Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.55
      1  1.55        ad /*	$NetBSD: kern_sleepq.c,v 1.55 2019/12/16 19:43:36 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.52        ad  * Copyright (c) 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2        ad  * interfaces.
     35   1.2        ad  */
     36   1.2        ad 
     37   1.2        ad #include <sys/cdefs.h>
     38  1.55        ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.55 2019/12/16 19:43:36 ad Exp $");
     39   1.2        ad 
     40   1.2        ad #include <sys/param.h>
     41   1.2        ad #include <sys/kernel.h>
     42   1.9      yamt #include <sys/cpu.h>
     43  1.47      matt #include <sys/intr.h>
     44   1.2        ad #include <sys/pool.h>
     45   1.2        ad #include <sys/proc.h>
     46   1.2        ad #include <sys/resourcevar.h>
     47   1.2        ad #include <sys/sched.h>
     48   1.2        ad #include <sys/systm.h>
     49   1.2        ad #include <sys/sleepq.h>
     50   1.2        ad #include <sys/ktrace.h>
     51   1.2        ad 
     52  1.47      matt /*
     53  1.47      matt  * for sleepq_abort:
     54  1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     56  1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     58  1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  1.47      matt  * it can be made higher to block network software interrupts after panics.
     60  1.47      matt  */
     61  1.47      matt #ifndef	IPL_SAFEPRI
     62  1.47      matt #define	IPL_SAFEPRI	0
     63  1.47      matt #endif
     64  1.47      matt 
     65  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     66   1.2        ad 
     67  1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     68  1.52        ad sleeptab_t	sleeptab __cacheline_aligned;
     69  1.55        ad sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70   1.2        ad 
     71   1.2        ad /*
     72   1.2        ad  * sleeptab_init:
     73   1.2        ad  *
     74   1.2        ad  *	Initialize a sleep table.
     75   1.2        ad  */
     76   1.2        ad void
     77   1.2        ad sleeptab_init(sleeptab_t *st)
     78   1.2        ad {
     79   1.2        ad 	int i;
     80   1.2        ad 
     81   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82  1.55        ad 		mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT, IPL_SCHED);
     83  1.52        ad 		sleepq_init(&st->st_queue[i]);
     84   1.2        ad 	}
     85   1.2        ad }
     86   1.2        ad 
     87   1.2        ad /*
     88   1.2        ad  * sleepq_init:
     89   1.2        ad  *
     90   1.2        ad  *	Prepare a sleep queue for use.
     91   1.2        ad  */
     92   1.2        ad void
     93  1.30        ad sleepq_init(sleepq_t *sq)
     94   1.2        ad {
     95   1.2        ad 
     96  1.30        ad 	TAILQ_INIT(sq);
     97   1.2        ad }
     98   1.2        ad 
     99   1.2        ad /*
    100   1.2        ad  * sleepq_remove:
    101   1.2        ad  *
    102  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    103   1.2        ad  */
    104  1.37     rmind void
    105   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    106   1.2        ad {
    107   1.9      yamt 	struct schedstate_percpu *spc;
    108   1.2        ad 	struct cpu_info *ci;
    109   1.2        ad 
    110  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    111   1.2        ad 
    112  1.30        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    113   1.2        ad 	l->l_syncobj = &sched_syncobj;
    114   1.2        ad 	l->l_wchan = NULL;
    115   1.2        ad 	l->l_sleepq = NULL;
    116   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    117   1.2        ad 
    118   1.9      yamt 	ci = l->l_cpu;
    119   1.9      yamt 	spc = &ci->ci_schedstate;
    120   1.9      yamt 
    121   1.2        ad 	/*
    122   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    123   1.2        ad 	 * holds it stopped set it running again.
    124   1.2        ad 	 */
    125   1.2        ad 	if (l->l_stat != LSSLEEP) {
    126  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    127  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    128  1.37     rmind 		return;
    129   1.2        ad 	}
    130   1.2        ad 
    131   1.2        ad 	/*
    132   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    133   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    134   1.2        ad 	 */
    135  1.31        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    136   1.2        ad 		l->l_stat = LSONPROC;
    137   1.2        ad 		l->l_slptime = 0;
    138  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    139  1.37     rmind 		return;
    140   1.2        ad 	}
    141   1.2        ad 
    142  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    143  1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    144  1.16     rmind 	sched_wakeup(l);
    145  1.29     rmind 
    146  1.29     rmind 	/* Look for a CPU to wake up */
    147  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    148  1.16     rmind 	ci = l->l_cpu;
    149  1.16     rmind 	spc = &ci->ci_schedstate;
    150  1.16     rmind 
    151  1.16     rmind 	/*
    152  1.17      yamt 	 * Set it running.
