kern_sleepq.c revision 1.7.2.2 1 1.7.2.2 ad /* $NetBSD: kern_sleepq.c,v 1.7.2.2 2007/04/10 11:41:11 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 1.2 ad * interfaces.
42 1.2 ad */
43 1.2 ad
44 1.2 ad #include <sys/cdefs.h>
45 1.7.2.2 ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.2 2007/04/10 11:41:11 ad Exp $");
46 1.2 ad
47 1.2 ad #include "opt_multiprocessor.h"
48 1.2 ad #include "opt_lockdebug.h"
49 1.2 ad #include "opt_ktrace.h"
50 1.2 ad
51 1.2 ad #include <sys/param.h>
52 1.2 ad #include <sys/lock.h>
53 1.2 ad #include <sys/kernel.h>
54 1.2 ad #include <sys/pool.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/resourcevar.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/systm.h>
59 1.2 ad #include <sys/sleepq.h>
60 1.2 ad #ifdef KTRACE
61 1.2 ad #include <sys/ktrace.h>
62 1.2 ad #endif
63 1.2 ad
64 1.4 ad #include <uvm/uvm_extern.h>
65 1.4 ad
66 1.2 ad int sleepq_sigtoerror(struct lwp *, int);
67 1.2 ad void updatepri(struct lwp *);
68 1.2 ad
69 1.2 ad /* General purpose sleep table, used by ltsleep() and condition variables. */
70 1.2 ad sleeptab_t sleeptab;
71 1.2 ad
72 1.2 ad /*
73 1.2 ad * sleeptab_init:
74 1.2 ad *
75 1.2 ad * Initialize a sleep table.
76 1.2 ad */
77 1.2 ad void
78 1.2 ad sleeptab_init(sleeptab_t *st)
79 1.2 ad {
80 1.2 ad sleepq_t *sq;
81 1.2 ad int i;
82 1.2 ad
83 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 1.2 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
85 1.2 ad sq = &st->st_queues[i].st_queue;
86 1.2 ad mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
87 1.2 ad sleepq_init(sq, &st->st_queues[i].st_mutex);
88 1.2 ad #else
89 1.2 ad sq = &st->st_queues[i];
90 1.2 ad sleepq_init(sq, &sched_mutex);
91 1.2 ad #endif
92 1.2 ad }
93 1.2 ad }
94 1.2 ad
95 1.2 ad /*
96 1.2 ad * sleepq_init:
97 1.2 ad *
98 1.2 ad * Prepare a sleep queue for use.
99 1.2 ad */
100 1.2 ad void
101 1.2 ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
102 1.2 ad {
103 1.2 ad
104 1.2 ad sq->sq_waiters = 0;
105 1.2 ad sq->sq_mutex = mtx;
106 1.2 ad TAILQ_INIT(&sq->sq_queue);
107 1.2 ad }
108 1.2 ad
109 1.2 ad /*
110 1.2 ad * sleepq_remove:
111 1.2 ad *
112 1.2 ad * Remove an LWP from a sleep queue and wake it up. Return non-zero if
113 1.2 ad * the LWP is swapped out; if so the caller needs to awaken the swapper
114 1.2 ad * to bring the LWP into memory.
115 1.2 ad */
116 1.2 ad int
117 1.2 ad sleepq_remove(sleepq_t *sq, struct lwp *l)
118 1.2 ad {
119 1.2 ad struct cpu_info *ci;
120 1.2 ad
121 1.4 ad KASSERT(lwp_locked(l, sq->sq_mutex));
122 1.2 ad KASSERT(sq->sq_waiters > 0);
123 1.2 ad
124 1.2 ad sq->sq_waiters--;
125 1.2 ad TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
126 1.2 ad
127 1.2 ad #ifdef DIAGNOSTIC
128 1.2 ad if (sq->sq_waiters == 0)
129 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
130 1.2 ad else
131 1.2 ad KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
132 1.2 ad #endif
133 1.2 ad
134 1.2 ad l->l_syncobj = &sched_syncobj;
135 1.2 ad l->l_wchan = NULL;
136 1.2 ad l->l_sleepq = NULL;
137 1.5 pavel l->l_flag &= ~LW_SINTR;
138 1.2 ad
139 1.2 ad /*
140 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
141 1.2 ad * holds it stopped set it running again.
