kern_sleepq.c revision 1.46 1 1.46 rmind /* $NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.36 ad * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.46 rmind __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.2 ad #include <sys/pool.h>
44 1.2 ad #include <sys/proc.h>
45 1.2 ad #include <sys/resourcevar.h>
46 1.2 ad #include <sys/sched.h>
47 1.2 ad #include <sys/systm.h>
48 1.2 ad #include <sys/sleepq.h>
49 1.2 ad #include <sys/ktrace.h>
50 1.2 ad
51 1.39 rmind static int sleepq_sigtoerror(lwp_t *, int);
52 1.2 ad
53 1.45 rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
54 1.39 rmind sleeptab_t sleeptab __cacheline_aligned;
55 1.2 ad
56 1.2 ad /*
57 1.2 ad * sleeptab_init:
58 1.2 ad *
59 1.2 ad * Initialize a sleep table.
60 1.2 ad */
61 1.2 ad void
62 1.2 ad sleeptab_init(sleeptab_t *st)
63 1.2 ad {
64 1.2 ad sleepq_t *sq;
65 1.2 ad int i;
66 1.2 ad
67 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
68 1.2 ad sq = &st->st_queues[i].st_queue;
69 1.36 ad st->st_queues[i].st_mutex =
70 1.36 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
71 1.30 ad sleepq_init(sq);
72 1.2 ad }
73 1.2 ad }
74 1.2 ad
75 1.2 ad /*
76 1.2 ad * sleepq_init:
77 1.2 ad *
78 1.2 ad * Prepare a sleep queue for use.
79 1.2 ad */
80 1.2 ad void
81 1.30 ad sleepq_init(sleepq_t *sq)
82 1.2 ad {
83 1.2 ad
84 1.30 ad TAILQ_INIT(sq);
85 1.2 ad }
86 1.2 ad
87 1.2 ad /*
88 1.2 ad * sleepq_remove:
89 1.2 ad *
90 1.37 rmind * Remove an LWP from a sleep queue and wake it up.
91 1.2 ad */
92 1.37 rmind void
93 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
94 1.2 ad {
95 1.9 yamt struct schedstate_percpu *spc;
96 1.2 ad struct cpu_info *ci;
97 1.2 ad
98 1.30 ad KASSERT(lwp_locked(l, NULL));
99 1.2 ad
100 1.30 ad TAILQ_REMOVE(sq, l, l_sleepchain);
101 1.2 ad l->l_syncobj = &sched_syncobj;
102 1.2 ad l->l_wchan = NULL;
103 1.2 ad l->l_sleepq = NULL;
104 1.5 pavel l->l_flag &= ~LW_SINTR;
105 1.2 ad
106 1.9 yamt ci = l->l_cpu;
107 1.9 yamt spc = &ci->ci_schedstate;
108 1.9 yamt
109 1.2 ad /*
110 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
111 1.2 ad * holds it stopped set it running again.
112 1.2 ad */
113 1.2 ad if (l->l_stat != LSSLEEP) {
114 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
115 1.21 ad lwp_setlock(l, spc->spc_lwplock);
116 1.37 rmind return;
117 1.2 ad }
118 1.2 ad
119 1.2 ad /*
120 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
121 1.2 ad * about to call mi_switch(), in which case it will yield.
122 1.2 ad */
123 1.31 ad if ((l->l_pflag & LP_RUNNING) != 0) {
124 1.2 ad l->l_stat = LSONPROC;
125 1.2 ad l->l_slptime = 0;
126 1.21 ad lwp_setlock(l, spc->spc_lwplock);
127 1.37 rmind return;
128 1.2 ad }
129 1.2 ad
130 1.29 rmind /* Update sleep time delta, call the wake-up handler of scheduler */
131 1.29 rmind l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
132 1.16 rmind sched_wakeup(l);
133 1.29 rmind
134 1.29 rmind /* Look for a CPU to wake up */
135 1.29 rmind l->l_cpu = sched_takecpu(l);
136 1.16 rmind ci = l->l_cpu;
137 1.16 rmind spc = &ci->ci_schedstate;
138 1.16 rmind
139 1.16 rmind /*
140 1.17 yamt * Set it running.
