kern_sleepq.c revision 1.5.2.3 1 1.5.2.3 yamt /* $NetBSD: kern_sleepq.c,v 1.5.2.3 2007/09/03 14:40:55 yamt Exp $ */
2 1.5.2.2 yamt
3 1.5.2.2 yamt /*-
4 1.5.2.2 yamt * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.5.2.2 yamt * All rights reserved.
6 1.5.2.2 yamt *
7 1.5.2.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.5.2.2 yamt * by Andrew Doran.
9 1.5.2.2 yamt *
10 1.5.2.2 yamt * Redistribution and use in source and binary forms, with or without
11 1.5.2.2 yamt * modification, are permitted provided that the following conditions
12 1.5.2.2 yamt * are met:
13 1.5.2.2 yamt * 1. Redistributions of source code must retain the above copyright
14 1.5.2.2 yamt * notice, this list of conditions and the following disclaimer.
15 1.5.2.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
16 1.5.2.2 yamt * notice, this list of conditions and the following disclaimer in the
17 1.5.2.2 yamt * documentation and/or other materials provided with the distribution.
18 1.5.2.2 yamt * 3. All advertising materials mentioning features or use of this software
19 1.5.2.2 yamt * must display the following acknowledgement:
20 1.5.2.2 yamt * This product includes software developed by the NetBSD
21 1.5.2.2 yamt * Foundation, Inc. and its contributors.
22 1.5.2.2 yamt * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.5.2.2 yamt * contributors may be used to endorse or promote products derived
24 1.5.2.2 yamt * from this software without specific prior written permission.
25 1.5.2.2 yamt *
26 1.5.2.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.5.2.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.5.2.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.5.2.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.5.2.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.5.2.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.5.2.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.5.2.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.5.2.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.5.2.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.5.2.2 yamt * POSSIBILITY OF SUCH DAMAGE.
37 1.5.2.2 yamt */
38 1.5.2.2 yamt
39 1.5.2.2 yamt /*
40 1.5.2.2 yamt * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.5.2.2 yamt * interfaces.
42 1.5.2.2 yamt */
43 1.5.2.2 yamt
44 1.5.2.2 yamt #include <sys/cdefs.h>
45 1.5.2.3 yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.5.2.3 2007/09/03 14:40:55 yamt Exp $");
46 1.5.2.2 yamt
47 1.5.2.2 yamt #include <sys/param.h>
48 1.5.2.2 yamt #include <sys/lock.h>
49 1.5.2.2 yamt #include <sys/kernel.h>
50 1.5.2.3 yamt #include <sys/cpu.h>
51 1.5.2.2 yamt #include <sys/pool.h>
52 1.5.2.2 yamt #include <sys/proc.h>
53 1.5.2.2 yamt #include <sys/resourcevar.h>
54 1.5.2.2 yamt #include <sys/sched.h>
55 1.5.2.2 yamt #include <sys/systm.h>
56 1.5.2.2 yamt #include <sys/sleepq.h>
57 1.5.2.2 yamt #include <sys/ktrace.h>
58 1.5.2.2 yamt
59 1.5.2.2 yamt #include <uvm/uvm_extern.h>
60 1.5.2.2 yamt
61 1.5.2.3 yamt int sleepq_sigtoerror(lwp_t *, int);
62 1.5.2.2 yamt
63 1.5.2.2 yamt /* General purpose sleep table, used by ltsleep() and condition variables. */
64 1.5.2.2 yamt sleeptab_t sleeptab;
65 1.5.2.2 yamt
66 1.5.2.2 yamt /*
67 1.5.2.2 yamt * sleeptab_init:
68 1.5.2.2 yamt *
69 1.5.2.2 yamt * Initialize a sleep table.
