.2.1      yamt static void
    157       1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    158       1.2        ad {
    159       1.2        ad 
    160       1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    161      1.40      yamt 		lwp_t *l2;
    162      1.40      yamt 		const int pri = lwp_eprio(l);
    163      1.40      yamt 
    164      1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    165      1.18        ad 			if (lwp_eprio(l2) < pri) {
    166       1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    167       1.2        ad 				return;
    168       1.2        ad 			}
    169       1.2        ad 		}
    170       1.2        ad 	}
    171       1.2        ad 
    172      1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    173      1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    174      1.14        ad 	else
    175      1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    176       1.2        ad }
    177       1.2        ad 
    178       1.9      yamt /*
    179       1.9      yamt  * sleepq_enqueue:
    180       1.9      yamt  *
    181       1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    182       1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    183       1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    184       1.9      yamt  */
    185       1.2        ad void
    186      1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    187       1.2        ad {
    188       1.8        ad 	lwp_t *l = curlwp;
    189       1.2        ad 
    190      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    191       1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    192       1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    193       1.2        ad 
    194       1.2        ad 	l->l_syncobj = sobj;
    195       1.2        ad 	l->l_wchan = wchan;
    196       1.2        ad 	l->l_sleepq = sq;
    197       1.2        ad 	l->l_wmesg = wmesg;
    198       1.2        ad 	l->l_slptime = 0;
    199       1.2        ad 	l->l_stat = LSSLEEP;
    200       1.2        ad 	l->l_sleeperr = 0;
    201       1.2        ad 
    202       1.6      yamt 	sleepq_insert(sq, l, sobj);
    203      1.29     rmind 
    204      1.29     rmind 	/* Save the time when thread has slept */
    205      1.29     rmind 	l->l_slpticks = hardclock_ticks;
    206      1.15     rmind 	sched_slept(l);
    207       1.6      yamt }
    208       1.6      yamt 
    209       1.9      yamt /*
    210       1.9      yamt  * sleepq_block:
    211       1.9      yamt  *
    212       1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    213       1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    214       1.9      yamt  * 	example if the LWP's containing process is exiting.
    215       1.9      yamt  */
    216       1.9      yamt int
    217       1.9      yamt sleepq_block(int timo, bool catch)
    218       1.6      yamt {
    219      1.10        ad 	int error = 0, sig;
    220       1.9      yamt 	struct proc *p;
    221       1.8        ad 	lwp_t *l = curlwp;
    222      1.11        ad 	bool early = false;
    223      1.34      yamt 	int biglocks = l->l_biglocks;
    224       1.2        ad 
    225      1.12        ad 	ktrcsw(1, 0);
    226       1.4        ad 
    227       1.2        ad 	/*
    228       1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    229       1.2        ad 	 * core dump events.
    230       1.2        ad 	 */
    231       1.2        ad 	if (catch) {
    232       1.5     pavel 		l->l_flag |= LW_SINTR;
    233       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    234       1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    235      1.14        ad 			error = EINTR;
    236      1.14        ad 			early = true;
    237      1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    238      1.11        ad 			early = true;
    239       1.2        ad 	}
    240       1.2        ad 
    241      1.13      yamt 	if (early) {
    242      1.13      yamt 		/* lwp_unsleep() will release the lock */
    243      1.22        ad 		lwp_unsleep(l, true);
    244      1.13      yamt 	} else {
    245  1.44.2.1      yamt 		if (timo) {
    246      1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    247  1.44.2.1      yamt 		}
    248  1.44.2.1      yamt 		mi_switch(l);
    249      1.11        ad 
    250      1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    251      1.11        ad 		if (timo) {
    252      1.11        ad 			/*
    253      1.11        ad 			 * Even if the callout appears to have fired, we need to
    254      1.11        ad 			 * stop it in order to synchronise with other CPUs.
