Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.50.2.1
      1  1.50.2.1     skrll /*	$NetBSD: kern_sleepq.c,v 1.50.2.1 2016/07/09 20:25:20 skrll Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.36        ad  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2        ad  * interfaces.
     35       1.2        ad  */
     36       1.2        ad 
     37       1.2        ad #include <sys/cdefs.h>
     38  1.50.2.1     skrll __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.50.2.1 2016/07/09 20:25:20 skrll Exp $");
     39       1.2        ad 
     40       1.2        ad #include <sys/param.h>
     41       1.2        ad #include <sys/kernel.h>
     42       1.9      yamt #include <sys/cpu.h>
     43      1.47      matt #include <sys/intr.h>
     44       1.2        ad #include <sys/pool.h>
     45       1.2        ad #include <sys/proc.h>
     46       1.2        ad #include <sys/resourcevar.h>
     47       1.2        ad #include <sys/sched.h>
     48       1.2        ad #include <sys/systm.h>
     49       1.2        ad #include <sys/sleepq.h>
     50       1.2        ad #include <sys/ktrace.h>
     51       1.2        ad 
     52      1.47      matt /*
     53      1.47      matt  * for sleepq_abort:
     54      1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     55      1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     56      1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57      1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     58      1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59      1.47      matt  * it can be made higher to block network software interrupts after panics.
     60      1.47      matt  */
     61      1.47      matt #ifndef	IPL_SAFEPRI
     62      1.47      matt #define	IPL_SAFEPRI	0
     63      1.47      matt #endif
     64      1.47      matt 
     65      1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     66       1.2        ad 
     67      1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     68      1.39     rmind sleeptab_t	sleeptab	__cacheline_aligned;
     69       1.2        ad 
     70       1.2        ad /*
     71       1.2        ad  * sleeptab_init:
     72       1.2        ad  *
     73       1.2        ad  *	Initialize a sleep table.
     74       1.2        ad  */
     75       1.2        ad void
     76       1.2        ad sleeptab_init(sleeptab_t *st)
     77       1.2        ad {
     78       1.2        ad 	sleepq_t *sq;
     79       1.2        ad 	int i;
     80       1.2        ad 
     81       1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82       1.2        ad 		sq = &st->st_queues[i].st_queue;
     83      1.36        ad 		st->st_queues[i].st_mutex =
     84      1.36        ad 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     85      1.30        ad 		sleepq_init(sq);
     86       1.2        ad 	}
     87       1.2        ad }
     88       1.2        ad 
     89       1.2        ad /*
     90       1.2        ad  * sleepq_init:
     91       1.2        ad  *
     92       1.2        ad  *	Prepare a sleep queue for use.
     93       1.2        ad  */
     94       1.2        ad void
     95      1.30        ad sleepq_init(sleepq_t *sq)
     96       1.2        ad {
     97       1.2        ad 
     98      1.30        ad 	TAILQ_INIT(sq);
     99       1.2        ad }
    100       1.2        ad 
    101       1.2        ad /*
    102       1.2        ad  * sleepq_remove:
    103       1.2        ad  *
    104      1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    105       1.2        ad  */
    106      1.37     rmind void
    107       1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    108       1.2        ad {
    109       1.9      yamt 	struct schedstate_percpu *spc;
    110       1.2        ad 	struct cpu_info *ci;
    111       1.2        ad 
    112      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    113       1.2        ad 
    114      1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    115       1.2        ad 	l->l_syncobj = &sched_syncobj;
    116       1.2        ad 	l->l_wchan = NULL;
    117       1.2        ad 	l->l_sleepq = NULL;
    118       1.5     pavel 	l->l_flag &= ~LW_SINTR;
    119       1.2        ad 
    120       1.9      yamt 	ci = l->l_cpu;
    121       1.9      yamt 	spc = &ci->ci_schedstate;
    122       1.9      yamt 
    123       1.2        ad 	/*
    124       1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    125       1.2        ad 	 * holds it stopped set it running again.
