Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.45
      1  1.45     rmind /*	$NetBSD: kern_sleepq.c,v 1.45 2012/01/28 12:22:33 rmind Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2        ad  * interfaces.
     35   1.2        ad  */
     36   1.2        ad 
     37   1.2        ad #include <sys/cdefs.h>
     38  1.45     rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.45 2012/01/28 12:22:33 rmind Exp $");
     39   1.2        ad 
     40   1.2        ad #include <sys/param.h>
     41   1.2        ad #include <sys/kernel.h>
     42   1.9      yamt #include <sys/cpu.h>
     43   1.2        ad #include <sys/pool.h>
     44   1.2        ad #include <sys/proc.h>
     45   1.2        ad #include <sys/resourcevar.h>
     46  1.35  wrstuden #include <sys/sa.h>
     47  1.35  wrstuden #include <sys/savar.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/systm.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/ktrace.h>
     52   1.2        ad 
     53  1.35  wrstuden #include "opt_sa.h"
     54  1.35  wrstuden 
     55  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     56   1.2        ad 
     57  1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     58  1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     59   1.2        ad 
     60   1.2        ad /*
     61   1.2        ad  * sleeptab_init:
     62   1.2        ad  *
     63   1.2        ad  *	Initialize a sleep table.
     64   1.2        ad  */
     65   1.2        ad void
     66   1.2        ad sleeptab_init(sleeptab_t *st)
     67   1.2        ad {
     68   1.2        ad 	sleepq_t *sq;
     69   1.2        ad 	int i;
     70   1.2        ad 
     71   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     72   1.2        ad 		sq = &st->st_queues[i].st_queue;
     73  1.36        ad 		st->st_queues[i].st_mutex =
     74  1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     75  1.30        ad 		sleepq_init(sq);
     76   1.2        ad 	}
     77   1.2        ad }
     78   1.2        ad 
     79   1.2        ad /*
     80   1.2        ad  * sleepq_init:
     81   1.2        ad  *
     82   1.2        ad  *	Prepare a sleep queue for use.
     83   1.2        ad  */
     84   1.2        ad void
     85  1.30        ad sleepq_init(sleepq_t *sq)
     86   1.2        ad {
     87   1.2        ad 
     88  1.30        ad 	TAILQ_INIT(sq);
     89   1.2        ad }
     90   1.2        ad 
     91   1.2        ad /*
     92   1.2        ad  * sleepq_remove:
     93   1.2        ad  *
     94  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
     95   1.2        ad  */
     96  1.37     rmind void
     97   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
     98   1.2        ad {
     99   1.9      yamt 	struct schedstate_percpu *spc;
    100   1.2        ad 	struct cpu_info *ci;
    101   1.2        ad 
    102  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    103   1.2        ad 
    104  1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    105   1.2        ad 	l->l_syncobj = &sched_syncobj;
    106   1.2        ad 	l->l_wchan = NULL;
    107   1.2        ad 	l->l_sleepq = NULL;
    108   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    109   1.2        ad 
    110   1.9      yamt 	ci = l->l_cpu;
    111   1.9      yamt 	spc = &ci->ci_schedstate;
    112   1.9      yamt 
    113   1.2        ad 	/*
    114   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    115   1.2        ad 	 * holds it stopped set it running again.
    116   1.2        ad 	 */
    117   1.2        ad 	if (l->l_stat != LSSLEEP) {
    118  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    119  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    120  1.37     rmind 		return;
    121   1.2        ad 	}
    122   1.2        ad 
    123   1.2        ad 	/*
    124   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    125   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    126   1.2        ad 	 */
    127  1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    128   1.2        ad 		l->l_stat = LSONPROC;
    129   1.2        ad 		l->l_slptime = 0;
    130  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    131  1.37     rmind 		return;
    132   1.2        ad 	}
    133   1.2        ad 
    134  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    135  1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    136  1.16     rmind 	sched_wakeup(l);
    137  1.29     rmind 
    138  1.29     rmind 	/* Look for a CPU to wake up */
    139  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    140  1.16     rmind 	ci = l->l_cpu;
    141  1.16     rmind 	spc = &ci->ci_schedstate;
    142  1.16     rmind 
    143  1.16     rmind 	/*
    144  1.17      yamt 	 * Set it running.