    153   1.2        ad 	 */
    154   1.9      yamt 	spc_lock(ci);
    155   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    156   1.9      yamt 	sched_setrunnable(l);
    157   1.2        ad 	l->l_stat = LSRUN;
    158   1.2        ad 	l->l_slptime = 0;
    159  1.53        ad 	sched_enqueue(l);
    160  1.53        ad 	sched_resched_lwp(l, true);
    161  1.53        ad 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    162   1.2        ad }
    163   1.2        ad 
    164   1.2        ad /*
    165   1.2        ad  * sleepq_insert:
    166   1.2        ad  *
    167   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    168   1.2        ad  */
    169  1.46     rmind static void
    170   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    171   1.2        ad {
    172   1.2        ad 
    173   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    174  1.40      yamt 		lwp_t *l2;
    175  1.40      yamt 		const int pri = lwp_eprio(l);
    176  1.40      yamt 
    177  1.30        ad 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    178  1.18        ad 			if (lwp_eprio(l2) < pri) {
    179   1.2        ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    180   1.2        ad 				return;
    181   1.2        ad 			}
    182   1.2        ad 		}
    183   1.2        ad 	}
    184   1.2        ad 
    185  1.14        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    186  1.30        ad 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    187  1.14        ad 	else
    188  1.30        ad 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    189   1.2        ad }
    190   1.2        ad 
    191   1.9      yamt /*
    192   1.9      yamt  * sleepq_enqueue:
    193   1.9      yamt  *
    194   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    195   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    196   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    197   1.9      yamt  */
    198   1.2        ad void
    199  1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    200   1.2        ad {
    201   1.8        ad 	lwp_t *l = curlwp;
    202   1.2        ad 
    203  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    204   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    205   1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    206   1.2        ad 
    207   1.2        ad 	l->l_syncobj = sobj;
    208   1.2        ad 	l->l_wchan = wchan;
    209   1.2        ad 	l->l_sleepq = sq;
    210   1.2        ad 	l->l_wmesg = wmesg;
    211   1.2        ad 	l->l_slptime = 0;
    212   1.2        ad 	l->l_stat = LSSLEEP;
    213   1.2        ad 	l->l_sleeperr = 0;
    214   1.2        ad 
    215   1.6      yamt 	sleepq_insert(sq, l, sobj);
    216  1.29     rmind 
    217  1.29     rmind 	/* Save the time when thread has slept */
    218  1.29     rmind 	l->l_slpticks = hardclock_ticks;
    219  1.15     rmind 	sched_slept(l);
    220   1.6      yamt }
    221   1.6      yamt 
    222   1.9      yamt /*
    223   1.9      yamt  * sleepq_block:
    224   1.9      yamt  *
    225   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    226   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    227   1.9      yamt  * 	example if the LWP's containing process is exiting.
    228  1.48       apb  *
    229  1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    230   1.9      yamt  */
    231   1.9      yamt int
    232  1.50      matt sleepq_block(int timo, bool catch_p)
    233   1.6      yamt {
    234  1.10        ad 	int error = 0, sig;
    235   1.9      yamt 	struct proc *p;
    236   1.8        ad 	lwp_t *l = curlwp;
    237  1.11        ad 	bool early = false;
    238  1.34      yamt 	int biglocks = l->l_biglocks;
    239   1.2        ad 
    240  1.12        ad 	ktrcsw(1, 0);
    241   1.4        ad 
    242   1.2        ad 	/*
    243   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    244   1.2        ad 	 * core dump events.
