Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.63.2.1
      1  1.63.2.1    bouyer /*	$NetBSD: kern_sleepq.c,v 1.63.2.1 2020/04/20 11:29:10 bouyer Exp $	*/
      2       1.2        ad 
      3       1.2        ad /*-
      4      1.59        ad  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5       1.2        ad  * All rights reserved.
      6       1.2        ad  *
      7       1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2        ad  * by Andrew Doran.
      9       1.2        ad  *
     10       1.2        ad  * Redistribution and use in source and binary forms, with or without
     11       1.2        ad  * modification, are permitted provided that the following conditions
     12       1.2        ad  * are met:
     13       1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.2        ad  *    documentation and/or other materials provided with the distribution.
     18       1.2        ad  *
     19       1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2        ad  */
     31       1.2        ad 
     32       1.2        ad /*
     33       1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34       1.2        ad  * interfaces.
     35       1.2        ad  */
     36       1.2        ad 
     37       1.2        ad #include <sys/cdefs.h>
     38  1.63.2.1    bouyer __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.63.2.1 2020/04/20 11:29:10 bouyer Exp $");
     39       1.2        ad 
     40       1.2        ad #include <sys/param.h>
     41       1.2        ad #include <sys/kernel.h>
     42       1.9      yamt #include <sys/cpu.h>
     43      1.47      matt #include <sys/intr.h>
     44       1.2        ad #include <sys/pool.h>
     45       1.2        ad #include <sys/proc.h>
     46       1.2        ad #include <sys/resourcevar.h>
     47       1.2        ad #include <sys/sched.h>
     48       1.2        ad #include <sys/systm.h>
     49       1.2        ad #include <sys/sleepq.h>
     50       1.2        ad #include <sys/ktrace.h>
     51       1.2        ad 
     52      1.47      matt /*
     53      1.47      matt  * for sleepq_abort:
     54      1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     55      1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     56      1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57      1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     58      1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59      1.47      matt  * it can be made higher to block network software interrupts after panics.
     60      1.47      matt  */
     61      1.47      matt #ifndef	IPL_SAFEPRI
     62      1.47      matt #define	IPL_SAFEPRI	0
     63      1.47      matt #endif
     64      1.47      matt 
     65      1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     66       1.2        ad 
     67      1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     68      1.52        ad sleeptab_t	sleeptab __cacheline_aligned;
     69      1.55        ad sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70       1.2        ad 
     71       1.2        ad /*
     72       1.2        ad  * sleeptab_init:
     73       1.2        ad  *
     74       1.2        ad  *	Initialize a sleep table.
     75       1.2        ad  */
     76       1.2        ad void
     77       1.2        ad sleeptab_init(sleeptab_t *st)
     78       1.2        ad {
     79      1.56        ad 	static bool again;
     80       1.2        ad 	int i;
     81       1.2        ad 
     82       1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83      1.56        ad 		if (!again) {
     84      1.56        ad 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     85      1.56        ad 			    IPL_SCHED);
     86      1.56        ad 		}
     87      1.52        ad 		sleepq_init(&st->st_queue[i]);
     88       1.2        ad 	}
     89      1.56        ad 	again = true;
     90       1.2        ad }
     91       1.2        ad 
     92       1.2        ad /*
     93       1.2        ad  * sleepq_init:
     94       1.2        ad  *
     95       1.2        ad  *	Prepare a sleep queue for use.