141 1.2 ad */
142 1.9 yamt spc_lock(ci);
143 1.9 yamt lwp_setlock(l, spc->spc_mutex);
144 1.9 yamt sched_setrunnable(l);
145 1.2 ad l->l_stat = LSRUN;
146 1.2 ad l->l_slptime = 0;
147 1.37 rmind sched_enqueue(l, false);
148 1.9 yamt spc_unlock(ci);
149 1.2 ad }
150 1.2 ad
151 1.2 ad /*
152 1.2 ad * sleepq_insert:
153 1.2 ad *
154 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
155 1.2 ad */
156 1.46 rmind static void
157 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
158 1.2 ad {
159 1.2 ad
160 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
161 1.40 yamt lwp_t *l2;
162 1.40 yamt const int pri = lwp_eprio(l);
163 1.40 yamt
164 1.30 ad TAILQ_FOREACH(l2, sq, l_sleepchain) {
165 1.18 ad if (lwp_eprio(l2) < pri) {
166 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
167 1.2 ad return;
168 1.2 ad }
169 1.2 ad }
170 1.2 ad }
171 1.2 ad
172 1.14 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
173 1.30 ad TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
174 1.14 ad else
175 1.30 ad TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
176 1.2 ad }
177 1.2 ad
178 1.9 yamt /*
179 1.9 yamt * sleepq_enqueue:
180 1.9 yamt *
181 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
182 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
183 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
184 1.9 yamt */
185 1.2 ad void
186 1.18 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
187 1.2 ad {
188 1.8 ad lwp_t *l = curlwp;
189 1.2 ad
190 1.30 ad KASSERT(lwp_locked(l, NULL));
191 1.2 ad KASSERT(l->l_stat == LSONPROC);
192 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
193 1.2 ad
194 1.2 ad l->l_syncobj = sobj;
195 1.2 ad l->l_wchan = wchan;
196 1.2 ad l->l_sleepq = sq;
197 1.2 ad l->l_wmesg = wmesg;
198 1.2 ad l->l_slptime = 0;
199 1.2 ad l->l_stat = LSSLEEP;
200 1.2 ad l->l_sleeperr = 0;
201 1.2 ad
202 1.6 yamt sleepq_insert(sq, l, sobj);
203 1.29 rmind
204 1.29 rmind /* Save the time when thread has slept */
205 1.29 rmind l->l_slpticks = hardclock_ticks;
206 1.15 rmind sched_slept(l);
207 1.6 yamt }
208 1.6 yamt
209 1.9 yamt /*
210 1.9 yamt * sleepq_block:
211 1.9 yamt *
212 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
213 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
214 1.9 yamt * example if the LWP's containing process is exiting.
215 1.9 yamt */
216 1.9 yamt int
217 1.9 yamt sleepq_block(int timo, bool catch)
218 1.6 yamt {
219 1.10 ad int error = 0, sig;
220 1.9 yamt struct proc *p;
221 1.8 ad lwp_t *l = curlwp;
222 1.11 ad bool early = false;
223 1.34 yamt int biglocks = l->l_biglocks;
224 1.2 ad
225 1.12 ad ktrcsw(1, 0);
226 1.4 ad
227 1.2 ad /*
228 1.2 ad * If sleeping interruptably, check for pending signals, exits or
229 1.2 ad * core dump events.
230 1.2 ad */
231 1.2 ad if (catch) {
232 1.5 pavel l->l_flag |= LW_SINTR;
233 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
234 1.5 pavel l->l_flag &= ~LW_CANCELLED;
235 1.14 ad error = EINTR;
236 1.14 ad early = true;
237 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
238 1.11 ad early = true;
239 1.2 ad }
240 1.2 ad
241 1.13 yamt if (early) {
242 1.13 yamt /* lwp_unsleep() will release the lock */
243 1.22 ad lwp_unsleep(l, true);
244 1.13 yamt } else {
245 1.46 rmind if (timo) {
246 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
247 1.46 rmind }
248 1.46 rmind mi_switch(l);
249 1.11 ad
250 1.11 ad /* The LWP and sleep queue are now unlocked. */
251 1.11 ad if (timo) {
252 1.11 ad /*
253 1.11 ad * Even if the callout appears to have fired, we need to
254 1.11 ad * stop it in order to synchronise with other CPUs.