70 1.5.2.2 yamt */
71 1.5.2.2 yamt void
72 1.5.2.2 yamt sleeptab_init(sleeptab_t *st)
73 1.5.2.2 yamt {
74 1.5.2.2 yamt sleepq_t *sq;
75 1.5.2.2 yamt int i;
76 1.5.2.2 yamt
77 1.5.2.2 yamt for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 1.5.2.2 yamt sq = &st->st_queues[i].st_queue;
79 1.5.2.2 yamt mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 1.5.2.2 yamt sleepq_init(sq, &st->st_queues[i].st_mutex);
81 1.5.2.2 yamt }
82 1.5.2.2 yamt }
83 1.5.2.2 yamt
84 1.5.2.2 yamt /*
85 1.5.2.2 yamt * sleepq_init:
86 1.5.2.2 yamt *
87 1.5.2.2 yamt * Prepare a sleep queue for use.
88 1.5.2.2 yamt */
89 1.5.2.2 yamt void
90 1.5.2.2 yamt sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 1.5.2.2 yamt {
92 1.5.2.2 yamt
93 1.5.2.2 yamt sq->sq_waiters = 0;
94 1.5.2.2 yamt sq->sq_mutex = mtx;
95 1.5.2.2 yamt TAILQ_INIT(&sq->sq_queue);
96 1.5.2.2 yamt }
97 1.5.2.2 yamt
98 1.5.2.2 yamt /*
99 1.5.2.2 yamt * sleepq_remove:
100 1.5.2.2 yamt *
101 1.5.2.2 yamt * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 1.5.2.2 yamt * the LWP is swapped out; if so the caller needs to awaken the swapper
103 1.5.2.2 yamt * to bring the LWP into memory.
104 1.5.2.2 yamt */
105 1.5.2.2 yamt int
106 1.5.2.3 yamt sleepq_remove(sleepq_t *sq, lwp_t *l)
107 1.5.2.2 yamt {
108 1.5.2.3 yamt struct schedstate_percpu *spc;
109 1.5.2.2 yamt struct cpu_info *ci;
110 1.5.2.2 yamt
111 1.5.2.2 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
112 1.5.2.2 yamt KASSERT(sq->sq_waiters > 0);
113 1.5.2.2 yamt
114 1.5.2.2 yamt sq->sq_waiters--;
115 1.5.2.2 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
116 1.5.2.2 yamt
117 1.5.2.2 yamt #ifdef DIAGNOSTIC
118 1.5.2.2 yamt if (sq->sq_waiters == 0)
119 1.5.2.2 yamt KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
120 1.5.2.2 yamt else
121 1.5.2.2 yamt KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
122 1.5.2.2 yamt #endif
123 1.5.2.2 yamt
124 1.5.2.2 yamt l->l_syncobj = &sched_syncobj;
125 1.5.2.2 yamt l->l_wchan = NULL;
126 1.5.2.2 yamt l->l_sleepq = NULL;
127 1.5.2.2 yamt l->l_flag &= ~LW_SINTR;
128 1.5.2.2 yamt
129 1.5.2.3 yamt ci = l->l_cpu;
130 1.5.2.3 yamt spc = &ci->ci_schedstate;
131 1.5.2.3 yamt
132 1.5.2.2 yamt /*
133 1.5.2.2 yamt * If not sleeping, the LWP must have been suspended. Let whoever
134 1.5.2.2 yamt * holds it stopped set it running again.
135 1.5.2.2 yamt */
136 1.5.2.2 yamt if (l->l_stat != LSSLEEP) {
137 1.5.2.2 yamt KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 1.5.2.3 yamt lwp_setlock(l, &spc->spc_lwplock);
139 1.5.2.2 yamt return 0;
140 1.5.2.2 yamt }
141 1.5.2.2 yamt
142 1.5.2.2 yamt /*
143 1.5.2.2 yamt * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 1.5.2.2 yamt * about to call mi_switch(), in which case it will yield.
145 1.5.2.2 yamt */
146 1.5.2.3 yamt if ((l->l_flag & LW_RUNNING) != 0) {
147 1.5.2.2 yamt l->l_stat = LSONPROC;
148 1.5.2.2 yamt l->l_slptime = 0;
149 1.5.2.3 yamt lwp_setlock(l, &spc->spc_lwplock);
150 1.5.2.2 yamt return 0;
151 1.5.2.2 yamt }
152 1.5.2.2 yamt
153 1.5.2.2 yamt /*
154 1.5.2.2 yamt * Set it running. We'll try to get the last CPU that ran
155 1.5.2.2 yamt * this LWP to pick it up again.