142 1.2 ad */
143 1.2 ad if (l->l_stat != LSSLEEP) {
144 1.2 ad KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
145 1.2 ad lwp_setlock(l, &sched_mutex);
146 1.2 ad return 0;
147 1.2 ad }
148 1.2 ad
149 1.2 ad sched_lock(1);
150 1.2 ad lwp_setlock(l, &sched_mutex);
151 1.2 ad
152 1.2 ad /*
153 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 1.2 ad * about to call mi_switch(), in which case it will yield.
155 1.2 ad *
156 1.2 ad * XXXSMP Will need to change for preemption.
157 1.2 ad */
158 1.2 ad ci = l->l_cpu;
159 1.2 ad #ifdef MULTIPROCESSOR
160 1.2 ad if (ci->ci_curlwp == l) {
161 1.2 ad #else
162 1.2 ad if (l == curlwp) {
163 1.2 ad #endif
164 1.2 ad l->l_stat = LSONPROC;
165 1.2 ad l->l_slptime = 0;
166 1.2 ad sched_unlock(1);
167 1.2 ad return 0;
168 1.2 ad }
169 1.2 ad
170 1.2 ad /*
171 1.2 ad * Set it running. We'll try to get the last CPU that ran
172 1.2 ad * this LWP to pick it up again.
173 1.2 ad */
174 1.2 ad if (l->l_slptime > 1)
175 1.2 ad updatepri(l);
176 1.2 ad l->l_stat = LSRUN;
177 1.2 ad l->l_slptime = 0;
178 1.5 pavel if ((l->l_flag & LW_INMEM) != 0) {
179 1.2 ad setrunqueue(l);
180 1.6 yamt if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
181 1.2 ad cpu_need_resched(ci);
182 1.2 ad sched_unlock(1);
183 1.2 ad return 0;
184 1.2 ad }
185 1.2 ad
186 1.2 ad sched_unlock(1);
187 1.2 ad return 1;
188 1.2 ad }
189 1.2 ad
190 1.2 ad /*
191 1.2 ad * sleepq_insert:
192 1.2 ad *
193 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
194 1.2 ad */
195 1.2 ad inline void
196 1.6 yamt sleepq_insert(sleepq_t *sq, struct lwp *l, syncobj_t *sobj)
197 1.2 ad {
198 1.2 ad struct lwp *l2;
199 1.6 yamt const int pri = lwp_eprio(l);
200 1.2 ad
201 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
202 1.2 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
203 1.6 yamt if (lwp_eprio(l2) > pri) {
204 1.2 ad TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
205 1.2 ad return;
206 1.2 ad }
207 1.2 ad }
208 1.2 ad }
209 1.2 ad
210 1.2 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
211 1.2 ad }
212 1.2 ad
213 1.2 ad void
214 1.7 yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
215 1.6 yamt syncobj_t *sobj)
216 1.2 ad {
217 1.2 ad struct lwp *l = curlwp;
218 1.2 ad
219 1.4 ad KASSERT(mutex_owned(sq->sq_mutex));
220 1.2 ad KASSERT(l->l_stat == LSONPROC);
221 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
222 1.2 ad
223 1.2 ad l->l_syncobj = sobj;
224 1.2 ad l->l_wchan = wchan;
225 1.2 ad l->l_sleepq = sq;
226 1.2 ad l->l_wmesg = wmesg;
227 1.2 ad l->l_slptime = 0;
228 1.2 ad l->l_priority = pri;
229 1.2 ad l->l_stat = LSSLEEP;
230 1.2 ad l->l_sleeperr = 0;
231 1.2 ad
232 1.2 ad sq->sq_waiters++;
233 1.6 yamt sleepq_insert(sq, l, sobj);
234 1.6 yamt }
235 1.6 yamt
236 1.6 yamt void
237 1.6 yamt sleepq_switch(int timo, int catch)
238 1.6 yamt {
239 1.6 yamt struct lwp *l = curlwp;
240 1.2 ad
241 1.4 ad #ifdef KTRACE
242 1.4 ad if (KTRPOINT(l->l_proc, KTR_CSW))
243 1.4 ad ktrcsw(l, 1, 0);
244 1.4 ad #endif
245 1.4 ad
246 1.2 ad /*
247 1.2 ad * If sleeping interruptably, check for pending signals, exits or
248 1.2 ad * core dump events.