    126       1.2        ad 	 */
    127       1.2        ad 	if (l->l_stat != LSSLEEP) {
    128      1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    129      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    130      1.37     rmind 		return;
    131       1.2        ad 	}
    132       1.2        ad 
    133       1.2        ad 	/*
    134       1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    135       1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    136       1.2        ad 	 */
    137      1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    138       1.2        ad 		l->l_stat = LSONPROC;
    139       1.2        ad 		l->l_slptime = 0;
    140      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    141      1.37     rmind 		return;
    142       1.2        ad 	}
    143       1.2        ad 
    144      1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    145      1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    146      1.16     rmind 	sched_wakeup(l);
    147      1.29     rmind 
    148      1.29     rmind 	/* Look for a CPU to wake up */
    149      1.29     rmind 	l->l_cpu = sched_takecpu(l);
    150      1.16     rmind 	ci = l->l_cpu;
    151      1.16     rmind 	spc = &ci->ci_schedstate;
    152      1.16     rmind 
    153      1.16     rmind 	/*
    154      1.17      yamt 	 * Set it running.
    155       1.2        ad 	 */
    156       1.9      yamt 	spc_lock(ci);
    157       1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    158       1.9      yamt 	sched_setrunnable(l);
    159       1.2        ad 	l->l_stat = LSRUN;
    160       1.2        ad 	l->l_slptime = 0;
    161      1.37     rmind 	sched_enqueue(l, false);
    162       1.9      yamt 	spc_unlock(ci);
    163       1.2        ad }
    164       1.2        ad 
    165       1.2        ad /*
    166       1.2        ad  * sleepq_insert:
    167       1.2        ad  *
    168       1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    169       1.2        ad  */
    170      1.46     rmind static void
    171       1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    172       1.2        ad {
    173       1.2        ad 
    174       1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    175      1.40      yamt 		lwp_t *l2;
    176      1.40      yamt 		const int pri = lwp_eprio(l);
    177      1.40      yamt 
    178      1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    179      1.18        ad 			if (lwp_eprio(l2) < pri) {
    180       1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    181       1.2        ad 				return;
    182       1.2        ad 			}
    183       1.2        ad 		}
    184       1.2        ad 	}
    185       1.2        ad 
    186      1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    187      1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    188      1.14        ad 	else
    189      1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    190       1.2        ad }
    191       1.2        ad 
    192       1.9      yamt /*
    193       1.9      yamt  * sleepq_enqueue:
    194       1.9      yamt  *
    195       1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    196       1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    197       1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    198       1.9      yamt  */
    199       1.2        ad void
    200      1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    201       1.2        ad {
    202       1.8        ad 	lwp_t *l = curlwp;
    203       1.2        ad 
    204      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    205       1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    206       1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    207       1.2        ad 
    208       1.2        ad 	l->l_syncobj = sobj;
    209       1.2        ad 	l->l_wchan = wchan;
    210       1.2        ad 	l->l_sleepq = sq;
    211       1.2        ad 	l->l_wmesg = wmesg;
    212       1.2        ad 	l->l_slptime = 0;
    213       1.2        ad 	l->l_stat = LSSLEEP;
    214       1.2        ad 	l->l_sleeperr = 0;
    215       1.2        ad 
    216       1.6      yamt 	sleepq_insert(sq, l, sobj);
    217      1.29     rmind 
    218      1.29     rmind 	/* Save the time when thread has slept */
    219      1.29     rmind 	l->l_slpticks = hardclock_ticks;
    220      1.15     rmind 	sched_slept(l);
    221       1.6      yamt }
    222       1.6      yamt 
    223       1.9      yamt /*
    224       1.9      yamt  * sleepq_block:
    225       1.9      yamt  *
    226       1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    227       1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    228       1.9      yamt  * 	example if the LWP's containing process is exiting.
    229      1.48       apb  *
    230      1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    231       1.9      yamt  */
    232       1.9      yamt int
    233      1.50      matt sleepq_block(int timo, bool catch_p)
    234       1.6      yamt {
    235      1.10        ad 	int error = 0, sig;
    236       1.9      yamt 	struct proc *p;
    237       1.8        ad 	lwp_t *l = curlwp;
    238      1.11        ad 	bool early = false;
    239      1.34      yamt 	int biglocks = l->l_biglocks;
    240       1.2        ad 
    241      1.12        ad 	ktrcsw(1, 0);
    242       1.4        ad 
    243       1.2        ad 	/*
    244       1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    245       1.2        ad 	 * core dump events.