    245   1.2        ad 	 */
    246  1.50      matt 	if (catch_p) {
    247   1.5     pavel 		l->l_flag |= LW_SINTR;
    248   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    249   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    250  1.14        ad 			error = EINTR;
    251  1.14        ad 			early = true;
    252  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    253  1.11        ad 			early = true;
    254   1.2        ad 	}
    255   1.2        ad 
    256  1.13      yamt 	if (early) {
    257  1.13      yamt 		/* lwp_unsleep() will release the lock */
    258  1.22        ad 		lwp_unsleep(l, true);
    259  1.13      yamt 	} else {
    260  1.46     rmind 		if (timo) {
    261  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    262  1.46     rmind 		}
    263  1.54        ad 		spc_lock(l->l_cpu);
    264  1.46     rmind 		mi_switch(l);
    265  1.11        ad 
    266  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    267  1.11        ad 		if (timo) {
    268  1.11        ad 			/*
    269  1.52        ad 			 * Even if the callout appears to have fired, we
    270  1.52        ad 			 * need to stop it in order to synchronise with
    271  1.52        ad 			 * other CPUs.  It's important that we do this in
    272  1.52        ad 			 * this LWP's context, and not during wakeup, in
    273  1.52        ad 			 * order to keep the callout & its cache lines
    274  1.52        ad 			 * co-located on the CPU with the LWP.
    275  1.11        ad 			 */
    276  1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    277  1.11        ad 				error = EWOULDBLOCK;
    278  1.11        ad 		}
    279   1.2        ad 	}
    280   1.2        ad 
    281  1.50      matt 	if (catch_p && error == 0) {
    282   1.2        ad 		p = l->l_proc;
    283   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    284   1.2        ad 			error = EINTR;
    285   1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    286  1.33        ad 			/*
    287  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    288  1.33        ad 			 * through the sleep path and back into this
    289  1.33        ad 			 * routine, but is safe because LWPs sleeping
    290  1.33        ad 			 * on locks are non-interruptable.  We will
    291  1.33        ad 			 * not recurse again.
    292  1.33        ad 			 */
    293  1.27        ad 			mutex_enter(p->p_lock);
    294  1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    295  1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    296  1.43  christos 			    (sig = issignal(l)) != 0)
    297   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    298  1.27        ad 			mutex_exit(p->p_lock);
    299   1.2        ad 		}
    300   1.2        ad 	}
    301   1.2        ad 
    302  1.12        ad 	ktrcsw(0, 0);
    303  1.34      yamt 	if (__predict_false(biglocks != 0)) {
    304  1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    305  1.30        ad 	}
    306   1.2        ad 	return error;
    307   1.2        ad }
    308   1.2        ad 
    309   1.2        ad /*
    310   1.2        ad  * sleepq_wake:
    311   1.2        ad  *
    312   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    313   1.2        ad  */
    314  1.49     pooka void
    315  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    316   1.2        ad {
    317   1.8        ad 	lwp_t *l, *next;
    318   1.2        ad 
    319  1.30        ad 	KASSERT(mutex_owned(mp));
    320   1.2        ad 
    321  1.30        ad 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    322   1.2        ad 		KASSERT(l->l_sleepq == sq);
    323  1.30        ad 		KASSERT(l->l_mutex == mp);
    324   1.2        ad 		next = TAILQ_NEXT(l, l_sleepchain);
    325   1.2        ad 		if (l->l_wchan != wchan)
    326   1.2        ad 			continue;
    327  1.37     rmind 		sleepq_remove(sq, l);
    328   1.2        ad 		if (--expected == 0)
    329   1.2        ad 			break;
    330   1.2        ad 	}
    331   1.2        ad 
    332  1.30        ad 	mutex_spin_exit(mp);
    333   1.2        ad }
    334   1.2        ad 
    335   1.2        ad /*
    336   1.2        ad  * sleepq_unsleep:
    337   1.2        ad  *
    338   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    339   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    340  1.52        ad  *	release it if "unlock" is true.
    341   1.2        ad  */
    342  1.37     rmind void
    343  1.52        ad sleepq_unsleep(lwp_t *l, bool unlock)
    344   1.2        ad {
    345   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    346  1.30        ad 	kmutex_t *mp = l->l_mutex;
    347   1.2        ad 
    348  1.30        ad 	KASSERT(lwp_locked(l, mp));
    349   1.2        ad 	KASSERT(l->l_wchan != NULL);
    350   1.2        ad 
    351  1.37     rmind 	sleepq_remove(sq, l);
    352  1.52        ad 	if (unlock) {
    353  1.30        ad 		mutex_spin_exit(mp);
    354  1.22        ad 	}
    355   1.2        ad }
    356   1.2        ad 
    357   1.2        ad /*
    358   1.2        ad  * sleepq_timeout:
    359   1.2        ad  *
    360   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    361   1.2        ad  *	sleep queue.
