Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.46
      1  1.46     rmind /*	$NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2        ad  * interfaces.
     35   1.2        ad  */
     36   1.2        ad 
     37   1.2        ad #include <sys/cdefs.h>
     38  1.46     rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $");
     39   1.2        ad 
     40   1.2        ad #include <sys/param.h>
     41   1.2        ad #include <sys/kernel.h>
     42   1.9      yamt #include <sys/cpu.h>
     43   1.2        ad #include <sys/pool.h>
     44   1.2        ad #include <sys/proc.h>
     45   1.2        ad #include <sys/resourcevar.h>
     46   1.2        ad #include <sys/sched.h>
     47   1.2        ad #include <sys/systm.h>
     48   1.2        ad #include <sys/sleepq.h>
     49   1.2        ad #include <sys/ktrace.h>
     50   1.2        ad 
     51  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     52   1.2        ad 
     53  1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     54  1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     55   1.2        ad 
     56   1.2        ad /*
     57   1.2        ad  * sleeptab_init:
     58   1.2        ad  *
     59   1.2        ad  *	Initialize a sleep table.
     60   1.2        ad  */
     61   1.2        ad void
     62   1.2        ad sleeptab_init(sleeptab_t *st)
     63   1.2        ad {
     64   1.2        ad 	sleepq_t *sq;
     65   1.2        ad 	int i;
     66   1.2        ad 
     67   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     68   1.2        ad 		sq = &st->st_queues[i].st_queue;
     69  1.36        ad 		st->st_queues[i].st_mutex =
     70  1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     71  1.30        ad 		sleepq_init(sq);
     72   1.2        ad 	}
     73   1.2        ad }
     74   1.2        ad 
     75   1.2        ad /*
     76   1.2        ad  * sleepq_init:
     77   1.2        ad  *
     78   1.2        ad  *	Prepare a sleep queue for use.
     79   1.2        ad  */
     80   1.2        ad void
     81  1.30        ad sleepq_init(sleepq_t *sq)
     82   1.2        ad {
     83   1.2        ad 
     84  1.30        ad 	TAILQ_INIT(sq);
     85   1.2        ad }
     86   1.2        ad 
     87   1.2        ad /*
     88   1.2        ad  * sleepq_remove:
     89   1.2        ad  *
     90  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
     91   1.2        ad  */
     92  1.37     rmind void
     93   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
     94   1.2        ad {
     95   1.9      yamt 	struct schedstate_percpu *spc;
     96   1.2        ad 	struct cpu_info *ci;
     97   1.2        ad 
     98  1.30        ad 	KASSERT(lwp_locked(l, NULL));
     99   1.2        ad 
    100  1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    101   1.2        ad 	l->l_syncobj = &sched_syncobj;
    102   1.2        ad 	l->l_wchan = NULL;
    103   1.2        ad 	l->l_sleepq = NULL;
    104   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    105   1.2        ad 
    106   1.9      yamt 	ci = l->l_cpu;
    107   1.9      yamt 	spc = &ci->ci_schedstate;
    108   1.9      yamt 
    109   1.2        ad 	/*
    110   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    111   1.2        ad 	 * holds it stopped set it running again.
    112   1.2        ad 	 */
    113   1.2        ad 	if (l->l_stat != LSSLEEP) {
    114  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    115  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    116  1.37     rmind 		return;
    117   1.2        ad 	}
    118   1.2        ad 
    119   1.2        ad 	/*
    120   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    121   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    122   1.2        ad 	 */
    123  1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    124   1.2        ad 		l->l_stat = LSONPROC;
    125   1.2        ad 		l->l_slptime = 0;
    126  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    127  1.37     rmind 		return;
    128   1.2        ad 	}
    129   1.2        ad 
    130  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    131  1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    132  1.16     rmind 	sched_wakeup(l);
    133  1.29     rmind 
    134  1.29     rmind 	/* Look for a CPU to wake up */
    135  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    136  1.16     rmind 	ci = l->l_cpu;
    137  1.16     rmind 	spc = &ci->ci_schedstate;
    138  1.16     rmind 
    139  1.16     rmind 	/*
    140  1.17      yamt 	 * Set it running.