    246       1.2        ad 	 */
    247      1.50      matt 	if (catch_p) {
    248       1.5     pavel 		l->l_flag |= LW_SINTR;
    249       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250       1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    251      1.14        ad 			error = EINTR;
    252      1.14        ad 			early = true;
    253      1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254      1.11        ad 			early = true;
    255       1.2        ad 	}
    256       1.2        ad 
    257      1.13      yamt 	if (early) {
    258      1.13      yamt 		/* lwp_unsleep() will release the lock */
    259      1.22        ad 		lwp_unsleep(l, true);
    260      1.13      yamt 	} else {
    261      1.46     rmind 		if (timo) {
    262      1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    263      1.46     rmind 		}
    264      1.46     rmind 		mi_switch(l);
    265      1.11        ad 
    266      1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    267      1.11        ad 		if (timo) {
    268      1.11        ad 			/*
    269      1.11        ad 			 * Even if the callout appears to have fired, we need to
    270      1.11        ad 			 * stop it in order to synchronise with other CPUs.
    271      1.11        ad 			 */
    272      1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    273      1.11        ad 				error = EWOULDBLOCK;
    274      1.11        ad 		}
    275       1.2        ad 	}
    276       1.2        ad 
    277      1.50      matt 	if (catch_p && error == 0) {
    278       1.2        ad 		p = l->l_proc;
    279       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    280       1.2        ad 			error = EINTR;
    281       1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    282      1.33        ad 			/*
    283      1.33        ad 			 * Acquiring p_lock may cause us to recurse
    284      1.33        ad 			 * through the sleep path and back into this
    285      1.33        ad 			 * routine, but is safe because LWPs sleeping
    286      1.33        ad 			 * on locks are non-interruptable.  We will
    287      1.33        ad 			 * not recurse again.
    288      1.33        ad 			 */
    289      1.27        ad 			mutex_enter(p->p_lock);
    290      1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    291      1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    292      1.43  christos 			    (sig = issignal(l)) != 0)
    293       1.2        ad 				error = sleepq_sigtoerror(l, sig);
    294      1.27        ad 			mutex_exit(p->p_lock);
    295       1.2        ad 		}
    296       1.2        ad 	}
    297       1.2        ad 
    298      1.12        ad 	ktrcsw(0, 0);
    299      1.34      yamt 	if (__predict_false(biglocks != 0)) {
    300      1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    301      1.30        ad 	}
    302       1.2        ad 	return error;
    303       1.2        ad }
    304       1.2        ad 
    305       1.2        ad /*
    306       1.2        ad  * sleepq_wake:
    307       1.2        ad  *
    308       1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    309       1.2        ad  */
    310      1.49     pooka void
    311      1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    312       1.2        ad {
    313       1.8        ad 	lwp_t *l, *next;
    314       1.2        ad 
    315      1.30        ad 	KASSERT(mutex_owned(mp));
    316       1.2        ad 
    317      1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    318       1.2        ad 		KASSERT(l->l_sleepq == sq);
    319      1.30        ad 		KASSERT(l->l_mutex == mp);
    320       1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    321       1.2        ad 		if (l->l_wchan != wchan)
    322       1.2        ad 			continue;
    323      1.37     rmind 		sleepq_remove(sq, l);
    324       1.2        ad 		if (--expected == 0)
    325       1.2        ad 			break;
    326       1.2        ad 	}
    327       1.2        ad 
    328      1.30        ad 	mutex_spin_exit(mp);
    329       1.2        ad }
    330       1.2        ad 
    331       1.2        ad /*
    332       1.2        ad  * sleepq_unsleep:
    333       1.2        ad  *
    334       1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    335       1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    336       1.2        ad  *	always release it.
    337       1.2        ad  */
    338      1.37     rmind void
    339      1.22        ad sleepq_unsleep(lwp_t *l, bool cleanup)
    340       1.2        ad {
    341       1.2        ad 	sleepq_t *sq = l->l_sleepq;
    342      1.30        ad 	kmutex_t *mp = l->l_mutex;
    343       1.2        ad 
    344      1.30        ad 	KASSERT(lwp_locked(l, mp));
    345       1.2        ad 	KASSERT(l->l_wchan != NULL);
    346       1.2        ad 
    347      1.37     rmind 	sleepq_remove(sq, l);
    348      1.22        ad 	if (cleanup) {
    349      1.30        ad 		mutex_spin_exit(mp);
    350      1.22        ad 	}
    351       1.2        ad }
    352       1.2        ad 
    353       1.2        ad /*
    354       1.2        ad  * sleepq_timeout:
    355       1.2        ad  *
    356       1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    357       1.2        ad  *	sleep queue.
