Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.48.10.1
      1  1.48.10.1       tls /*	$NetBSD: kern_sleepq.c,v 1.48.10.1 2014/08/10 06:55:58 tls Exp $	*/
      2        1.2        ad 
      3        1.2        ad /*-
      4       1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.2        ad  * All rights reserved.
      6        1.2        ad  *
      7        1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8        1.2        ad  * by Andrew Doran.
      9        1.2        ad  *
     10        1.2        ad  * Redistribution and use in source and binary forms, with or without
     11        1.2        ad  * modification, are permitted provided that the following conditions
     12        1.2        ad  * are met:
     13        1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14        1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15        1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17        1.2        ad  *    documentation and/or other materials provided with the distribution.
     18        1.2        ad  *
     19        1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30        1.2        ad  */
     31        1.2        ad 
     32        1.2        ad /*
     33        1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34        1.2        ad  * interfaces.
     35        1.2        ad  */
     36        1.2        ad 
     37        1.2        ad #include <sys/cdefs.h>
     38  1.48.10.1       tls __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.48.10.1 2014/08/10 06:55:58 tls Exp $");
     39        1.2        ad 
     40        1.2        ad #include <sys/param.h>
     41        1.2        ad #include <sys/kernel.h>
     42        1.9      yamt #include <sys/cpu.h>
     43       1.47      matt #include <sys/intr.h>
     44        1.2        ad #include <sys/pool.h>
     45        1.2        ad #include <sys/proc.h>
     46        1.2        ad #include <sys/resourcevar.h>
     47        1.2        ad #include <sys/sched.h>
     48        1.2        ad #include <sys/systm.h>
     49        1.2        ad #include <sys/sleepq.h>
     50        1.2        ad #include <sys/ktrace.h>
     51        1.2        ad 
     52       1.47      matt /*
     53       1.47      matt  * for sleepq_abort:
     54       1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     55       1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     56       1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57       1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     58       1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59       1.47      matt  * it can be made higher to block network software interrupts after panics.
     60       1.47      matt  */
     61       1.47      matt #ifndef	IPL_SAFEPRI
     62       1.47      matt #define	IPL_SAFEPRI	0
     63       1.47      matt #endif
     64       1.47      matt 
     65       1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     66        1.2        ad 
     67       1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     68       1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     69        1.2        ad 
     70        1.2        ad /*
     71        1.2        ad  * sleeptab_init:
     72        1.2        ad  *
     73        1.2        ad  *	Initialize a sleep table.
     74        1.2        ad  */
     75        1.2        ad void
     76        1.2        ad sleeptab_init(sleeptab_t *st)
     77        1.2        ad {
     78        1.2        ad 	sleepq_t *sq;
     79        1.2        ad 	int i;
     80        1.2        ad 
     81        1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82        1.2        ad 		sq = &st->st_queues[i].st_queue;
     83       1.36        ad 		st->st_queues[i].st_mutex =
     84       1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     85       1.30        ad 		sleepq_init(sq);
     86        1.2        ad 	}
     87        1.2        ad }
     88        1.2        ad 
     89        1.2        ad /*
     90        1.2        ad  * sleepq_init:
     91        1.2        ad  *
     92        1.2        ad  *	Prepare a sleep queue for use.
     93        1.2        ad  */
     94        1.2        ad void
     95       1.30        ad sleepq_init(sleepq_t *sq)
     96        1.2        ad {
     97        1.2        ad 
     98       1.30        ad 	TAILQ_INIT(sq);
     99        1.2        ad }
    100        1.2        ad 
    101        1.2        ad /*
    102        1.2        ad  * sleepq_remove:
    103        1.2        ad  *
    104       1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    105        1.2        ad  */
    106       1.37     rmind void
    107        1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    108        1.2        ad {
    109        1.9      yamt 	struct schedstate_percpu *spc;
    110        1.2        ad 	struct cpu_info *ci;
    111        1.2        ad 
    112       1.30        ad 	KASSERT(lwp_locked(l, NULL));
    113        1.2        ad 
    114       1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    115        1.2        ad 	l->l_syncobj = &sched_syncobj;
    116        1.2        ad 	l->l_wchan = NULL;
    117        1.2        ad 	l->l_sleepq = NULL;
    118        1.5     pavel 	l->l_flag &= ~LW_SINTR;
    119        1.2        ad 
    120        1.9      yamt 	ci = l->l_cpu;
    121        1.9      yamt 	spc = &ci->ci_schedstate;
    122        1.9      yamt 
    123        1.2        ad 	/*
    124        1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    125        1.2        ad 	 * holds it stopped set it running again.