     96       1.2        ad  */
     97       1.2        ad void
     98      1.30        ad sleepq_init(sleepq_t *sq)
     99       1.2        ad {
    100       1.2        ad 
    101      1.63        ad 	LIST_INIT(sq);
    102       1.2        ad }
    103       1.2        ad 
    104       1.2        ad /*
    105       1.2        ad  * sleepq_remove:
    106       1.2        ad  *
    107      1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    108       1.2        ad  */
    109      1.37     rmind void
    110       1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    111       1.2        ad {
    112       1.9      yamt 	struct schedstate_percpu *spc;
    113       1.2        ad 	struct cpu_info *ci;
    114       1.2        ad 
    115      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    116       1.2        ad 
    117      1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    118      1.59        ad 		KASSERT(sq != NULL);
    119      1.63        ad 		LIST_REMOVE(l, l_sleepchain);
    120      1.59        ad 	} else {
    121      1.59        ad 		KASSERT(sq == NULL);
    122      1.59        ad 	}
    123      1.59        ad 
    124       1.2        ad 	l->l_syncobj = &sched_syncobj;
    125       1.2        ad 	l->l_wchan = NULL;
    126       1.2        ad 	l->l_sleepq = NULL;
    127       1.5     pavel 	l->l_flag &= ~LW_SINTR;
    128       1.2        ad 
    129       1.9      yamt 	ci = l->l_cpu;
    130       1.9      yamt 	spc = &ci->ci_schedstate;
    131       1.9      yamt 
    132       1.2        ad 	/*
    133       1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134       1.2        ad 	 * holds it stopped set it running again.
    135       1.2        ad 	 */
    136       1.2        ad 	if (l->l_stat != LSSLEEP) {
    137      1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    139      1.37     rmind 		return;
    140       1.2        ad 	}
    141       1.2        ad 
    142       1.2        ad 	/*
    143       1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144       1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    145       1.2        ad 	 */
    146      1.61        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    147       1.2        ad 		l->l_stat = LSONPROC;
    148       1.2        ad 		l->l_slptime = 0;
    149      1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    150      1.37     rmind 		return;
    151       1.2        ad 	}
    152       1.2        ad 
    153      1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    154  1.63.2.1    bouyer 	l->l_slpticksum += (getticks() - l->l_slpticks);
    155      1.16     rmind 	sched_wakeup(l);
    156      1.29     rmind 
    157      1.29     rmind 	/* Look for a CPU to wake up */
    158      1.29     rmind 	l->l_cpu = sched_takecpu(l);
    159      1.16     rmind 	ci = l->l_cpu;
    160      1.16     rmind 	spc = &ci->ci_schedstate;
    161      1.16     rmind 
    162      1.16     rmind 	/*
    163      1.17      yamt 	 * Set it running.
    164       1.2        ad 	 */
    165       1.9      yamt 	spc_lock(ci);
    166       1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    167       1.9      yamt 	sched_setrunnable(l);
    168       1.2        ad 	l->l_stat = LSRUN;
    169       1.2        ad 	l->l_slptime = 0;
    170      1.53        ad 	sched_enqueue(l);
    171      1.53        ad 	sched_resched_lwp(l, true);
    172      1.53        ad 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    173       1.2        ad }
    174       1.2        ad 
    175       1.2        ad /*
    176       1.2        ad  * sleepq_insert:
    177       1.2        ad  *
    178       1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179       1.2        ad  */
    180      1.46     rmind static void
    181       1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182       1.2        ad {
    183       1.2        ad 
    184      1.59        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    185      1.59        ad 		KASSERT(sq == NULL);
    186      1.59        ad 		return;
    187      1.59        ad 	}
    188      1.59        ad 	KASSERT(sq != NULL);
    189      1.59        ad 
    190       1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    191      1.40      yamt 		lwp_t *l2;
    192      1.60  christos 		const pri_t pri = lwp_eprio(l);
    193      1.40      yamt 
    194      1.63        ad 		LIST_FOREACH(l2, sq, l_sleepchain) {
    195      1.18        ad 			if (lwp_eprio(l2) < pri) {
    196      1.63        ad 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    197       1.2        ad 				return;
    198       1.2        ad 			}
    199       1.2        ad 		}
    200       1.2        ad 	}
    201       1.2        ad 
    202      1.63        ad 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    203       1.2        ad }
    204       1.2        ad 
    205       1.9      yamt /*
    206       1.9      yamt  * sleepq_enqueue:
    207       1.9      yamt  *
    208       1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    209       1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    210       1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    211       1.9      yamt  */
    212       1.2        ad void
    213  1.63.2.1    bouyer sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    214  1.63.2.1    bouyer     bool catch_p)
    215       1.2        ad {
    216       1.8        ad 	lwp_t *l = curlwp;
    217       1.2        ad 
    218      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    219       1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    220       1.2        ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    221  1.63.2.1    bouyer 	KASSERT((l->l_flag & LW_SINTR) == 0);
    222       1.2        ad 
    223       1.2        ad 	l->l_syncobj = sobj;
    224       1.2        ad 	l->l_wchan = wchan;
    225       1.2        ad 	l->l_sleepq = sq;
    226       1.2        ad 	l->l_wmesg = wmesg;
    227       1.2        ad 	l->l_slptime = 0;
    228       1.2        ad 	l->l_stat = LSSLEEP;
    229  1.63.2.1    bouyer 	if (catch_p)
    230  1.63.2.1    bouyer 		l->l_flag |= LW_SINTR;
    231       1.2        ad 
    232       1.6      yamt 	sleepq_insert(sq, l, sobj);
    233      1.29     rmind 
    234      1.29     rmind 	/* Save the time when thread has slept */
    235  1.63.2.1    bouyer 	l->l_slpticks = getticks();
    236      1.15     rmind 	sched_slept(l);
    237       1.6      yamt }
    238       1.6      yamt 
    239       1.9      yamt /*
    240       1.9      yamt  * sleepq_block:
    241       1.9      yamt  *
    242       1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    243       1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    244       1.9      yamt  * 	example if the LWP's containing process is exiting.