255 1.11 ad */
256 1.26 ad if (callout_halt(&l->l_timeout_ch, NULL))
257 1.11 ad error = EWOULDBLOCK;
258 1.11 ad }
259 1.2 ad }
260 1.2 ad
261 1.9 yamt if (catch && error == 0) {
262 1.2 ad p = l->l_proc;
263 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
264 1.2 ad error = EINTR;
265 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
266 1.33 ad /*
267 1.33 ad * Acquiring p_lock may cause us to recurse
268 1.33 ad * through the sleep path and back into this
269 1.33 ad * routine, but is safe because LWPs sleeping
270 1.33 ad * on locks are non-interruptable. We will
271 1.33 ad * not recurse again.
272 1.33 ad */
273 1.27 ad mutex_enter(p->p_lock);
274 1.43 christos if (((sig = sigispending(l, 0)) != 0 &&
275 1.43 christos (sigprop[sig] & SA_STOP) == 0) ||
276 1.43 christos (sig = issignal(l)) != 0)
277 1.2 ad error = sleepq_sigtoerror(l, sig);
278 1.27 ad mutex_exit(p->p_lock);
279 1.2 ad }
280 1.2 ad }
281 1.2 ad
282 1.12 ad ktrcsw(0, 0);
283 1.34 yamt if (__predict_false(biglocks != 0)) {
284 1.34 yamt KERNEL_LOCK(biglocks, NULL);
285 1.30 ad }
286 1.2 ad return error;
287 1.2 ad }
288 1.2 ad
289 1.2 ad /*
290 1.2 ad * sleepq_wake:
291 1.2 ad *
292 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
293 1.2 ad */
294 1.8 ad lwp_t *
295 1.30 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
296 1.2 ad {
297 1.8 ad lwp_t *l, *next;
298 1.2 ad
299 1.30 ad KASSERT(mutex_owned(mp));
300 1.2 ad
301 1.30 ad for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
302 1.2 ad KASSERT(l->l_sleepq == sq);
303 1.30 ad KASSERT(l->l_mutex == mp);
304 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
305 1.2 ad if (l->l_wchan != wchan)
306 1.2 ad continue;
307 1.37 rmind sleepq_remove(sq, l);
308 1.2 ad if (--expected == 0)
309 1.2 ad break;
310 1.2 ad }
311 1.2 ad
312 1.30 ad mutex_spin_exit(mp);
313 1.8 ad return l;
314 1.2 ad }
315 1.2 ad
316 1.2 ad /*
317 1.2 ad * sleepq_unsleep:
318 1.2 ad *
319 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
320 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
321 1.2 ad * always release it.
322 1.2 ad */
323 1.37 rmind void
324 1.22 ad sleepq_unsleep(lwp_t *l, bool cleanup)
325 1.2 ad {
326 1.2 ad sleepq_t *sq = l->l_sleepq;
327 1.30 ad kmutex_t *mp = l->l_mutex;
328 1.2 ad
329 1.30 ad KASSERT(lwp_locked(l, mp));
330 1.2 ad KASSERT(l->l_wchan != NULL);
331 1.2 ad
332 1.37 rmind sleepq_remove(sq, l);
333 1.22 ad if (cleanup) {
334 1.30 ad mutex_spin_exit(mp);
335 1.22 ad }
336 1.2 ad }
337 1.2 ad
338 1.2 ad /*
339 1.2 ad * sleepq_timeout:
340 1.2 ad *
341 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
342 1.2 ad * sleep queue.
343 1.2 ad */
344 1.2 ad void
345 1.2 ad sleepq_timeout(void *arg)
346 1.2 ad {
347 1.8 ad lwp_t *l = arg;
348 1.2 ad
349 1.2 ad /*
350 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
351 1.2 ad * current mutex will also be the sleep queue mutex.
352 1.2 ad */
353 1.2 ad lwp_lock(l);
354 1.2 ad
355 1.2 ad if (l->l_wchan == NULL) {
356 1.2 ad /* Somebody beat us to it. */
357 1.2 ad lwp_unlock(l);
358 1.2 ad return;
359 1.2 ad }
360 1.2 ad
361 1.22 ad lwp_unsleep(l, true);
362 1.2 ad }
363 1.2 ad
364 1.2 ad /*
365 1.2 ad * sleepq_sigtoerror:
366 1.2 ad *
367 1.2 ad * Given a signal number, interpret and return an error code.