156 1.5.2.2 yamt */
157 1.5.2.3 yamt spc_lock(ci);
158 1.5.2.3 yamt lwp_setlock(l, spc->spc_mutex);
159 1.5.2.3 yamt sched_setrunnable(l);
160 1.5.2.2 yamt l->l_stat = LSRUN;
161 1.5.2.2 yamt l->l_slptime = 0;
162 1.5.2.2 yamt if ((l->l_flag & LW_INMEM) != 0) {
163 1.5.2.3 yamt sched_enqueue(l, false);
164 1.5.2.3 yamt if (lwp_eprio(l) < spc->spc_curpriority)
165 1.5.2.3 yamt cpu_need_resched(ci, 0);
166 1.5.2.3 yamt spc_unlock(ci);
167 1.5.2.2 yamt return 0;
168 1.5.2.2 yamt }
169 1.5.2.3 yamt spc_unlock(ci);
170 1.5.2.2 yamt return 1;
171 1.5.2.2 yamt }
172 1.5.2.2 yamt
173 1.5.2.2 yamt /*
174 1.5.2.2 yamt * sleepq_insert:
175 1.5.2.2 yamt *
176 1.5.2.2 yamt * Insert an LWP into the sleep queue, optionally sorting by priority.
177 1.5.2.2 yamt */
178 1.5.2.2 yamt inline void
179 1.5.2.3 yamt sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
180 1.5.2.2 yamt {
181 1.5.2.3 yamt lwp_t *l2;
182 1.5.2.3 yamt const int pri = lwp_eprio(l);
183 1.5.2.2 yamt
184 1.5.2.2 yamt if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
185 1.5.2.2 yamt TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
186 1.5.2.3 yamt if (lwp_eprio(l2) > pri) {
187 1.5.2.2 yamt TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
188 1.5.2.2 yamt return;
189 1.5.2.2 yamt }
190 1.5.2.2 yamt }
191 1.5.2.2 yamt }
192 1.5.2.2 yamt
193 1.5.2.2 yamt TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
194 1.5.2.2 yamt }
195 1.5.2.2 yamt
196 1.5.2.2 yamt /*
197 1.5.2.3 yamt * sleepq_enqueue:
198 1.5.2.2 yamt *
199 1.5.2.2 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
200 1.5.2.2 yamt * queue must already be locked, and any interlock (such as the kernel
201 1.5.2.2 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
202 1.5.2.2 yamt */
203 1.5.2.2 yamt void
204 1.5.2.3 yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
205 1.5.2.3 yamt syncobj_t *sobj)
206 1.5.2.2 yamt {
207 1.5.2.3 yamt lwp_t *l = curlwp;
208 1.5.2.2 yamt
209 1.5.2.2 yamt KASSERT(mutex_owned(sq->sq_mutex));
210 1.5.2.2 yamt KASSERT(l->l_stat == LSONPROC);
211 1.5.2.2 yamt KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
212 1.5.2.2 yamt
213 1.5.2.2 yamt l->l_syncobj = sobj;
214 1.5.2.2 yamt l->l_wchan = wchan;
215 1.5.2.2 yamt l->l_sleepq = sq;
216 1.5.2.2 yamt l->l_wmesg = wmesg;
217 1.5.2.2 yamt l->l_slptime = 0;
218 1.5.2.2 yamt l->l_priority = pri;
219 1.5.2.2 yamt l->l_stat = LSSLEEP;
220 1.5.2.2 yamt l->l_sleeperr = 0;
221 1.5.2.2 yamt
222 1.5.2.2 yamt sq->sq_waiters++;
223 1.5.2.3 yamt sleepq_insert(sq, l, sobj);
224 1.5.2.3 yamt }
225 1.5.2.2 yamt
226 1.5.2.3 yamt /*
227 1.5.2.3 yamt * sleepq_block:
228 1.5.2.3 yamt *
229 1.5.2.3 yamt * After any intermediate step such as releasing an interlock, switch.
230 1.5.2.3 yamt * sleepq_block() may return early under exceptional conditions, for
231 1.5.2.3 yamt * example if the LWP's containing process is exiting.