    145   1.2        ad 	 */
    146   1.9      yamt 	spc_lock(ci);
    147   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    148  1.35  wrstuden #ifdef KERN_SA
    149  1.35  wrstuden 	if (l->l_proc->p_sa != NULL)
    150  1.35  wrstuden 		sa_awaken(l);
    151  1.35  wrstuden #endif /* KERN_SA */
    152   1.9      yamt 	sched_setrunnable(l);
    153   1.2        ad 	l->l_stat = LSRUN;
    154   1.2        ad 	l->l_slptime = 0;
    155  1.37     rmind 	sched_enqueue(l, false);
    156   1.9      yamt 	spc_unlock(ci);
    157   1.2        ad }
    158   1.2        ad 
    159   1.2        ad /*
    160   1.2        ad  * sleepq_insert:
    161   1.2        ad  *
    162   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    163   1.2        ad  */
    164  1.38    plunky void
    165   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    166   1.2        ad {
    167   1.2        ad 
    168   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    169  1.40      yamt 		lwp_t *l2;
    170  1.40      yamt 		const int pri = lwp_eprio(l);
    171  1.40      yamt 
    172  1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    173  1.18        ad 			if (lwp_eprio(l2) < pri) {
    174   1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    175   1.2        ad 				return;
    176   1.2        ad 			}
    177   1.2        ad 		}
    178   1.2        ad 	}
    179   1.2        ad 
    180  1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    181  1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    182  1.14        ad 	else
    183  1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    184   1.2        ad }
    185   1.2        ad 
    186   1.9      yamt /*
    187   1.9      yamt  * sleepq_enqueue:
    188   1.9      yamt  *
    189   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    190   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    191   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    192   1.9      yamt  */
    193   1.2        ad void
    194  1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    195   1.2        ad {
    196   1.8        ad 	lwp_t *l = curlwp;
    197   1.2        ad 
    198  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    199   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    200   1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    201   1.2        ad 
    202   1.2        ad 	l->l_syncobj = sobj;
    203   1.2        ad 	l->l_wchan = wchan;
    204   1.2        ad 	l->l_sleepq = sq;
    205   1.2        ad 	l->l_wmesg = wmesg;
    206   1.2        ad 	l->l_slptime = 0;
    207   1.2        ad 	l->l_stat = LSSLEEP;
    208   1.2        ad 	l->l_sleeperr = 0;
    209   1.2        ad 
    210   1.6      yamt 	sleepq_insert(sq, l, sobj);
    211  1.29     rmind 
    212  1.29     rmind 	/* Save the time when thread has slept */
    213  1.29     rmind 	l->l_slpticks = hardclock_ticks;
    214  1.15     rmind 	sched_slept(l);
    215   1.6      yamt }
    216   1.6      yamt 
    217   1.9      yamt /*
    218   1.9      yamt  * sleepq_block:
    219   1.9      yamt  *
    220   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    221   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    222   1.9      yamt  * 	example if the LWP's containing process is exiting.
    223   1.9      yamt  */
    224   1.9      yamt int
    225   1.9      yamt sleepq_block(int timo, bool catch)
    226   1.6      yamt {
    227  1.10        ad 	int error = 0, sig;
    228   1.9      yamt 	struct proc *p;
    229   1.8        ad 	lwp_t *l = curlwp;
    230  1.11        ad 	bool early = false;
    231  1.34      yamt 	int biglocks = l->l_biglocks;
    232   1.2        ad 
    233  1.12        ad 	ktrcsw(1, 0);
    234   1.4        ad 
    235   1.2        ad 	/*
    236   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    237   1.2        ad 	 * core dump events.