368 1.2 ad */
369 1.39 rmind static int
370 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
371 1.2 ad {
372 1.2 ad struct proc *p = l->l_proc;
373 1.2 ad int error;
374 1.2 ad
375 1.27 ad KASSERT(mutex_owned(p->p_lock));
376 1.2 ad
377 1.2 ad /*
378 1.2 ad * If this sleep was canceled, don't let the syscall restart.
379 1.2 ad */
380 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
381 1.2 ad error = EINTR;
382 1.2 ad else
383 1.2 ad error = ERESTART;
384 1.2 ad
385 1.2 ad return error;
386 1.2 ad }
387 1.2 ad
388 1.2 ad /*
389 1.2 ad * sleepq_abort:
390 1.2 ad *
391 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
392 1.2 ad * priority level to give pending interrupts a chance to run, and
393 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
394 1.2 ad * always returns zero.
395 1.2 ad */
396 1.2 ad int
397 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
398 1.2 ad {
399 1.2 ad extern int safepri;
400 1.2 ad int s;
401 1.2 ad
402 1.2 ad s = splhigh();
403 1.2 ad splx(safepri);
404 1.2 ad splx(s);
405 1.2 ad if (mtx != NULL && unlock != 0)
406 1.2 ad mutex_exit(mtx);
407 1.2 ad
408 1.2 ad return 0;
409 1.2 ad }
410 1.2 ad
411 1.2 ad /*
412 1.44 yamt * sleepq_reinsert:
413 1.2 ad *
414 1.44 yamt * Move the possition of the lwp in the sleep queue after a possible
415 1.44 yamt * change of the lwp's effective priority.
416 1.2 ad */
417 1.44 yamt static void
418 1.44 yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
419 1.2 ad {
420 1.2 ad
421 1.44 yamt KASSERT(l->l_sleepq == sq);
422 1.32 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
423 1.32 ad return;
424 1.32 ad }
425 1.32 ad
426 1.32 ad /*
427 1.32 ad * Don't let the sleep queue become empty, even briefly.
428 1.32 ad * cv_signal() and cv_broadcast() inspect it without the
429 1.32 ad * sleep queue lock held and need to see a non-empty queue
430 1.32 ad * head if there are waiters.
431 1.32 ad */
432 1.32 ad if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
433 1.32 ad return;
434 1.18 ad }
435 1.32 ad TAILQ_REMOVE(sq, l, l_sleepchain);
436 1.32 ad sleepq_insert(sq, l, l->l_syncobj);
437 1.2 ad }
438 1.6 yamt
439 1.44 yamt /*
440 1.44 yamt * sleepq_changepri:
441 1.44 yamt *
442 1.44 yamt * Adjust the priority of an LWP residing on a sleepq.
443 1.44 yamt */
444 1.44 yamt void
445 1.44 yamt sleepq_changepri(lwp_t *l, pri_t pri)
446 1.44 yamt {
447 1.44 yamt sleepq_t *sq = l->l_sleepq;
448 1.44 yamt
449 1.44 yamt KASSERT(lwp_locked(l, NULL));
450 1.44 yamt
451 1.44 yamt l->l_priority = pri;
452 1.44 yamt sleepq_reinsert(sq, l);
453 1.44 yamt }
454 1.44 yamt
455 1.44 yamt /*
456 1.44 yamt * sleepq_changepri:
457 1.44 yamt *
458 1.44 yamt * Adjust the lended priority of an LWP residing on a sleepq.
459 1.44 yamt */
460 1.6 yamt void
461 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
462 1.6 yamt {
463 1.6 yamt sleepq_t *sq = l->l_sleepq;
464 1.6 yamt
465 1.30 ad KASSERT(lwp_locked(l, NULL));
466 1.6 yamt
467 1.6 yamt l->l_inheritedprio = pri;
468 1.44 yamt sleepq_reinsert(sq, l);
469 1.6 yamt }
470