Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.63
      1  1.63        ad /*	$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.59        ad  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34   1.2        ad  * interfaces.
     35   1.2        ad  */
     36   1.2        ad 
     37   1.2        ad #include <sys/cdefs.h>
     38  1.63        ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $");
     39   1.2        ad 
     40   1.2        ad #include <sys/param.h>
     41   1.2        ad #include <sys/kernel.h>
     42   1.9      yamt #include <sys/cpu.h>
     43  1.47      matt #include <sys/intr.h>
     44   1.2        ad #include <sys/pool.h>
     45   1.2        ad #include <sys/proc.h>
     46   1.2        ad #include <sys/resourcevar.h>
     47   1.2        ad #include <sys/sched.h>
     48   1.2        ad #include <sys/systm.h>
     49   1.2        ad #include <sys/sleepq.h>
     50   1.2        ad #include <sys/ktrace.h>
     51   1.2        ad 
     52  1.47      matt /*
     53  1.47      matt  * for sleepq_abort:
     54  1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     56  1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     58  1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  1.47      matt  * it can be made higher to block network software interrupts after panics.
     60  1.47      matt  */
     61  1.47      matt #ifndef	IPL_SAFEPRI
     62  1.47      matt #define	IPL_SAFEPRI	0
     63  1.47      matt #endif
     64  1.47      matt 
     65  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     66   1.2        ad 
     67  1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     68  1.52        ad sleeptab_t	sleeptab __cacheline_aligned;
     69  1.55        ad sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70   1.2        ad 
     71   1.2        ad /*
     72   1.2        ad  * sleeptab_init:
     73   1.2        ad  *
     74   1.2        ad  *	Initialize a sleep table.
     75   1.2        ad  */
     76   1.2        ad void
     77   1.2        ad sleeptab_init(sleeptab_t *st)
     78   1.2        ad {
     79  1.56        ad 	static bool again;
     80   1.2        ad 	int i;
     81   1.2        ad 
     82   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83  1.56        ad 		if (!again) {
     84  1.56        ad 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     85  1.56        ad 			    IPL_SCHED);
     86  1.56        ad 		}
     87  1.52        ad 		sleepq_init(&st->st_queue[i]);
     88   1.2        ad 	}
     89  1.56        ad 	again = true;
     90   1.2        ad }
     91   1.2        ad 
     92   1.2        ad /*
     93   1.2        ad  * sleepq_init:
     94   1.2        ad  *
     95   1.2        ad  *	Prepare a sleep queue for use.
     96   1.2        ad  */
     97   1.2        ad void
     98  1.30        ad sleepq_init(sleepq_t *sq)
     99   1.2        ad {
    100   1.2        ad 
    101  1.63        ad 	LIST_INIT(sq);
    102   1.2        ad }
    103   1.2        ad 
    104   1.2        ad /*
    105   1.2        ad  * sleepq_remove:
    106   1.2        ad  *
    107  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    108   1.2        ad  */
    109  1.37     rmind void
    110   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    111   1.2        ad {
    112   1.9      yamt 	struct schedstate_percpu *spc;
    113   1.2        ad 	struct cpu_info *ci;
    114   1.2        ad 
    115  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    116   1.2        ad 
    117  1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    118  1.59        ad 		KASSERT(sq != NULL);
    119  1.63        ad 		LIST_REMOVE(l, l_sleepchain);
    120  1.59        ad 	} else {
    121  1.59        ad 		KASSERT(sq == NULL);
    122  1.59        ad 	}
    123  1.59        ad 
    124   1.2        ad 	l->l_syncobj = &sched_syncobj;
    125   1.2        ad 	l->l_wchan = NULL;
    126   1.2        ad 	l->l_sleepq = NULL;
    127   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    128   1.2        ad 
    129   1.9      yamt 	ci = l->l_cpu;
    130   1.9      yamt 	spc = &ci->ci_schedstate;
    131   1.9      yamt 
    132   1.2        ad 	/*
    133   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134   1.2        ad 	 * holds it stopped set it running again.