    126        1.2        ad 	 */
    127        1.2        ad 	if (l->l_stat != LSSLEEP) {
    128       1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    129       1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    130       1.37     rmind 		return;
    131        1.2        ad 	}
    132        1.2        ad 
    133        1.2        ad 	/*
    134        1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    135        1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    136        1.2        ad 	 */
    137       1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    138        1.2        ad 		l->l_stat = LSONPROC;
    139        1.2        ad 		l->l_slptime = 0;
    140       1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    141       1.37     rmind 		return;
    142        1.2        ad 	}
    143        1.2        ad 
    144       1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    145       1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    146       1.16     rmind 	sched_wakeup(l);
    147       1.29     rmind 
    148       1.29     rmind 	/* Look for a CPU to wake up */
    149       1.29     rmind 	l->l_cpu = sched_takecpu(l);
    150       1.16     rmind 	ci = l->l_cpu;
    151       1.16     rmind 	spc = &ci->ci_schedstate;
    152       1.16     rmind 
    153       1.16     rmind 	/*
    154       1.17      yamt 	 * Set it running.
    155        1.2        ad 	 */
    156        1.9      yamt 	spc_lock(ci);
    157        1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    158        1.9      yamt 	sched_setrunnable(l);
    159        1.2        ad 	l->l_stat = LSRUN;
    160        1.2        ad 	l->l_slptime = 0;
    161       1.37     rmind 	sched_enqueue(l, false);
    162        1.9      yamt 	spc_unlock(ci);
    163        1.2        ad }
    164        1.2        ad 
    165        1.2        ad /*
    166        1.2        ad  * sleepq_insert:
    167        1.2        ad  *
    168        1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    169        1.2        ad  */
    170       1.46     rmind static void
    171        1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    172        1.2        ad {
    173        1.2        ad 
    174        1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    175       1.40      yamt 		lwp_t *l2;
    176       1.40      yamt 		const int pri = lwp_eprio(l);
    177       1.40      yamt 
    178       1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    179       1.18        ad 			if (lwp_eprio(l2) < pri) {
    180        1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    181        1.2        ad 				return;
    182        1.2        ad 			}
    183        1.2        ad 		}
    184        1.2        ad 	}
    185        1.2        ad 
    186       1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    187       1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    188       1.14        ad 	else
    189       1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    190        1.2        ad }
    191        1.2        ad 
    192        1.9      yamt /*
    193        1.9      yamt  * sleepq_enqueue:
    194        1.9      yamt  *
    195        1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    196        1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    197        1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    198        1.9      yamt  */
    199        1.2        ad void
    200       1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    201        1.2        ad {
    202        1.8        ad 	lwp_t *l = curlwp;
    203        1.2        ad 
    204       1.30        ad 	KASSERT(lwp_locked(l, NULL));
    205        1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    206        1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    207        1.2        ad 
    208        1.2        ad 	l->l_syncobj = sobj;
    209        1.2        ad 	l->l_wchan = wchan;
    210        1.2        ad 	l->l_sleepq = sq;
    211        1.2        ad 	l->l_wmesg = wmesg;
    212        1.2        ad 	l->l_slptime = 0;
    213        1.2        ad 	l->l_stat = LSSLEEP;
    214        1.2        ad 	l->l_sleeperr = 0;
    215        1.2        ad 
    216        1.6      yamt 	sleepq_insert(sq, l, sobj);
    217       1.29     rmind 
    218       1.29     rmind 	/* Save the time when thread has slept */
    219       1.29     rmind 	l->l_slpticks = hardclock_ticks;
    220       1.15     rmind 	sched_slept(l);
    221        1.6      yamt }
    222        1.6      yamt 
    223        1.9      yamt /*
    224        1.9      yamt  * sleepq_block:
    225        1.9      yamt  *
    226        1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    227        1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    228        1.9      yamt  * 	example if the LWP's containing process is exiting.
    229       1.48       apb  *
    230       1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    231        1.9      yamt  */
    232        1.9      yamt int
    233        1.9      yamt sleepq_block(int timo, bool catch)
    234        1.6      yamt {
    235       1.10        ad 	int error = 0, sig;
    236        1.9      yamt 	struct proc *p;
    237        1.8        ad 	lwp_t *l = curlwp;
    238       1.11        ad 	bool early = false;
    239       1.34      yamt 	int biglocks = l->l_biglocks;
    240        1.2        ad 
    241       1.12        ad 	ktrcsw(1, 0);
    242        1.4        ad 
    243        1.2        ad 	/*
    244        1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    245        1.2        ad 	 * core dump events.