249 1.2 ad */
250 1.2 ad if (catch) {
251 1.5 pavel l->l_flag |= LW_SINTR;
252 1.5 pavel if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
253 1.2 ad l->l_sleeperr = EPASSTHROUGH;
254 1.2 ad /* lwp_unsleep() will release the lock */
255 1.2 ad lwp_unsleep(l);
256 1.2 ad return;
257 1.2 ad }
258 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
259 1.5 pavel l->l_flag &= ~LW_CANCELLED;
260 1.2 ad l->l_sleeperr = EINTR;
261 1.2 ad /* lwp_unsleep() will release the lock */
262 1.2 ad lwp_unsleep(l);
263 1.2 ad return;
264 1.2 ad }
265 1.2 ad }
266 1.2 ad
267 1.2 ad if (timo)
268 1.2 ad callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
269 1.2 ad
270 1.2 ad mi_switch(l, NULL);
271 1.2 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
272 1.2 ad
273 1.2 ad /*
274 1.2 ad * When we reach this point, the LWP and sleep queue are unlocked.
275 1.2 ad */
276 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
277 1.2 ad }
278 1.2 ad
279 1.2 ad /*
280 1.6 yamt * sleepq_block:
281 1.6 yamt *
282 1.6 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
283 1.6 yamt * queue must already be locked, and any interlock (such as the kernel
284 1.6 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
285 1.6 yamt *
286 1.6 yamt * sleepq_block() may return early under exceptional conditions, for
287 1.6 yamt * example if the LWP's containing process is exiting.
288 1.6 yamt */
289 1.6 yamt void
290 1.7 yamt sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
291 1.7 yamt int timo, int catch, syncobj_t *sobj)
292 1.6 yamt {
293 1.6 yamt
294 1.6 yamt sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
295 1.6 yamt sleepq_switch(timo, catch);
296 1.6 yamt }
297 1.6 yamt
298 1.6 yamt /*
299 1.2 ad * sleepq_unblock:
300 1.2 ad *
301 1.2 ad * After any intermediate step such as updating statistics, re-acquire
302 1.2 ad * the kernel lock and record the switch for ktrace. Note that we are
303 1.2 ad * no longer on the sleep queue at this point.
304 1.2 ad *
305 1.2 ad * This is split out from sleepq_block() in expectation that at some
306 1.2 ad * point in the future, LWPs may awake on different kernel stacks than
307 1.2 ad * those they went asleep on.
308 1.2 ad */
309 1.2 ad int
310 1.2 ad sleepq_unblock(int timo, int catch)
311 1.2 ad {
312 1.2 ad int error, expired, sig;
313 1.2 ad struct proc *p;
314 1.2 ad struct lwp *l;
315 1.2 ad
316 1.2 ad l = curlwp;
317 1.2 ad error = l->l_sleeperr;
318 1.2 ad
319 1.2 ad if (timo) {
320 1.2 ad /*
321 1.2 ad * Even if the callout appears to have fired, we need to
322 1.2 ad * stop it in order to synchronise with other CPUs.