    238   1.2        ad 	 */
    239   1.2        ad 	if (catch) {
    240   1.5     pavel 		l->l_flag |= LW_SINTR;
    241   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    242   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    243  1.14        ad 			error = EINTR;
    244  1.14        ad 			early = true;
    245  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    246  1.11        ad 			early = true;
    247   1.2        ad 	}
    248   1.2        ad 
    249  1.13      yamt 	if (early) {
    250  1.13      yamt 		/* lwp_unsleep() will release the lock */
    251  1.22        ad 		lwp_unsleep(l, true);
    252  1.13      yamt 	} else {
    253  1.11        ad 		if (timo)
    254  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    255  1.35  wrstuden 
    256  1.35  wrstuden #ifdef KERN_SA
    257  1.35  wrstuden 		if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
    258  1.35  wrstuden 			sa_switch(l);
    259  1.35  wrstuden 		else
    260  1.35  wrstuden #endif
    261  1.35  wrstuden 			mi_switch(l);
    262  1.11        ad 
    263  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    264  1.11        ad 		if (timo) {
    265  1.11        ad 			/*
    266  1.11        ad 			 * Even if the callout appears to have fired, we need to
    267  1.11        ad 			 * stop it in order to synchronise with other CPUs.
    268  1.11        ad 			 */
    269  1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    270  1.11        ad 				error = EWOULDBLOCK;
    271  1.11        ad 		}
    272   1.2        ad 	}
    273   1.2        ad 
    274   1.9      yamt 	if (catch && error == 0) {
    275   1.2        ad 		p = l->l_proc;
    276   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    277   1.2        ad 			error = EINTR;
    278   1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    279  1.33        ad 			/*
    280  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    281  1.33        ad 			 * through the sleep path and back into this
    282  1.33        ad 			 * routine, but is safe because LWPs sleeping
    283  1.33        ad 			 * on locks are non-interruptable.  We will
    284  1.33        ad 			 * not recurse again.
    285  1.33        ad 			 */
    286  1.27        ad 			mutex_enter(p->p_lock);
    287  1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    288  1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    289  1.43  christos 			    (sig = issignal(l)) != 0)
    290   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    291  1.27        ad 			mutex_exit(p->p_lock);
    292   1.2        ad 		}
    293   1.2        ad 	}
    294   1.2        ad 
    295  1.12        ad 	ktrcsw(0, 0);
    296  1.34      yamt 	if (__predict_false(biglocks != 0)) {
    297  1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    298  1.30        ad 	}
    299   1.2        ad 	return error;
    300   1.2        ad }
    301   1.2        ad 
    302   1.2        ad /*
    303   1.2        ad  * sleepq_wake:
    304   1.2        ad  *
    305   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    306   1.2        ad  */
    307   1.8        ad lwp_t *
    308  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    309   1.2        ad {
    310   1.8        ad 	lwp_t *l, *next;
    311   1.2        ad 
    312  1.30        ad 	KASSERT(mutex_owned(mp));
    313   1.2        ad 
    314  1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    315   1.2        ad 		KASSERT(l->l_sleepq == sq);
    316  1.30        ad 		KASSERT(l->l_mutex == mp);
    317   1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    318   1.2        ad 		if (l->l_wchan != wchan)
    319   1.2        ad 			continue;
    320  1.37     rmind 		sleepq_remove(sq, l);
    321   1.2        ad 		if (--expected == 0)
    322   1.2        ad 			break;
    323   1.2        ad 	}
    324   1.2        ad 
    325  1.30        ad 	mutex_spin_exit(mp);
    326   1.8        ad 	return l;
    327   1.2        ad }
    328   1.2        ad 
    329   1.2        ad /*
    330   1.2        ad  * sleepq_unsleep:
    331   1.2        ad  *
    332   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    333   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    334   1.2        ad  *	always release it.
    335   1.2        ad  */
    336  1.37     rmind void
    337  1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    338   1.2        ad {
    339   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    340  1.30        ad 	kmutex_t *mp = l->l_mutex;
    341   1.2        ad 
    342  1.30        ad 	KASSERT(lwp_locked(l, mp));
    343   1.2        ad 	KASSERT(l->l_wchan != NULL);
    344   1.2        ad 
    345  1.37     rmind 	sleepq_remove(sq, l);
    346  1.22        ad 	if (cleanup) {
    347  1.30        ad 		mutex_spin_exit(mp);
    348  1.22        ad 	}
    349   1.2        ad }
    350   1.2        ad 
    351   1.2        ad /*
    352   1.2        ad  * sleepq_timeout:
    353   1.2        ad  *
    354   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    355   1.2        ad  *	sleep queue.