    245      1.48       apb  *
    246      1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    247       1.9      yamt  */
    248       1.9      yamt int
    249      1.50      matt sleepq_block(int timo, bool catch_p)
    250       1.6      yamt {
    251      1.10        ad 	int error = 0, sig;
    252       1.9      yamt 	struct proc *p;
    253       1.8        ad 	lwp_t *l = curlwp;
    254      1.11        ad 	bool early = false;
    255      1.34      yamt 	int biglocks = l->l_biglocks;
    256       1.2        ad 
    257      1.12        ad 	ktrcsw(1, 0);
    258       1.4        ad 
    259       1.2        ad 	/*
    260       1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    261       1.2        ad 	 * core dump events.
    262       1.2        ad 	 */
    263      1.50      matt 	if (catch_p) {
    264       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    265       1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    266      1.14        ad 			error = EINTR;
    267      1.14        ad 			early = true;
    268      1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    269      1.11        ad 			early = true;
    270       1.2        ad 	}
    271       1.2        ad 
    272      1.13      yamt 	if (early) {
    273      1.13      yamt 		/* lwp_unsleep() will release the lock */
    274      1.22        ad 		lwp_unsleep(l, true);
    275      1.13      yamt 	} else {
    276  1.63.2.1    bouyer 		/*
    277  1.63.2.1    bouyer 		 * The LWP may have already been awoken if the caller
    278  1.63.2.1    bouyer 		 * dropped the sleep queue lock between sleepq_enqueue() and
    279  1.63.2.1    bouyer 		 * sleepq_block().  If that happends l_stat will be LSONPROC
    280  1.63.2.1    bouyer 		 * and mi_switch() will treat this as a preemption.  No need
    281  1.63.2.1    bouyer 		 * to do anything special here.
    282  1.63.2.1    bouyer 		 */
    283      1.46     rmind 		if (timo) {
    284  1.63.2.1    bouyer 			l->l_flag &= ~LW_STIMO;
    285      1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    286      1.46     rmind 		}
    287      1.54        ad 		spc_lock(l->l_cpu);
    288      1.46     rmind 		mi_switch(l);
    289      1.11        ad 
    290      1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    291      1.11        ad 		if (timo) {
    292      1.11        ad 			/*
    293      1.52        ad 			 * Even if the callout appears to have fired, we
    294      1.52        ad 			 * need to stop it in order to synchronise with
    295      1.52        ad 			 * other CPUs.  It's important that we do this in
    296      1.52        ad 			 * this LWP's context, and not during wakeup, in
    297      1.52        ad 			 * order to keep the callout & its cache lines
    298      1.52        ad 			 * co-located on the CPU with the LWP.