    246        1.2        ad 	 */
    247        1.2        ad 	if (catch) {
    248        1.5     pavel 		l->l_flag |= LW_SINTR;
    249        1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250        1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    251       1.14        ad 			error = EINTR;
    252       1.14        ad 			early = true;
    253       1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254       1.11        ad 			early = true;
    255        1.2        ad 	}
    256        1.2        ad 
    257       1.13      yamt 	if (early) {
    258       1.13      yamt 		/* lwp_unsleep() will release the lock */
    259       1.22        ad 		lwp_unsleep(l, true);
    260       1.13      yamt 	} else {
    261       1.46     rmind 		if (timo) {
    262       1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    263       1.46     rmind 		}
    264       1.46     rmind 		mi_switch(l);
    265       1.11        ad 
    266       1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    267       1.11        ad 		if (timo) {
    268       1.11        ad 			/*
    269       1.11        ad 			 * Even if the callout appears to have fired, we need to
    270       1.11        ad 			 * stop it in order to synchronise with other CPUs.
    271       1.11        ad 			 */
    272       1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    273       1.11        ad 				error = EWOULDBLOCK;
    274       1.11        ad 		}
    275        1.2        ad 	}
    276        1.2        ad 
    277        1.9      yamt 	if (catch && error == 0) {
    278        1.2        ad 		p = l->l_proc;
    279        1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    280        1.2        ad 			error = EINTR;
    281        1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    282       1.33        ad 			/*
    283       1.33        ad 			 * Acquiring p_lock may cause us to recurse
    284       1.33        ad 			 * through the sleep path and back into this
    285       1.33        ad 			 * routine, but is safe because LWPs sleeping
    286       1.33        ad 			 * on locks are non-interruptable.  We will
    287       1.33        ad 			 * not recurse again.
    288       1.33        ad 			 */
    289       1.27        ad 			mutex_enter(p->p_lock);
    290       1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    291       1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    292       1.43  christos 			    (sig = issignal(l)) != 0)
    293        1.2        ad 				error = sleepq_sigtoerror(l, sig);
    294       1.27        ad 			mutex_exit(p->p_lock);
    295        1.2        ad 		}
    296        1.2        ad 	}
    297        1.2        ad 
    298       1.12        ad 	ktrcsw(0, 0);
    299       1.34      yamt 	if (__predict_false(biglocks != 0)) {
    300       1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    301       1.30        ad 	}
    302        1.2        ad 	return error;
    303        1.2        ad }
    304        1.2        ad 
    305        1.2        ad /*
    306        1.2        ad  * sleepq_wake:
    307        1.2        ad  *
    308        1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    309        1.2        ad  */
    310  1.48.10.1       tls void
    311       1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    312        1.2        ad {
    313        1.8        ad 	lwp_t *l, *next;
    314        1.2        ad 
    315       1.30        ad 	KASSERT(mutex_owned(mp));
    316        1.2        ad 
    317       1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    318        1.2        ad 		KASSERT(l->l_sleepq == sq);
    319       1.30        ad 		KASSERT(l->l_mutex == mp);
    320        1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    321        1.2        ad 		if (l->l_wchan != wchan)
    322        1.2        ad 			continue;
    323       1.37     rmind 		sleepq_remove(sq, l);
    324        1.2        ad 		if (--expected == 0)
    325        1.2        ad 			break;
    326        1.2        ad 	}
    327        1.2        ad 
    328       1.30        ad 	mutex_spin_exit(mp);
    329        1.2        ad }
    330        1.2        ad 
    331        1.2        ad /*
    332        1.2        ad  * sleepq_unsleep:
    333        1.2        ad  *
    334        1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    335        1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    336        1.2        ad  *	always release it.
    337        1.2        ad  */
    338       1.37     rmind void
    339       1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    340        1.2        ad {
    341        1.2        ad 	sleepq_t *sq = l->l_sleepq;
    342       1.30        ad 	kmutex_t *mp = l->l_mutex;
    343        1.2        ad 
    344       1.30        ad 	KASSERT(lwp_locked(l, mp));
    345        1.2        ad 	KASSERT(l->l_wchan != NULL);
    346        1.2        ad 
    347       1.37     rmind 	sleepq_remove(sq, l);
    348       1.22        ad 	if (cleanup) {
    349       1.30        ad 		mutex_spin_exit(mp);
    350       1.22        ad 	}
    351        1.2        ad }
    352        1.2        ad 
    353        1.2        ad /*
    354        1.2        ad  * sleepq_timeout:
    355        1.2        ad  *
    356        1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    357        1.2        ad  *	sleep queue.