    358       1.2        ad  */
    359       1.2        ad void
    360       1.2        ad sleepq_timeout(void *arg)
    361       1.2        ad {
    362       1.8        ad 	lwp_t *l = arg;
    363       1.2        ad 
    364       1.2        ad 	/*
    365       1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    366       1.2        ad 	 * current mutex will also be the sleep queue mutex.
    367       1.2        ad 	 */
    368       1.2        ad 	lwp_lock(l);
    369       1.2        ad 
    370       1.2        ad 	if (l->l_wchan == NULL) {
    371       1.2        ad 		/* Somebody beat us to it. */
    372       1.2        ad 		lwp_unlock(l);
    373       1.2        ad 		return;
    374       1.2        ad 	}
    375       1.2        ad 
    376      1.22        ad 	lwp_unsleep(l, true);
    377       1.2        ad }
    378       1.2        ad 
    379       1.2        ad /*
    380       1.2        ad  * sleepq_sigtoerror:
    381       1.2        ad  *
    382       1.2        ad  *	Given a signal number, interpret and return an error code.
    383       1.2        ad  */
    384      1.39     rmind static int
    385       1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    386       1.2        ad {
    387       1.2        ad 	struct proc *p = l->l_proc;
    388       1.2        ad 	int error;
    389       1.2        ad 
    390      1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    391       1.2        ad 
    392       1.2        ad 	/*
    393       1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    394       1.2        ad 	 */
    395       1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    396       1.2        ad 		error = EINTR;
    397       1.2        ad 	else
    398       1.2        ad 		error = ERESTART;
    399       1.2        ad 
    400       1.2        ad 	return error;
    401       1.2        ad }
    402       1.2        ad 
    403       1.2        ad /*
    404       1.2        ad  * sleepq_abort:
    405       1.2        ad  *
    406       1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    407       1.2        ad  *	priority level to give pending interrupts a chance to run, and
    408       1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    409       1.2        ad  *	always returns zero.
    410       1.2        ad  */
    411       1.2        ad int
    412       1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    413       1.2        ad {
    414       1.2        ad 	int s;
    415       1.2        ad 
    416       1.2        ad 	s = splhigh();
    417      1.47      matt 	splx(IPL_SAFEPRI);
    418       1.2        ad 	splx(s);
    419       1.2        ad 	if (mtx != NULL && unlock != 0)
    420       1.2        ad 		mutex_exit(mtx);
    421       1.2        ad 
    422       1.2        ad 	return 0;
    423       1.2        ad }
    424       1.2        ad 
    425       1.2        ad /*
    426      1.44      yamt  * sleepq_reinsert:
    427       1.2        ad  *
    428      1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    429      1.44      yamt  *	change of the lwp's effective priority.
    430       1.2        ad  */
    431      1.44      yamt static void
    432      1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    433       1.2        ad {
    434       1.2        ad 
    435      1.44      yamt 	KASSERT(l->l_sleepq == sq);
    436      1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    437      1.32        ad 		return;
    438      1.32        ad 	}
    439      1.32        ad 
    440      1.32        ad 	/*
    441      1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    442      1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    443      1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    444      1.32        ad 	 * head if there are waiters.
    445      1.32        ad 	 */
    446      1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    447      1.32        ad 		return;
    448      1.18        ad 	}
    449      1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    450      1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    451       1.2        ad }
    452       1.6      yamt 
    453      1.44      yamt /*
    454      1.44      yamt  * sleepq_changepri:
    455      1.44      yamt  *
    456      1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    457      1.44      yamt  */
    458      1.44      yamt void
    459      1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    460      1.44      yamt {
    461      1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    462      1.44      yamt 
    463      1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    464      1.44      yamt 
    465      1.44      yamt 	l->l_priority = pri;
    466      1.44      yamt 	sleepq_reinsert(sq, l);
    467      1.44      yamt }
    468      1.44      yamt 
    469      1.44      yamt /*
    470      1.44      yamt  * sleepq_changepri:
    471      1.44      yamt  *
    472      1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    473      1.44      yamt  */
    474       1.6      yamt void
    475       1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    476       1.6      yamt {
    477       1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    478       1.6      yamt 
    479      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    480       1.6      yamt 
    481       1.6      yamt 	l->l_inheritedprio = pri;
    482  1.50.2.1     skrll 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    483      1.44      yamt 	sleepq_reinsert(sq, l);
    484       1.6      yamt }
    485