232 1.5.2.3 yamt */
233 1.5.2.3 yamt int
234 1.5.2.3 yamt sleepq_block(int timo, bool catch)
235 1.5.2.3 yamt {
236 1.5.2.3 yamt int error = 0, sig;
237 1.5.2.3 yamt struct proc *p;
238 1.5.2.3 yamt lwp_t *l = curlwp;
239 1.5.2.3 yamt bool early = false;
240 1.5.2.3 yamt
241 1.5.2.3 yamt ktrcsw(1, 0);
242 1.5.2.2 yamt
243 1.5.2.2 yamt /*
244 1.5.2.2 yamt * If sleeping interruptably, check for pending signals, exits or
245 1.5.2.2 yamt * core dump events.
246 1.5.2.2 yamt */
247 1.5.2.2 yamt if (catch) {
248 1.5.2.2 yamt l->l_flag |= LW_SINTR;
249 1.5.2.2 yamt if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
250 1.5.2.3 yamt early = true;
251 1.5.2.2 yamt }
252 1.5.2.2 yamt if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
253 1.5.2.2 yamt l->l_flag &= ~LW_CANCELLED;
254 1.5.2.3 yamt early = true;
255 1.5.2.2 yamt }
256 1.5.2.2 yamt }
257 1.5.2.2 yamt
258 1.5.2.3 yamt if (early) {
259 1.5.2.3 yamt /* lwp_unsleep() will release the lock */
260 1.5.2.3 yamt lwp_unsleep(l);
261 1.5.2.3 yamt } else {
262 1.5.2.3 yamt if (timo)
263 1.5.2.3 yamt callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
264 1.5.2.3 yamt mi_switch(l);
265 1.5.2.3 yamt
266 1.5.2.3 yamt /* The LWP and sleep queue are now unlocked. */
267 1.5.2.3 yamt if (timo) {
268 1.5.2.3 yamt /*
269 1.5.2.3 yamt * Even if the callout appears to have fired, we need to
270 1.5.2.3 yamt * stop it in order to synchronise with other CPUs.
271 1.5.2.3 yamt */
272 1.5.2.3 yamt if (callout_stop(&l->l_tsleep_ch))
273 1.5.2.3 yamt error = EWOULDBLOCK;
274 1.5.2.3 yamt }
275 1.5.2.2 yamt }
276 1.5.2.2 yamt
277 1.5.2.3 yamt if (catch && error == 0) {
278 1.5.2.2 yamt p = l->l_proc;
279 1.5.2.2 yamt if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
280 1.5.2.2 yamt error = EINTR;
281 1.5.2.2 yamt else if ((l->l_flag & LW_PENDSIG) != 0) {
282 1.5.2.2 yamt KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
283 1.5.2.2 yamt mutex_enter(&p->p_smutex);
284 1.5.2.2 yamt if ((sig = issignal(l)) != 0)
285 1.5.2.2 yamt error = sleepq_sigtoerror(l, sig);
286 1.5.2.2 yamt mutex_exit(&p->p_smutex);
287 1.5.2.2 yamt KERNEL_UNLOCK_LAST(l);
288 1.5.2.2 yamt }
289 1.5.2.2 yamt }
290 1.5.2.2 yamt
291 1.5.2.3 yamt ktrcsw(0, 0);
292 1.5.2.2 yamt
293 1.5.2.2 yamt KERNEL_LOCK(l->l_biglocks, l);
294 1.5.2.2 yamt return error;
295 1.5.2.2 yamt }
296 1.5.2.2 yamt
297 1.5.2.2 yamt /*
298 1.5.2.2 yamt * sleepq_wake:
299 1.5.2.2 yamt *
300 1.5.2.2 yamt * Wake zero or more LWPs blocked on a single wait channel.