    141   1.2        ad 	 */
    142   1.9      yamt 	spc_lock(ci);
    143   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    144   1.9      yamt 	sched_setrunnable(l);
    145   1.2        ad 	l->l_stat = LSRUN;
    146   1.2        ad 	l->l_slptime = 0;
    147  1.37     rmind 	sched_enqueue(l, false);
    148   1.9      yamt 	spc_unlock(ci);
    149   1.2        ad }
    150   1.2        ad 
    151   1.2        ad /*
    152   1.2        ad  * sleepq_insert:
    153   1.2        ad  *
    154   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    155   1.2        ad  */
    156  1.46     rmind static void
    157   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    158   1.2        ad {
    159   1.2        ad 
    160   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    161  1.40      yamt 		lwp_t *l2;
    162  1.40      yamt 		const int pri = lwp_eprio(l);
    163  1.40      yamt 
    164  1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    165  1.18        ad 			if (lwp_eprio(l2) < pri) {
    166   1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    167   1.2        ad 				return;
    168   1.2        ad 			}
    169   1.2        ad 		}
    170   1.2        ad 	}
    171   1.2        ad 
    172  1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    173  1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    174  1.14        ad 	else
    175  1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    176   1.2        ad }
    177   1.2        ad 
    178   1.9      yamt /*
    179   1.9      yamt  * sleepq_enqueue:
    180   1.9      yamt  *
    181   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    182   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    183   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    184   1.9      yamt  */
    185   1.2        ad void
    186  1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    187   1.2        ad {
    188   1.8        ad 	lwp_t *l = curlwp;
    189   1.2        ad 
    190  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    191   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    192   1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    193   1.2        ad 
    194   1.2        ad 	l->l_syncobj = sobj;
    195   1.2        ad 	l->l_wchan = wchan;
    196   1.2        ad 	l->l_sleepq = sq;
    197   1.2        ad 	l->l_wmesg = wmesg;
    198   1.2        ad 	l->l_slptime = 0;
    199   1.2        ad 	l->l_stat = LSSLEEP;
    200   1.2        ad 	l->l_sleeperr = 0;
    201   1.2        ad 
    202   1.6      yamt 	sleepq_insert(sq, l, sobj);
    203  1.29     rmind 
    204  1.29     rmind 	/* Save the time when thread has slept */
    205  1.29     rmind 	l->l_slpticks = hardclock_ticks;
    206  1.15     rmind 	sched_slept(l);
    207   1.6      yamt }
    208   1.6      yamt 
    209   1.9      yamt /*
    210   1.9      yamt  * sleepq_block:
    211   1.9      yamt  *
    212   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    213   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    214   1.9      yamt  * 	example if the LWP's containing process is exiting.
    215   1.9      yamt  */
    216   1.9      yamt int
    217   1.9      yamt sleepq_block(int timo, bool catch)
    218   1.6      yamt {
    219  1.10        ad 	int error = 0, sig;
    220   1.9      yamt 	struct proc *p;
    221   1.8        ad 	lwp_t *l = curlwp;
    222  1.11        ad 	bool early = false;
    223  1.34      yamt 	int biglocks = l->l_biglocks;
    224   1.2        ad 
    225  1.12        ad 	ktrcsw(1, 0);
    226   1.4        ad 
    227   1.2        ad 	/*
    228   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    229   1.2        ad 	 * core dump events.
    230   1.2        ad 	 */
    231   1.2        ad 	if (catch) {
    232   1.5     pavel 		l->l_flag |= LW_SINTR;
    233   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    234   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    235  1.14        ad 			error = EINTR;
    236  1.14        ad 			early = true;
    237  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    238  1.11        ad 			early = true;
    239   1.2        ad 	}
    240   1.2        ad 
    241  1.13      yamt 	if (early) {
    242  1.13      yamt 		/* lwp_unsleep() will release the lock */
    243  1.22        ad 		lwp_unsleep(l, true);
    244  1.13      yamt 	} else {
    245  1.46     rmind 		if (timo) {
    246  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    247  1.46     rmind 		}
    248  1.46     rmind 		mi_switch(l);
    249  1.11        ad 
    250  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    251  1.11        ad 		if (timo) {
    252  1.11        ad 			/*
    253  1.11        ad 			 * Even if the callout appears to have fired, we need to
    254  1.11        ad 			 * stop it in order to synchronise with other CPUs.