    362   1.2        ad  */
    363   1.2        ad void
    364   1.2        ad sleepq_timeout(void *arg)
    365   1.2        ad {
    366   1.8        ad 	lwp_t *l = arg;
    367   1.2        ad 
    368   1.2        ad 	/*
    369   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    370   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    371   1.2        ad 	 */
    372   1.2        ad 	lwp_lock(l);
    373   1.2        ad 
    374   1.2        ad 	if (l->l_wchan == NULL) {
    375   1.2        ad 		/* Somebody beat us to it. */
    376   1.2        ad 		lwp_unlock(l);
    377   1.2        ad 		return;
    378   1.2        ad 	}
    379   1.2        ad 
    380  1.22        ad 	lwp_unsleep(l, true);
    381   1.2        ad }
    382   1.2        ad 
    383   1.2        ad /*
    384   1.2        ad  * sleepq_sigtoerror:
    385   1.2        ad  *
    386   1.2        ad  *	Given a signal number, interpret and return an error code.
    387   1.2        ad  */
    388  1.39     rmind static int
    389   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    390   1.2        ad {
    391   1.2        ad 	struct proc *p = l->l_proc;
    392   1.2        ad 	int error;
    393   1.2        ad 
    394  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    395   1.2        ad 
    396   1.2        ad 	/*
    397   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    398   1.2        ad 	 */
    399   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    400   1.2        ad 		error = EINTR;
    401   1.2        ad 	else
    402   1.2        ad 		error = ERESTART;
    403   1.2        ad 
    404   1.2        ad 	return error;
    405   1.2        ad }
    406   1.2        ad 
    407   1.2        ad /*
    408   1.2        ad  * sleepq_abort:
    409   1.2        ad  *
    410   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    411   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    412   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    413   1.2        ad  *	always returns zero.
    414   1.2        ad  */
    415   1.2        ad int
    416   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    417   1.2        ad {
    418   1.2        ad 	int s;
    419   1.2        ad 
    420   1.2        ad 	s = splhigh();
    421  1.47      matt 	splx(IPL_SAFEPRI);
    422   1.2        ad 	splx(s);
    423   1.2        ad 	if (mtx != NULL && unlock != 0)
    424   1.2        ad 		mutex_exit(mtx);
    425   1.2        ad 
    426   1.2        ad 	return 0;
    427   1.2        ad }
    428   1.2        ad 
    429   1.2        ad /*
    430  1.44      yamt  * sleepq_reinsert:
    431   1.2        ad  *
    432  1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    433  1.44      yamt  *	change of the lwp's effective priority.
    434   1.2        ad  */
    435  1.44      yamt static void
    436  1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    437   1.2        ad {
    438   1.2        ad 
    439  1.44      yamt 	KASSERT(l->l_sleepq == sq);
    440  1.32        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    441  1.32        ad 		return;
    442  1.32        ad 	}
    443  1.32        ad 
    444  1.32        ad 	/*
    445  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    446  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    447  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    448  1.32        ad 	 * head if there are waiters.
    449  1.32        ad 	 */
    450  1.32        ad 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    451  1.32        ad 		return;
    452  1.18        ad 	}
    453  1.32        ad 	TAILQ_REMOVE(sq, l, l_sleepchain);
    454  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    455   1.2        ad }
    456   1.6      yamt 
    457  1.44      yamt /*
    458  1.44      yamt  * sleepq_changepri:
    459  1.44      yamt  *
    460  1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    461  1.44      yamt  */
    462  1.44      yamt void
    463  1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    464  1.44      yamt {
    465  1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    466  1.44      yamt 
    467  1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    468  1.44      yamt 
    469  1.44      yamt 	l->l_priority = pri;
    470  1.44      yamt 	sleepq_reinsert(sq, l);
    471  1.44      yamt }
    472  1.44      yamt 
    473  1.44      yamt /*
    474  1.44      yamt  * sleepq_changepri:
    475  1.44      yamt  *
    476  1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    477  1.44      yamt  */
    478   1.6      yamt void
    479   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    480   1.6      yamt {
    481   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    482   1.6      yamt 
    483  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    484   1.6      yamt 
    485   1.6      yamt 	l->l_inheritedprio = pri;
    486  1.51  christos 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    487  1.44      yamt 	sleepq_reinsert(sq, l);
    488   1.6      yamt }
    489