    299      1.11        ad 			 */
    300  1.63.2.1    bouyer 			(void)callout_halt(&l->l_timeout_ch, NULL);
    301  1.63.2.1    bouyer 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    302      1.11        ad 		}
    303       1.2        ad 	}
    304       1.2        ad 
    305      1.50      matt 	if (catch_p && error == 0) {
    306       1.2        ad 		p = l->l_proc;
    307       1.5     pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    308       1.2        ad 			error = EINTR;
    309       1.5     pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    310      1.33        ad 			/*
    311      1.33        ad 			 * Acquiring p_lock may cause us to recurse
    312      1.33        ad 			 * through the sleep path and back into this
    313      1.33        ad 			 * routine, but is safe because LWPs sleeping
    314      1.62        ad 			 * on locks are non-interruptable and we will
    315      1.33        ad 			 * not recurse again.
    316      1.33        ad 			 */
    317      1.27        ad 			mutex_enter(p->p_lock);
    318      1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    319      1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    320      1.43  christos 			    (sig = issignal(l)) != 0)
    321       1.2        ad 				error = sleepq_sigtoerror(l, sig);
    322      1.27        ad 			mutex_exit(p->p_lock);
    323       1.2        ad 		}
    324       1.2        ad 	}
    325       1.2        ad 
    326      1.12        ad 	ktrcsw(0, 0);
    327      1.34      yamt 	if (__predict_false(biglocks != 0)) {
    328      1.34      yamt 		KERNEL_LOCK(biglocks, NULL);
    329      1.30        ad 	}
    330       1.2        ad 	return error;
    331       1.2        ad }
    332       1.2        ad 
    333       1.2        ad /*
    334       1.2        ad  * sleepq_wake:
    335       1.2        ad  *
    336       1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    337       1.2        ad  */
    338      1.49     pooka void
    339      1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    340       1.2        ad {
    341       1.8        ad 	lwp_t *l, *next;
    342       1.2        ad 
    343      1.30        ad 	KASSERT(mutex_owned(mp));
    344       1.2        ad 
    345      1.63        ad 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    346       1.2        ad 		KASSERT(l->l_sleepq == sq);
    347      1.30        ad 		KASSERT(l->l_mutex == mp);
    348      1.63        ad 		next = LIST_NEXT(l, l_sleepchain);
    349       1.2        ad 		if (l->l_wchan != wchan)
    350       1.2        ad 			continue;
    351      1.37     rmind 		sleepq_remove(sq, l);
    352       1.2        ad 		if (--expected == 0)
    353       1.2        ad 			break;
    354       1.2        ad 	}
    355       1.2        ad 
    356      1.30        ad 	mutex_spin_exit(mp);
    357       1.2        ad }
    358       1.2        ad 
    359       1.2        ad /*
    360       1.2        ad  * sleepq_unsleep:
    361       1.2        ad  *
    362       1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    363       1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    364      1.52        ad  *	release it if "unlock" is true.
    365       1.2        ad  */
    366      1.37     rmind void
    367      1.52        ad sleepq_unsleep(lwp_t *l, bool unlock)
    368       1.2        ad {
    369       1.2        ad 	sleepq_t *sq = l->l_sleepq;
    370      1.30        ad 	kmutex_t *mp = l->l_mutex;
    371       1.2        ad 
    372      1.30        ad 	KASSERT(lwp_locked(l, mp));
    373       1.2        ad 	KASSERT(l->l_wchan != NULL);
    374       1.2        ad 
    375      1.37     rmind 	sleepq_remove(sq, l);
    376      1.52        ad 	if (unlock) {
    377      1.30        ad 		mutex_spin_exit(mp);
    378      1.22        ad 	}
    379       1.2        ad }
    380       1.2        ad 
    381       1.2        ad /*
    382       1.2        ad  * sleepq_timeout:
    383       1.2        ad  *
    384       1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    385       1.2        ad  *	sleep queue.
    386       1.2        ad  */
    387       1.2        ad void
    388       1.2        ad sleepq_timeout(void *arg)
    389       1.2        ad {
    390       1.8        ad 	lwp_t *l = arg;
    391       1.2        ad 
    392       1.2        ad 	/*
    393       1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    394       1.2        ad 	 * current mutex will also be the sleep queue mutex.