323 1.2 ad */
324 1.2 ad expired = callout_expired(&l->l_tsleep_ch);
325 1.2 ad callout_stop(&l->l_tsleep_ch);
326 1.2 ad if (expired && error == 0)
327 1.2 ad error = EWOULDBLOCK;
328 1.2 ad }
329 1.2 ad
330 1.2 ad if (catch && (error == 0 || error == EPASSTHROUGH)) {
331 1.2 ad l->l_sleeperr = 0;
332 1.2 ad p = l->l_proc;
333 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
334 1.2 ad error = EINTR;
335 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
336 1.2 ad mutex_enter(&p->p_smutex);
337 1.2 ad if ((sig = issignal(l)) != 0)
338 1.2 ad error = sleepq_sigtoerror(l, sig);
339 1.2 ad mutex_exit(&p->p_smutex);
340 1.2 ad }
341 1.2 ad if (error == EPASSTHROUGH) {
342 1.2 ad /* Raced */
343 1.2 ad error = EINTR;
344 1.2 ad }
345 1.2 ad }
346 1.2 ad
347 1.2 ad #ifdef KTRACE
348 1.2 ad if (KTRPOINT(l->l_proc, KTR_CSW))
349 1.2 ad ktrcsw(l, 0, 0);
350 1.2 ad #endif
351 1.2 ad
352 1.2 ad KERNEL_LOCK(l->l_biglocks, l);
353 1.2 ad return error;
354 1.2 ad }
355 1.2 ad
356 1.2 ad /*
357 1.2 ad * sleepq_wake:
358 1.2 ad *
359 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
360 1.2 ad */
361 1.2 ad void
362 1.2 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
363 1.2 ad {
364 1.2 ad struct lwp *l, *next;
365 1.2 ad int swapin = 0;
366 1.2 ad
367 1.4 ad KASSERT(mutex_owned(sq->sq_mutex));
368 1.2 ad
369 1.2 ad for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
370 1.2 ad KASSERT(l->l_sleepq == sq);
371 1.2 ad next = TAILQ_NEXT(l, l_sleepchain);
372 1.2 ad if (l->l_wchan != wchan)
373 1.2 ad continue;
374 1.2 ad swapin |= sleepq_remove(sq, l);
375 1.2 ad if (--expected == 0)
376 1.2 ad break;
377 1.2 ad }
378 1.2 ad
379 1.2 ad sleepq_unlock(sq);
380 1.2 ad
381 1.2 ad /*
382 1.2 ad * If there are newly awakend threads that need to be swapped in,
383 1.2 ad * then kick the swapper into action.
384 1.2 ad */
385 1.2 ad if (swapin)
386 1.4 ad uvm_kick_scheduler();
387 1.2 ad }
388 1.2 ad
389 1.2 ad /*
390 1.2 ad * sleepq_unsleep:
391 1.2 ad *
392 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
393 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
394 1.2 ad * always release it.
395 1.2 ad */
396 1.2 ad void
397 1.2 ad sleepq_unsleep(struct lwp *l)
398 1.2 ad {
399 1.2 ad sleepq_t *sq = l->l_sleepq;
400 1.2 ad int swapin;
401 1.2 ad
402 1.4 ad KASSERT(lwp_locked(l, NULL));
403 1.2 ad KASSERT(l->l_wchan != NULL);
404 1.2 ad KASSERT(l->l_mutex == sq->sq_mutex);
405 1.2 ad
406 1.2 ad swapin = sleepq_remove(sq, l);
407 1.2 ad sleepq_unlock(sq);
408 1.2 ad
409 1.2 ad if (swapin)
410 1.4 ad uvm_kick_scheduler();
411 1.2 ad }
412 1.2 ad
413 1.2 ad /*
414 1.2 ad * sleepq_timeout:
415 1.2 ad *
416 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
417 1.2 ad * sleep queue.