    135   1.2        ad 	 */
    136   1.2        ad 	if (l->l_stat != LSSLEEP) {
    137  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    139  1.37     rmind 		return;
    140   1.2        ad 	}
    141   1.2        ad 
    142   1.2        ad 	/*
    143   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    145   1.2        ad 	 */
    146  1.61        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    147   1.2        ad 		l->l_stat = LSONPROC;
    148   1.2        ad 		l->l_slptime = 0;
    149  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    150  1.37     rmind 		return;
    151   1.2        ad 	}
    152   1.2        ad 
    153  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    154  1.29     rmind 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    155  1.16     rmind 	sched_wakeup(l);
    156  1.29     rmind 
    157  1.29     rmind 	/* Look for a CPU to wake up */
    158  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    159  1.16     rmind 	ci = l->l_cpu;
    160  1.16     rmind 	spc = &ci->ci_schedstate;
    161  1.16     rmind 
    162  1.16     rmind 	/*
    163  1.17      yamt 	 * Set it running.
    164   1.2        ad 	 */
    165   1.9      yamt 	spc_lock(ci);
    166   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    167   1.9      yamt 	sched_setrunnable(l);
    168   1.2        ad 	l->l_stat = LSRUN;
    169   1.2        ad 	l->l_slptime = 0;
    170  1.53        ad 	sched_enqueue(l);
    171  1.53        ad 	sched_resched_lwp(l, true);
    172  1.53        ad 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    173   1.2        ad }
    174   1.2        ad 
    175   1.2        ad /*
    176   1.2        ad  * sleepq_insert:
    177   1.2        ad  *
    178   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179   1.2        ad  */
    180  1.46     rmind static void
    181   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182   1.2        ad {
    183   1.2        ad 
    184  1.59        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    185  1.59        ad 		KASSERT(sq == NULL);
    186  1.59        ad 		return;
    187  1.59        ad 	}
    188  1.59        ad 	KASSERT(sq != NULL);
    189  1.59        ad 
    190   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    191  1.40      yamt 		lwp_t *l2;
    192  1.60  christos 		const pri_t pri = lwp_eprio(l);
    193  1.40      yamt 
    194  1.63        ad 		LIST_FOREACH(l2, sq, l_sleepchain) {
    195  1.18        ad 			if (lwp_eprio(l2) < pri) {
    196  1.63        ad 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    197   1.2        ad 				return;
    198   1.2        ad 			}
    199   1.2        ad 		}
    200   1.2        ad 	}
    201   1.2        ad 
    202  1.63        ad 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    203   1.2        ad }
    204   1.2        ad 
    205   1.9      yamt /*
    206   1.9      yamt  * sleepq_enqueue:
    207   1.9      yamt  *
    208   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    209   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    210   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    211   1.9      yamt  */
    212   1.2        ad void
    213  1.18        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    214   1.2        ad {
    215   1.8        ad 	lwp_t *l = curlwp;
    216   1.2        ad 
    217  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    218   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    219   1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    220   1.2        ad 
    221   1.2        ad 	l->l_syncobj = sobj;
    222   1.2        ad 	l->l_wchan = wchan;
    223   1.2        ad 	l->l_sleepq = sq;
    224   1.2        ad 	l->l_wmesg = wmesg;
    225   1.2        ad 	l->l_slptime = 0;
    226   1.2        ad 	l->l_stat = LSSLEEP;
    227   1.2        ad 
    228   1.6      yamt 	sleepq_insert(sq, l, sobj);
    229  1.29     rmind 
    230  1.29     rmind 	/* Save the time when thread has slept */
    231  1.29     rmind 	l->l_slpticks = hardclock_ticks;
    232  1.15     rmind 	sched_slept(l);
    233   1.6      yamt }
    234   1.6      yamt 
    235   1.9      yamt /*
    236   1.9      yamt  * sleepq_block:
    237   1.9      yamt  *
    238   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    239   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    240   1.9      yamt  * 	example if the LWP's containing process is exiting.
    241  1.48       apb  *
    242  1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    243   1.9      yamt  */
    244   1.9      yamt int
    245  1.50      matt sleepq_block(int timo, bool catch_p)
    246   1.6      yamt {
    247  1.10        ad 	int error = 0, sig;
    248   1.9      yamt 	struct proc *p;
    249   1.8        ad 	lwp_t *l = curlwp;
    250  1.11        ad 	bool early = false;
    251  1.34      yamt 	int biglocks = l->l_biglocks;
    252   1.2        ad 
    253  1.12        ad 	ktrcsw(1, 0);
    254   1.4        ad 
    255   1.2        ad 	/*
    256   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    257   1.2        ad 	 * core dump events.