    395       1.2        ad 	 */
    396       1.2        ad 	lwp_lock(l);
    397       1.2        ad 
    398       1.2        ad 	if (l->l_wchan == NULL) {
    399       1.2        ad 		/* Somebody beat us to it. */
    400       1.2        ad 		lwp_unlock(l);
    401       1.2        ad 		return;
    402       1.2        ad 	}
    403       1.2        ad 
    404  1.63.2.1    bouyer 	l->l_flag |= LW_STIMO;
    405      1.22        ad 	lwp_unsleep(l, true);
    406       1.2        ad }
    407       1.2        ad 
    408       1.2        ad /*
    409       1.2        ad  * sleepq_sigtoerror:
    410       1.2        ad  *
    411       1.2        ad  *	Given a signal number, interpret and return an error code.
    412       1.2        ad  */
    413      1.39     rmind static int
    414       1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    415       1.2        ad {
    416       1.2        ad 	struct proc *p = l->l_proc;
    417       1.2        ad 	int error;
    418       1.2        ad 
    419      1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    420       1.2        ad 
    421       1.2        ad 	/*
    422       1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    423       1.2        ad 	 */
    424       1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    425       1.2        ad 		error = EINTR;
    426       1.2        ad 	else
    427       1.2        ad 		error = ERESTART;
    428       1.2        ad 
    429       1.2        ad 	return error;
    430       1.2        ad }
    431       1.2        ad 
    432       1.2        ad /*
    433       1.2        ad  * sleepq_abort:
    434       1.2        ad  *
    435       1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    436       1.2        ad  *	priority level to give pending interrupts a chance to run, and
    437       1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    438       1.2        ad  *	always returns zero.
    439       1.2        ad  */
    440       1.2        ad int
    441       1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    442       1.2        ad {
    443       1.2        ad 	int s;
    444       1.2        ad 
    445       1.2        ad 	s = splhigh();
    446      1.47      matt 	splx(IPL_SAFEPRI);
    447       1.2        ad 	splx(s);
    448       1.2        ad 	if (mtx != NULL && unlock != 0)
    449       1.2        ad 		mutex_exit(mtx);
    450       1.2        ad 
    451       1.2        ad 	return 0;
    452       1.2        ad }
    453       1.2        ad 
    454       1.2        ad /*
    455      1.44      yamt  * sleepq_reinsert:
    456       1.2        ad  *
    457      1.44      yamt  *	Move the possition of the lwp in the sleep queue after a possible
    458      1.44      yamt  *	change of the lwp's effective priority.
    459       1.2        ad  */
    460      1.44      yamt static void
    461      1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    462       1.2        ad {
    463       1.2        ad 
    464      1.44      yamt 	KASSERT(l->l_sleepq == sq);
    465      1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    466      1.32        ad 		return;
    467      1.32        ad 	}
    468      1.32        ad 
    469      1.32        ad 	/*
    470      1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    471      1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    472      1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    473      1.32        ad 	 * head if there are waiters.
    474      1.32        ad 	 */
    475      1.63        ad 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    476      1.32        ad 		return;
    477      1.18        ad 	}
    478      1.63        ad 	LIST_REMOVE(l, l_sleepchain);
    479      1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    480       1.2        ad }
    481       1.6      yamt 
    482      1.44      yamt /*
    483      1.44      yamt  * sleepq_changepri:
    484      1.44      yamt  *
    485      1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    486      1.44      yamt  */
    487      1.44      yamt void
    488      1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    489      1.44      yamt {
    490      1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    491      1.44      yamt 
    492      1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    493      1.44      yamt 
    494      1.44      yamt 	l->l_priority = pri;
    495      1.44      yamt 	sleepq_reinsert(sq, l);
    496      1.44      yamt }
    497      1.44      yamt 
    498      1.44      yamt /*
    499      1.44      yamt  * sleepq_changepri:
    500      1.44      yamt  *
    501      1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    502      1.44      yamt  */
    503       1.6      yamt void
    504       1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    505       1.6      yamt {
    506       1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    507       1.6      yamt 
    508      1.30        ad 	KASSERT(lwp_locked(l, NULL));
    509       1.6      yamt 
    510       1.6      yamt 	l->l_inheritedprio = pri;
    511      1.51  christos 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    512      1.44      yamt 	sleepq_reinsert(sq, l);
    513       1.6      yamt }
    514