    255      1.11        ad 			 */
    256      1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    257      1.11        ad 				error = EWOULDBLOCK;
    258      1.11        ad 		}
    259       1.2        ad 	}
    260       1.2        ad 
    261       1.9      yamt 	if (catch && error == 0) {
    262       1.2        ad 		p = l->l_proc;
    263       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    264       1.2        ad 			error = EINTR;
    265       1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    266      1.33        ad 			/*
    267      1.33        ad 			 * Acquiring p_lock may cause us to recurse
    268      1.33        ad 			 * through the sleep path and back into this
    269      1.33        ad 			 * routine, but is safe because LWPs sleeping
    270      1.33        ad 			 * on locks are non-interruptable.  We will
    271      1.33        ad 			 * not recurse again.
    272      1.33        ad 			 */
    273      1.27        ad 			mutex_enter(p->p_lock);
    274      1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    275      1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    276      1.43  christos 			    (sig = issignal(l)) != 0)
    277       1.2        ad 				error = sleepq_sigtoerror(l, sig);
    278      1.27        ad 			mutex_exit(p->p_lock);
    279       1.2        ad 		}
    280       1.2        ad 	}
    281       1.2        ad 
    282      1.12        ad 	ktrcsw(0, 0);
    283      1.34      yamt 	if (__predict_false(biglocks != 0)) {
    284      1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    285      1.30        ad 	}
    286       1.2        ad 	return error;
    287       1.2        ad }
    288       1.2        ad 
    289       1.2        ad /*
    290       1.2        ad  * sleepq_wake:
    291       1.2        ad  *
    292       1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    293       1.2        ad  */
    294       1.8        ad lwp_t *
    295      1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    296       1.2        ad {
    297       1.8        ad 	lwp_t *l, *next;
    298       1.2        ad 
    299      1.30        ad 	KASSERT(mutex_owned(mp));
    300       1.2        ad 
    301      1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    302       1.2        ad 		KASSERT(l->l_sleepq == sq);
    303      1.30        ad 		KASSERT(l->l_mutex == mp);
    304       1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    305       1.2        ad 		if (l->l_wchan != wchan)
    306       1.2        ad 			continue;
    307      1.37     rmind 		sleepq_remove(sq, l);
    308       1.2        ad 		if (--expected == 0)
    309       1.2        ad 			break;
    310       1.2        ad 	}
    311       1.2        ad 
    312      1.30        ad 	mutex_spin_exit(mp);
    313       1.8        ad 	return l;
    314       1.2        ad }
    315       1.2        ad 
    316       1.2        ad /*
    317       1.2        ad  * sleepq_unsleep:
    318       1.2        ad  *
    319       1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    320       1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    321       1.2        ad  *	always release it.
    322       1.2        ad  */
    323      1.37     rmind void
    324      1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    325       1.2        ad {
    326       1.2        ad 	sleepq_t *sq = l->l_sleepq;
    327      1.30        ad 	kmutex_t *mp = l->l_mutex;
    328       1.2        ad 
    329      1.30        ad 	KASSERT(lwp_locked(l, mp));
    330       1.2        ad 	KASSERT(l->l_wchan != NULL);
    331       1.2        ad 
    332      1.37     rmind 	sleepq_remove(sq, l);
    333      1.22        ad 	if (cleanup) {
    334      1.30        ad 		mutex_spin_exit(mp);
    335      1.22        ad 	}
    336       1.2        ad }
    337       1.2        ad 
    338       1.2        ad /*
    339       1.2        ad  * sleepq_timeout:
    340       1.2        ad  *
    341       1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    342       1.2        ad  *	sleep queue.
    343       1.2        ad  */
    344       1.2        ad void
    345       1.2        ad sleepq_timeout(void *arg)
    346       1.2        ad {
    347       1.8        ad 	lwp_t *l = arg;
    348       1.2        ad 
    349       1.2        ad 	/*
    350       1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    351       1.2        ad 	 * current mutex will also be the sleep queue mutex.