    258   1.2        ad 	 */
    259  1.50      matt 	if (catch_p) {
    260   1.5     pavel 		l->l_flag |= LW_SINTR;
    261   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    262   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    263  1.14        ad 			error = EINTR;
    264  1.14        ad 			early = true;
    265  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    266  1.11        ad 			early = true;
    267   1.2        ad 	}
    268   1.2        ad 
    269  1.13      yamt 	if (early) {
    270  1.13      yamt 		/* lwp_unsleep() will release the lock */
    271  1.22        ad 		lwp_unsleep(l, true);
    272  1.13      yamt 	} else {
    273  1.46     rmind 		if (timo) {
    274  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    275  1.46     rmind 		}
    276  1.54        ad 		spc_lock(l->l_cpu);
    277  1.46     rmind 		mi_switch(l);
    278  1.11        ad 
    279  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    280  1.11        ad 		if (timo) {
    281  1.11        ad 			/*
    282  1.52        ad 			 * Even if the callout appears to have fired, we
    283  1.52        ad 			 * need to stop it in order to synchronise with
    284  1.52        ad 			 * other CPUs.  It's important that we do this in
    285  1.52        ad 			 * this LWP's context, and not during wakeup, in
    286  1.52        ad 			 * order to keep the callout & its cache lines
    287  1.52        ad 			 * co-located on the CPU with the LWP.
    288  1.11        ad 			 */
    289  1.26        ad 			if (callout_halt(&l->l_timeout_ch, NULL))
    290  1.11        ad 				error = EWOULDBLOCK;
    291  1.11        ad 		}
    292   1.2        ad 	}
    293   1.2        ad 
    294  1.50      matt 	if (catch_p && error == 0) {
    295   1.2        ad 		p = l->l_proc;
    296   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    297   1.2        ad 			error = EINTR;
    298   1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    299  1.33        ad 			/*
    300  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    301  1.33        ad 			 * through the sleep path and back into this
    302  1.33        ad 			 * routine, but is safe because LWPs sleeping
    303  1.62        ad 			 * on locks are non-interruptable and we will
    304  1.33        ad 			 * not recurse again.
    305  1.33        ad 			 */
    306  1.27        ad 			mutex_enter(p->p_lock);
    307  1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    308  1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    309  1.43  christos 			    (sig = issignal(l)) != 0)
    310   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    311  1.27        ad 			mutex_exit(p->p_lock);
    312   1.2        ad 		}
    313   1.2        ad 	}
    314   1.2        ad 
    315  1.12        ad 	ktrcsw(0, 0);
    316  1.34      yamt 	if (__predict_false(biglocks != 0)) {
    317  1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    318  1.30        ad 	}
    319   1.2        ad 	return error;
    320   1.2        ad }
    321   1.2        ad 
    322   1.2        ad /*
    323   1.2        ad  * sleepq_wake:
    324   1.2        ad  *
    325   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    326   1.2        ad  */
    327  1.49     pooka void
    328  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    329   1.2        ad {
    330   1.8        ad 	lwp_t *l, *next;
    331   1.2        ad 
    332  1.30        ad 	KASSERT(mutex_owned(mp));
    333   1.2        ad 
    334  1.63        ad 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    335   1.2        ad 		KASSERT(l->l_sleepq == sq);
    336  1.30        ad 		KASSERT(l->l_mutex == mp);
    337  1.63        ad 		next = LIST_NEXT(l, l_sleepchain);
    338   1.2        ad 		if (l->l_wchan != wchan)
    339   1.2        ad 			continue;
    340  1.37     rmind 		sleepq_remove(sq, l);
    341   1.2        ad 		if (--expected == 0)
    342   1.2        ad 			break;
    343   1.2        ad 	}
    344   1.2        ad 
    345  1.30        ad 	mutex_spin_exit(mp);
    346   1.2        ad }
    347   1.2        ad 
    348   1.2        ad /*
    349   1.2        ad  * sleepq_unsleep:
    350   1.2        ad  *
    351   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    352   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    353  1.52        ad  *	release it if "unlock" is true.
    354   1.2        ad  */
    355  1.37     rmind void
    356  1.52        ad sleepq_unsleep(lwp_t *l, bool unlock)
    357   1.2        ad {
    358   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    359  1.30        ad 	kmutex_t *mp = l->l_mutex;
    360   1.2        ad 
    361  1.30        ad 	KASSERT(lwp_locked(l, mp));
    362   1.2        ad 	KASSERT(l->l_wchan != NULL);
    363   1.2        ad 
    364  1.37     rmind 	sleepq_remove(sq, l);
    365  1.52        ad 	if (unlock) {
    366  1.30        ad 		mutex_spin_exit(mp);
    367  1.22        ad 	}
    368   1.2        ad }
    369   1.2        ad 
    370   1.2        ad /*
    371   1.2        ad  * sleepq_timeout:
    372   1.2        ad  *
    373   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    374   1.2        ad  *	sleep queue.