    356   1.2        ad  */
    357   1.2        ad void
    358   1.2        ad sleepq_timeout(void *arg)
    359   1.2        ad {
    360   1.8        ad 	lwp_t *l = arg;
    361   1.2        ad 
    362   1.2        ad 	/*
    363   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    364   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    365   1.2        ad 	 */
    366   1.2        ad 	lwp_lock(l);
    367   1.2        ad 
    368   1.2        ad 	if (l->l_wchan == NULL) {
    369   1.2        ad 		/* Somebody beat us to it. */
    370   1.2        ad 		lwp_unlock(l);
    371   1.2        ad 		return;
    372   1.2        ad 	}
    373   1.2        ad 
    374  1.22        ad 	lwp_unsleep(l, true);
    375   1.2        ad }
    376   1.2        ad 
    377   1.2        ad /*
    378   1.2        ad  * sleepq_sigtoerror:
    379   1.2        ad  *
    380   1.2        ad  *	Given a signal number, interpret and return an error code.
    381   1.2        ad  */
    382  1.39     rmind static int
    383   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    384   1.2        ad {
    385   1.2        ad 	struct proc *p = l->l_proc;
    386   1.2        ad 	int error;
    387   1.2        ad 
    388  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    389   1.2        ad 
    390   1.2        ad 	/*
    391   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    392   1.2        ad 	 */
    393   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    394   1.2        ad 		error = EINTR;
    395   1.2        ad 	else
    396   1.2        ad 		error = ERESTART;
    397   1.2        ad 
    398   1.2        ad 	return error;
    399   1.2        ad }
    400   1.2        ad 
    401   1.2        ad /*
    402   1.2        ad  * sleepq_abort:
    403   1.2        ad  *
    404   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    405   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    406   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    407   1.2        ad  *	always returns zero.
    408   1.2        ad  */
    409   1.2        ad int
    410   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    411   1.2        ad {
    412   1.2        ad 	extern int safepri;
    413   1.2        ad 	int s;
    414   1.2        ad 
    415   1.2        ad 	s = splhigh();
    416   1.2        ad 	splx(safepri);
    417   1.2        ad 	splx(s);
    418   1.2        ad 	if (mtx != NULL && unlock != 0)
    419   1.2        ad 		mutex_exit(mtx);
    420   1.2        ad 
    421   1.2        ad 	return 0;
    422   1.2        ad }
    423   1.2        ad 
    424   1.2        ad /*
    425  1.44      yamt  * sleepq_reinsert:
    426   1.2        ad  *
    427  1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    428  1.44      yamt  *	change of the lwp's effective priority.
    429   1.2        ad  */
    430  1.44      yamt static void
    431  1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    432   1.2        ad {
    433   1.2        ad 
    434  1.44      yamt 	KASSERT(l->l_sleepq == sq);
    435  1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    436  1.32        ad 		return;
    437  1.32        ad 	}
    438  1.32        ad 
    439  1.32        ad 	/*
    440  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    441  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    442  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    443  1.32        ad 	 * head if there are waiters.
    444  1.32        ad 	 */
    445  1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    446  1.32        ad 		return;
    447  1.18        ad 	}
    448  1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    449  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    450   1.2        ad }
    451   1.6      yamt 
    452  1.44      yamt /*
    453  1.44      yamt  * sleepq_changepri:
    454  1.44      yamt  *
    455  1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    456  1.44      yamt  */
    457  1.44      yamt void
    458  1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    459  1.44      yamt {
    460  1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    461  1.44      yamt 
    462  1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    463  1.44      yamt 
    464  1.44      yamt 	l->l_priority = pri;
    465  1.44      yamt 	sleepq_reinsert(sq, l);
    466  1.44      yamt }
    467  1.44      yamt 
    468  1.44      yamt /*
    469  1.44      yamt  * sleepq_changepri:
    470  1.44      yamt  *
    471  1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    472  1.44      yamt  */
    473   1.6      yamt void
    474   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    475   1.6      yamt {
    476   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    477   1.6      yamt 
    478  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    479   1.6      yamt 
    480   1.6      yamt 	l->l_inheritedprio = pri;
    481  1.44      yamt 	sleepq_reinsert(sq, l);
    482   1.6      yamt }
    483