301 1.5.2.2 yamt */
302 1.5.2.3 yamt lwp_t *
303 1.5.2.2 yamt sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
304 1.5.2.2 yamt {
305 1.5.2.3 yamt lwp_t *l, *next;
306 1.5.2.2 yamt int swapin = 0;
307 1.5.2.2 yamt
308 1.5.2.2 yamt KASSERT(mutex_owned(sq->sq_mutex));
309 1.5.2.2 yamt
310 1.5.2.2 yamt for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
311 1.5.2.2 yamt KASSERT(l->l_sleepq == sq);
312 1.5.2.2 yamt next = TAILQ_NEXT(l, l_sleepchain);
313 1.5.2.2 yamt if (l->l_wchan != wchan)
314 1.5.2.2 yamt continue;
315 1.5.2.2 yamt swapin |= sleepq_remove(sq, l);
316 1.5.2.2 yamt if (--expected == 0)
317 1.5.2.2 yamt break;
318 1.5.2.2 yamt }
319 1.5.2.2 yamt
320 1.5.2.2 yamt sleepq_unlock(sq);
321 1.5.2.2 yamt
322 1.5.2.2 yamt /*
323 1.5.2.2 yamt * If there are newly awakend threads that need to be swapped in,
324 1.5.2.2 yamt * then kick the swapper into action.
325 1.5.2.2 yamt */
326 1.5.2.2 yamt if (swapin)
327 1.5.2.2 yamt uvm_kick_scheduler();
328 1.5.2.3 yamt
329 1.5.2.3 yamt return l;
330 1.5.2.2 yamt }
331 1.5.2.2 yamt
332 1.5.2.2 yamt /*
333 1.5.2.2 yamt * sleepq_unsleep:
334 1.5.2.2 yamt *
335 1.5.2.2 yamt * Remove an LWP from its sleep queue and set it runnable again.
336 1.5.2.2 yamt * sleepq_unsleep() is called with the LWP's mutex held, and will
337 1.5.2.2 yamt * always release it.
338 1.5.2.2 yamt */
339 1.5.2.2 yamt void
340 1.5.2.3 yamt sleepq_unsleep(lwp_t *l)
341 1.5.2.2 yamt {
342 1.5.2.2 yamt sleepq_t *sq = l->l_sleepq;
343 1.5.2.2 yamt int swapin;
344 1.5.2.2 yamt
345 1.5.2.2 yamt KASSERT(lwp_locked(l, NULL));
346 1.5.2.2 yamt KASSERT(l->l_wchan != NULL);
347 1.5.2.2 yamt KASSERT(l->l_mutex == sq->sq_mutex);
348 1.5.2.2 yamt
349 1.5.2.2 yamt swapin = sleepq_remove(sq, l);
350 1.5.2.2 yamt sleepq_unlock(sq);
351 1.5.2.2 yamt
352 1.5.2.2 yamt if (swapin)
353 1.5.2.2 yamt uvm_kick_scheduler();
354 1.5.2.2 yamt }
355 1.5.2.2 yamt
356 1.5.2.2 yamt /*
357 1.5.2.2 yamt * sleepq_timeout:
358 1.5.2.2 yamt *
359 1.5.2.2 yamt * Entered via the callout(9) subsystem to time out an LWP that is on a
360 1.5.2.2 yamt * sleep queue.
361 1.5.2.2 yamt */
362 1.5.2.2 yamt void
363 1.5.2.2 yamt sleepq_timeout(void *arg)
364 1.5.2.2 yamt {
365 1.5.2.3 yamt lwp_t *l = arg;
366 1.5.2.2 yamt
367 1.5.2.2 yamt /*
368 1.5.2.2 yamt * Lock the LWP. Assuming it's still on the sleep queue, its
369 1.5.2.2 yamt * current mutex will also be the sleep queue mutex.
370 1.5.2.2 yamt */
371 1.5.2.2 yamt lwp_lock(l);
372 1.5.2.2 yamt
373 1.5.2.2 yamt if (l->l_wchan == NULL) {
374 1.5.2.2 yamt /* Somebody beat us to it. */
375 1.5.2.2 yamt lwp_unlock(l);
376 1.5.2.2 yamt return;
377 1.5.2.2 yamt }
378 1.5.2.2 yamt
379 1.5.2.2 yamt lwp_unsleep(l);
380 1.5.2.2 yamt }
381 1.5.2.2 yamt
382 1.5.2.2 yamt /*
383 1.5.2.2 yamt * sleepq_sigtoerror:
384 1.5.2.2 yamt *
385 1.5.2.2 yamt * Given a signal number, interpret and return an error code.