    255  1.11        ad 			 */
    256  1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    257  1.11        ad 				error = EWOULDBLOCK;
    258  1.11        ad 		}
    259   1.2        ad 	}
    260   1.2        ad 
    261   1.9      yamt 	if (catch && error == 0) {
    262   1.2        ad 		p = l->l_proc;
    263   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    264   1.2        ad 			error = EINTR;
    265   1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    266  1.33        ad 			/*
    267  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    268  1.33        ad 			 * through the sleep path and back into this
    269  1.33        ad 			 * routine, but is safe because LWPs sleeping
    270  1.33        ad 			 * on locks are non-interruptable.  We will
    271  1.33        ad 			 * not recurse again.
    272  1.33        ad 			 */
    273  1.27        ad 			mutex_enter(p->p_lock);
    274  1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    275  1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    276  1.43  christos 			    (sig = issignal(l)) != 0)
    277   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    278  1.27        ad 			mutex_exit(p->p_lock);
    279   1.2        ad 		}
    280   1.2        ad 	}
    281   1.2        ad 
    282  1.12        ad 	ktrcsw(0, 0);
    283  1.34      yamt 	if (__predict_false(biglocks != 0)) {
    284  1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    285  1.30        ad 	}
    286   1.2        ad 	return error;
    287   1.2        ad }
    288   1.2        ad 
    289   1.2        ad /*
    290   1.2        ad  * sleepq_wake:
    291   1.2        ad  *
    292   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    293   1.2        ad  */
    294   1.8        ad lwp_t *
    295  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    296   1.2        ad {
    297   1.8        ad 	lwp_t *l, *next;
    298   1.2        ad 
    299  1.30        ad 	KASSERT(mutex_owned(mp));
    300   1.2        ad 
    301  1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    302   1.2        ad 		KASSERT(l->l_sleepq == sq);
    303  1.30        ad 		KASSERT(l->l_mutex == mp);
    304   1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    305   1.2        ad 		if (l->l_wchan != wchan)
    306   1.2        ad 			continue;
    307  1.37     rmind 		sleepq_remove(sq, l);
    308   1.2        ad 		if (--expected == 0)
    309   1.2        ad 			break;
    310   1.2        ad 	}
    311   1.2        ad 
    312  1.30        ad 	mutex_spin_exit(mp);
    313   1.8        ad 	return l;
    314   1.2        ad }
    315   1.2        ad 
    316   1.2        ad /*
    317   1.2        ad  * sleepq_unsleep:
    318   1.2        ad  *
    319   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    320   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    321   1.2        ad  *	always release it.
    322   1.2        ad  */
    323  1.37     rmind void
    324  1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    325   1.2        ad {
    326   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    327  1.30        ad 	kmutex_t *mp = l->l_mutex;
    328   1.2        ad 
    329  1.30        ad 	KASSERT(lwp_locked(l, mp));
    330   1.2        ad 	KASSERT(l->l_wchan != NULL);
    331   1.2        ad 
    332  1.37     rmind 	sleepq_remove(sq, l);
    333  1.22        ad 	if (cleanup) {
    334  1.30        ad 		mutex_spin_exit(mp);
    335  1.22        ad 	}
    336   1.2        ad }
    337   1.2        ad 
    338   1.2        ad /*
    339   1.2        ad  * sleepq_timeout:
    340   1.2        ad  *
    341   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    342   1.2        ad  *	sleep queue.