    358        1.2        ad  */
    359        1.2        ad void
    360        1.2        ad sleepq_timeout(void *arg)
    361        1.2        ad {
    362        1.8        ad 	lwp_t *l = arg;
    363        1.2        ad 
    364        1.2        ad 	/*
    365        1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    366        1.2        ad 	 * current mutex will also be the sleep queue mutex.
    367        1.2        ad 	 */
    368        1.2        ad 	lwp_lock(l);
    369        1.2        ad 
    370        1.2        ad 	if (l->l_wchan == NULL) {
    371        1.2        ad 		/* Somebody beat us to it. */
    372        1.2        ad 		lwp_unlock(l);
    373        1.2        ad 		return;
    374        1.2        ad 	}
    375        1.2        ad 
    376       1.22        ad 	lwp_unsleep(l, true);
    377        1.2        ad }
    378        1.2        ad 
    379        1.2        ad /*
    380        1.2        ad  * sleepq_sigtoerror:
    381        1.2        ad  *
    382        1.2        ad  *	Given a signal number, interpret and return an error code.
    383        1.2        ad  */
    384       1.39     rmind static int
    385        1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    386        1.2        ad {
    387        1.2        ad 	struct proc *p = l->l_proc;
    388        1.2        ad 	int error;
    389        1.2        ad 
    390       1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    391        1.2        ad 
    392        1.2        ad 	/*
    393        1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    394        1.2        ad 	 */
    395        1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    396        1.2        ad 		error = EINTR;
    397        1.2        ad 	else
    398        1.2        ad 		error = ERESTART;
    399        1.2        ad 
    400        1.2        ad 	return error;
    401        1.2        ad }
    402        1.2        ad 
    403        1.2        ad /*
    404        1.2        ad  * sleepq_abort:
    405        1.2        ad  *
    406        1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    407        1.2        ad  *	priority level to give pending interrupts a chance to run, and
    408        1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    409        1.2        ad  *	always returns zero.
    410        1.2        ad  */
    411        1.2        ad int
    412        1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    413        1.2        ad {
    414        1.2        ad 	int s;
    415        1.2        ad 
    416        1.2        ad 	s = splhigh();
    417       1.47      matt 	splx(IPL_SAFEPRI);
    418        1.2        ad 	splx(s);
    419        1.2        ad 	if (mtx != NULL && unlock != 0)
    420        1.2        ad 		mutex_exit(mtx);
    421        1.2        ad 
    422        1.2        ad 	return 0;
    423        1.2        ad }
    424        1.2        ad 
    425        1.2        ad /*
    426       1.44      yamt  * sleepq_reinsert:
    427        1.2        ad  *
    428       1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    429       1.44      yamt  *	change of the lwp's effective priority.
    430        1.2        ad  */
    431       1.44      yamt static void
    432       1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    433        1.2        ad {
    434        1.2        ad 
    435       1.44      yamt 	KASSERT(l->l_sleepq == sq);
    436       1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    437       1.32        ad 		return;
    438       1.32        ad 	}
    439       1.32        ad 
    440       1.32        ad 	/*
    441       1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    442       1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    443       1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    444       1.32        ad 	 * head if there are waiters.
    445       1.32        ad 	 */
    446       1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    447       1.32        ad 		return;
    448       1.18        ad 	}
    449       1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    450       1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    451        1.2        ad }
    452        1.6      yamt 
    453       1.44      yamt /*
    454       1.44      yamt  * sleepq_changepri:
    455       1.44      yamt  *
    456       1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    457       1.44      yamt  */
    458       1.44      yamt void
    459       1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    460       1.44      yamt {
    461       1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    462       1.44      yamt 
    463       1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    464       1.44      yamt 
    465       1.44      yamt 	l->l_priority = pri;
    466       1.44      yamt 	sleepq_reinsert(sq, l);
    467       1.44      yamt }
    468       1.44      yamt 
    469       1.44      yamt /*
    470       1.44      yamt  * sleepq_changepri:
    471       1.44      yamt  *
    472       1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    473       1.44      yamt  */
    474        1.6      yamt void
    475        1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    476        1.6      yamt {
    477        1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    478        1.6      yamt 
    479       1.30        ad 	KASSERT(lwp_locked(l, NULL));
    480        1.6      yamt 
    481        1.6      yamt 	l->l_inheritedprio = pri;
    482       1.44      yamt 	sleepq_reinsert(sq, l);
    483        1.6      yamt }
    484