    375   1.2        ad  */
    376   1.2        ad void
    377   1.2        ad sleepq_timeout(void *arg)
    378   1.2        ad {
    379   1.8        ad 	lwp_t *l = arg;
    380   1.2        ad 
    381   1.2        ad 	/*
    382   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    383   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    384   1.2        ad 	 */
    385   1.2        ad 	lwp_lock(l);
    386   1.2        ad 
    387   1.2        ad 	if (l->l_wchan == NULL) {
    388   1.2        ad 		/* Somebody beat us to it. */
    389   1.2        ad 		lwp_unlock(l);
    390   1.2        ad 		return;
    391   1.2        ad 	}
    392   1.2        ad 
    393  1.22        ad 	lwp_unsleep(l, true);
    394   1.2        ad }
    395   1.2        ad 
    396   1.2        ad /*
    397   1.2        ad  * sleepq_sigtoerror:
    398   1.2        ad  *
    399   1.2        ad  *	Given a signal number, interpret and return an error code.
    400   1.2        ad  */
    401  1.39     rmind static int
    402   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    403   1.2        ad {
    404   1.2        ad 	struct proc *p = l->l_proc;
    405   1.2        ad 	int error;
    406   1.2        ad 
    407  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    408   1.2        ad 
    409   1.2        ad 	/*
    410   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    411   1.2        ad 	 */
    412   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    413   1.2        ad 		error = EINTR;
    414   1.2        ad 	else
    415   1.2        ad 		error = ERESTART;
    416   1.2        ad 
    417   1.2        ad 	return error;
    418   1.2        ad }
    419   1.2        ad 
    420   1.2        ad /*
    421   1.2        ad  * sleepq_abort:
    422   1.2        ad  *
    423   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    424   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    425   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    426   1.2        ad  *	always returns zero.
    427   1.2        ad  */
    428   1.2        ad int
    429   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    430   1.2        ad {
    431   1.2        ad 	int s;
    432   1.2        ad 
    433   1.2        ad 	s = splhigh();
    434  1.47      matt 	splx(IPL_SAFEPRI);
    435   1.2        ad 	splx(s);
    436   1.2        ad 	if (mtx != NULL && unlock != 0)
    437   1.2        ad 		mutex_exit(mtx);
    438   1.2        ad 
    439   1.2        ad 	return 0;
    440   1.2        ad }
    441   1.2        ad 
    442   1.2        ad /*
    443  1.44      yamt  * sleepq_reinsert:
    444   1.2        ad  *
    445  1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    446  1.44      yamt  *	change of the lwp's effective priority.
    447   1.2        ad  */
    448  1.44      yamt static void
    449  1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    450   1.2        ad {
    451   1.2        ad 
    452  1.44      yamt 	KASSERT(l->l_sleepq == sq);
    453  1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    454  1.32        ad 		return;
    455  1.32        ad 	}
    456  1.32        ad 
    457  1.32        ad 	/*
    458  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    459  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    460  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    461  1.32        ad 	 * head if there are waiters.
    462  1.32        ad 	 */
    463  1.63        ad 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    464  1.32        ad 		return;
    465  1.18        ad 	}
    466  1.63        ad 	LIST_REMOVE(l, l_sleepchain);
    467  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    468   1.2        ad }
    469   1.6      yamt 
    470  1.44      yamt /*
    471  1.44      yamt  * sleepq_changepri:
    472  1.44      yamt  *
    473  1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    474  1.44      yamt  */
    475  1.44      yamt void
    476  1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    477  1.44      yamt {
    478  1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    479  1.44      yamt 
    480  1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    481  1.44      yamt 
    482  1.44      yamt 	l->l_priority = pri;
    483  1.44      yamt 	sleepq_reinsert(sq, l);
    484  1.44      yamt }
    485  1.44      yamt 
    486  1.44      yamt /*
    487  1.44      yamt  * sleepq_changepri:
    488  1.44      yamt  *
    489  1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    490  1.44      yamt  */
    491   1.6      yamt void
    492   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    493   1.6      yamt {
    494   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    495   1.6      yamt 
    496  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    497   1.6      yamt 
    498   1.6      yamt 	l->l_inheritedprio = pri;
    499  1.51  christos 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    500  1.44      yamt 	sleepq_reinsert(sq, l);
    501   1.6      yamt }
    502