    352       1.2        ad 	 */
    353       1.2        ad 	lwp_lock(l);
    354       1.2        ad 
    355       1.2        ad 	if (l->l_wchan == NULL) {
    356       1.2        ad 		/* Somebody beat us to it. */
    357       1.2        ad 		lwp_unlock(l);
    358       1.2        ad 		return;
    359       1.2        ad 	}
    360       1.2        ad 
    361      1.22        ad 	lwp_unsleep(l, true);
    362       1.2        ad }
    363       1.2        ad 
    364       1.2        ad /*
    365       1.2        ad  * sleepq_sigtoerror:
    366       1.2        ad  *
    367       1.2        ad  *	Given a signal number, interpret and return an error code.
    368       1.2        ad  */
    369      1.39     rmind static int
    370       1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    371       1.2        ad {
    372       1.2        ad 	struct proc *p = l->l_proc;
    373       1.2        ad 	int error;
    374       1.2        ad 
    375      1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    376       1.2        ad 
    377       1.2        ad 	/*
    378       1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    379       1.2        ad 	 */
    380       1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    381       1.2        ad 		error = EINTR;
    382       1.2        ad 	else
    383       1.2        ad 		error = ERESTART;
    384       1.2        ad 
    385       1.2        ad 	return error;
    386       1.2        ad }
    387       1.2        ad 
    388       1.2        ad /*
    389       1.2        ad  * sleepq_abort:
    390       1.2        ad  *
    391       1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    392       1.2        ad  *	priority level to give pending interrupts a chance to run, and
    393       1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    394       1.2        ad  *	always returns zero.
    395       1.2        ad  */
    396       1.2        ad int
    397       1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    398       1.2        ad {
    399       1.2        ad 	extern int safepri;
    400       1.2        ad 	int s;
    401       1.2        ad 
    402       1.2        ad 	s = splhigh();
    403       1.2        ad 	splx(safepri);
    404       1.2        ad 	splx(s);
    405       1.2        ad 	if (mtx != NULL && unlock != 0)
    406       1.2        ad 		mutex_exit(mtx);
    407       1.2        ad 
    408       1.2        ad 	return 0;
    409       1.2        ad }
    410       1.2        ad 
    411       1.2        ad /*
    412      1.44      yamt  * sleepq_reinsert:
    413       1.2        ad  *
    414      1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    415      1.44      yamt  *	change of the lwp's effective priority.
    416       1.2        ad  */
    417      1.44      yamt static void
    418      1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    419       1.2        ad {
    420       1.2        ad 
    421      1.44      yamt 	KASSERT(l->l_sleepq == sq);
    422      1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    423      1.32        ad 		return;
    424      1.32        ad 	}
    425      1.32        ad 
    426      1.32        ad 	/*
    427      1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    428      1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    429      1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    430      1.32        ad 	 * head if there are waiters.
    431      1.32        ad 	 */
    432      1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    433      1.32        ad 		return;
    434      1.18        ad 	}
    435      1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    436      1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    437       1.2        ad }
    438       1.6      yamt 
    439      1.44      yamt /*
    440      1.44      yamt  * sleepq_changepri:
    441      1.44      yamt  *
    442      1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    443      1.44      yamt  */
    444      1.44      yamt void
    445      1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    446      1.44      yamt {
    447      1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    448      1.44      yamt 
    449      1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    450      1.44      yamt 
    451      1.44      yamt 	l->l_priority = pri;
    452      1.44      yamt 	sleepq_reinsert(sq, l);
    453      1.44      yamt }
    454      1.44      yamt 
    455      1.44      yamt /*
    456      1.44      yamt  * sleepq_changepri:
    457      1.44      yamt  *
    458      1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    459      1.44      yamt  */
    460       1.6      yamt void
    461       1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    462       1.6      yamt {
    463       1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    464       1.6      yamt 
    465      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    466       1.6      yamt 
    467       1.6      yamt 	l->l_inheritedprio = pri;
    468      1.44      yamt 	sleepq_reinsert(sq, l);
    469       1.6      yamt }
    470