386 1.5.2.2 yamt */
387 1.5.2.2 yamt int
388 1.5.2.3 yamt sleepq_sigtoerror(lwp_t *l, int sig)
389 1.5.2.2 yamt {
390 1.5.2.2 yamt struct proc *p = l->l_proc;
391 1.5.2.2 yamt int error;
392 1.5.2.2 yamt
393 1.5.2.2 yamt KASSERT(mutex_owned(&p->p_smutex));
394 1.5.2.2 yamt
395 1.5.2.2 yamt /*
396 1.5.2.2 yamt * If this sleep was canceled, don't let the syscall restart.
397 1.5.2.2 yamt */
398 1.5.2.2 yamt if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
399 1.5.2.2 yamt error = EINTR;
400 1.5.2.2 yamt else
401 1.5.2.2 yamt error = ERESTART;
402 1.5.2.2 yamt
403 1.5.2.2 yamt return error;
404 1.5.2.2 yamt }
405 1.5.2.2 yamt
406 1.5.2.2 yamt /*
407 1.5.2.2 yamt * sleepq_abort:
408 1.5.2.2 yamt *
409 1.5.2.2 yamt * After a panic or during autoconfiguration, lower the interrupt
410 1.5.2.2 yamt * priority level to give pending interrupts a chance to run, and
411 1.5.2.2 yamt * then return. Called if sleepq_dontsleep() returns non-zero, and
412 1.5.2.2 yamt * always returns zero.
413 1.5.2.2 yamt */
414 1.5.2.2 yamt int
415 1.5.2.2 yamt sleepq_abort(kmutex_t *mtx, int unlock)
416 1.5.2.2 yamt {
417 1.5.2.2 yamt extern int safepri;
418 1.5.2.2 yamt int s;
419 1.5.2.2 yamt
420 1.5.2.2 yamt s = splhigh();
421 1.5.2.2 yamt splx(safepri);
422 1.5.2.2 yamt splx(s);
423 1.5.2.2 yamt if (mtx != NULL && unlock != 0)
424 1.5.2.2 yamt mutex_exit(mtx);
425 1.5.2.2 yamt
426 1.5.2.2 yamt return 0;
427 1.5.2.2 yamt }
428 1.5.2.2 yamt
429 1.5.2.2 yamt /*
430 1.5.2.2 yamt * sleepq_changepri:
431 1.5.2.2 yamt *
432 1.5.2.2 yamt * Adjust the priority of an LWP residing on a sleepq. This method
433 1.5.2.2 yamt * will only alter the user priority; the effective priority is
434 1.5.2.2 yamt * assumed to have been fixed at the time of insertion into the queue.
435 1.5.2.2 yamt */
436 1.5.2.2 yamt void
437 1.5.2.3 yamt sleepq_changepri(lwp_t *l, pri_t pri)
438 1.5.2.2 yamt {
439 1.5.2.2 yamt
440 1.5.2.2 yamt KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
441 1.5.2.2 yamt l->l_usrpri = pri;
442 1.5.2.2 yamt }
443 1.5.2.3 yamt
444 1.5.2.3 yamt void
445 1.5.2.3 yamt sleepq_lendpri(lwp_t *l, pri_t pri)
446 1.5.2.3 yamt {
447 1.5.2.3 yamt sleepq_t *sq = l->l_sleepq;
448 1.5.2.3 yamt pri_t opri;
449 1.5.2.3 yamt
450 1.5.2.3 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
451 1.5.2.3 yamt
452 1.5.2.3 yamt opri = lwp_eprio(l);
453 1.5.2.3 yamt l->l_inheritedprio = pri;
454 1.5.2.3 yamt
455 1.5.2.3 yamt if (lwp_eprio(l) != opri &&
456 1.5.2.3 yamt (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
457 1.5.2.3 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
458 1.5.2.3 yamt sleepq_insert(sq, l, l->l_syncobj);
459 1.5.2.3 yamt }
460 1.5.2.3 yamt }
461