    343   1.2        ad  */
    344   1.2        ad void
    345   1.2        ad sleepq_timeout(void *arg)
    346   1.2        ad {
    347   1.8        ad 	lwp_t *l = arg;
    348   1.2        ad 
    349   1.2        ad 	/*
    350   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    351   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    352   1.2        ad 	 */
    353   1.2        ad 	lwp_lock(l);
    354   1.2        ad 
    355   1.2        ad 	if (l->l_wchan == NULL) {
    356   1.2        ad 		/* Somebody beat us to it. */
    357   1.2        ad 		lwp_unlock(l);
    358   1.2        ad 		return;
    359   1.2        ad 	}
    360   1.2        ad 
    361  1.22        ad 	lwp_unsleep(l, true);
    362   1.2        ad }
    363   1.2        ad 
    364   1.2        ad /*
    365   1.2        ad  * sleepq_sigtoerror:
    366   1.2        ad  *
    367   1.2        ad  *	Given a signal number, interpret and return an error code.
    368   1.2        ad  */
    369  1.39     rmind static int
    370   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    371   1.2        ad {
    372   1.2        ad 	struct proc *p = l->l_proc;
    373   1.2        ad 	int error;
    374   1.2        ad 
    375  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    376   1.2        ad 
    377   1.2        ad 	/*
    378   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    379   1.2        ad 	 */
    380   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    381   1.2        ad 		error = EINTR;
    382   1.2        ad 	else
    383   1.2        ad 		error = ERESTART;
    384   1.2        ad 
    385   1.2        ad 	return error;
    386   1.2        ad }
    387   1.2        ad 
    388   1.2        ad /*
    389   1.2        ad  * sleepq_abort:
    390   1.2        ad  *
    391   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    392   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    393   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    394   1.2        ad  *	always returns zero.
    395   1.2        ad  */
    396   1.2        ad int
    397   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    398   1.2        ad {
    399   1.2        ad 	extern int safepri;
    400   1.2        ad 	int s;
    401   1.2        ad 
    402   1.2        ad 	s = splhigh();
    403   1.2        ad 	splx(safepri);
    404   1.2        ad 	splx(s);
    405   1.2        ad 	if (mtx != NULL && unlock != 0)
    406   1.2        ad 		mutex_exit(mtx);
    407   1.2        ad 
    408   1.2        ad 	return 0;
    409   1.2        ad }
    410   1.2        ad 
    411   1.2        ad /*
    412  1.44      yamt  * sleepq_reinsert:
    413   1.2        ad  *
    414  1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    415  1.44      yamt  *	change of the lwp's effective priority.
    416   1.2        ad  */
    417  1.44      yamt static void
    418  1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    419   1.2        ad {
    420   1.2        ad 
    421  1.44      yamt 	KASSERT(l->l_sleepq == sq);
    422  1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    423  1.32        ad 		return;
    424  1.32        ad 	}
    425  1.32        ad 
    426  1.32        ad 	/*
    427  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    428  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    429  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    430  1.32        ad 	 * head if there are waiters.
    431  1.32        ad 	 */
    432  1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    433  1.32        ad 		return;
    434  1.18        ad 	}
    435  1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    436  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    437   1.2        ad }
    438   1.6      yamt 
    439  1.44      yamt /*
    440  1.44      yamt  * sleepq_changepri:
    441  1.44      yamt  *
    442  1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    443  1.44      yamt  */
    444  1.44      yamt void
    445  1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    446  1.44      yamt {
    447  1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    448  1.44      yamt 
    449  1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    450  1.44      yamt 
    451  1.44      yamt 	l->l_priority = pri;
    452  1.44      yamt 	sleepq_reinsert(sq, l);
    453  1.44      yamt }
    454  1.44      yamt 
    455  1.44      yamt /*
    456  1.44      yamt  * sleepq_changepri:
    457  1.44      yamt  *
    458  1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    459  1.44      yamt  */
    460   1.6      yamt void
    461   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    462   1.6      yamt {
    463   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    464   1.6      yamt 
    465  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    466   1.6      yamt 
    467   1.6      yamt 	l->l_inheritedprio = pri;
    468  1.44      yamt 	sleepq_reinsert(sq, l);
    469   1.6      yamt }
    470