418 1.2 ad */
419 1.2 ad void
420 1.2 ad sleepq_timeout(void *arg)
421 1.2 ad {
422 1.2 ad struct lwp *l = arg;
423 1.2 ad
424 1.2 ad /*
425 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
426 1.2 ad * current mutex will also be the sleep queue mutex.
427 1.2 ad */
428 1.2 ad lwp_lock(l);
429 1.2 ad
430 1.2 ad if (l->l_wchan == NULL) {
431 1.2 ad /* Somebody beat us to it. */
432 1.2 ad lwp_unlock(l);
433 1.2 ad return;
434 1.2 ad }
435 1.2 ad
436 1.2 ad lwp_unsleep(l);
437 1.2 ad }
438 1.2 ad
439 1.2 ad /*
440 1.2 ad * sleepq_sigtoerror:
441 1.2 ad *
442 1.2 ad * Given a signal number, interpret and return an error code.
443 1.2 ad */
444 1.2 ad int
445 1.2 ad sleepq_sigtoerror(struct lwp *l, int sig)
446 1.2 ad {
447 1.2 ad struct proc *p = l->l_proc;
448 1.2 ad int error;
449 1.2 ad
450 1.4 ad KASSERT(mutex_owned(&p->p_smutex));
451 1.2 ad
452 1.2 ad /*
453 1.2 ad * If this sleep was canceled, don't let the syscall restart.
454 1.2 ad */
455 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
456 1.2 ad error = EINTR;
457 1.2 ad else
458 1.2 ad error = ERESTART;
459 1.2 ad
460 1.2 ad return error;
461 1.2 ad }
462 1.2 ad
463 1.2 ad /*
464 1.2 ad * sleepq_abort:
465 1.2 ad *
466 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
467 1.2 ad * priority level to give pending interrupts a chance to run, and
468 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
469 1.2 ad * always returns zero.
470 1.2 ad */
471 1.2 ad int
472 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
473 1.2 ad {
474 1.2 ad extern int safepri;
475 1.2 ad int s;
476 1.2 ad
477 1.2 ad s = splhigh();
478 1.2 ad splx(safepri);
479 1.2 ad splx(s);
480 1.2 ad if (mtx != NULL && unlock != 0)
481 1.2 ad mutex_exit(mtx);
482 1.2 ad
483 1.2 ad return 0;
484 1.2 ad }
485 1.2 ad
486 1.2 ad /*
487 1.2 ad * sleepq_changepri:
488 1.2 ad *
489 1.2 ad * Adjust the priority of an LWP residing on a sleepq. This method
490 1.2 ad * will only alter the user priority; the effective priority is
491 1.2 ad * assumed to have been fixed at the time of insertion into the queue.
492 1.2 ad */
493 1.2 ad void
494 1.7 yamt sleepq_changepri(struct lwp *l, pri_t pri)
495 1.2 ad {
496 1.2 ad
497 1.2 ad KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
498 1.2 ad l->l_usrpri = pri;
499 1.2 ad }
500 1.6 yamt
501 1.6 yamt void
502 1.7 yamt sleepq_lendpri(struct lwp *l, pri_t pri)
503 1.6 yamt {
504 1.6 yamt sleepq_t *sq = l->l_sleepq;
505 1.7 yamt pri_t opri;
506 1.6 yamt
507 1.6 yamt KASSERT(lwp_locked(l, sq->sq_mutex));
508 1.6 yamt
509 1.6 yamt opri = lwp_eprio(l);
510 1.6 yamt l->l_inheritedprio = pri;
511 1.6 yamt
512 1.6 yamt if (lwp_eprio(l) != opri &&
513 1.6 yamt (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
514 1.6 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
515 1.6 yamt sleepq_insert(sq, l, l->l_syncobj);
516 1.6 yamt }
517 1.6 yamt }
518