Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.7.2.9
      1  1.7.2.9   yamt /*	$NetBSD: kern_sleepq.c,v 1.7.2.9 2007/08/22 11:42:41 yamt Exp $	*/
      2      1.2     ad 
      3      1.2     ad /*-
      4      1.2     ad  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5      1.2     ad  * All rights reserved.
      6      1.2     ad  *
      7      1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.2     ad  * by Andrew Doran.
      9      1.2     ad  *
     10      1.2     ad  * Redistribution and use in source and binary forms, with or without
     11      1.2     ad  * modification, are permitted provided that the following conditions
     12      1.2     ad  * are met:
     13      1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14      1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15      1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.2     ad  *    documentation and/or other materials provided with the distribution.
     18      1.2     ad  * 3. All advertising materials mentioning features or use of this software
     19      1.2     ad  *    must display the following acknowledgement:
     20      1.2     ad  *	This product includes software developed by the NetBSD
     21      1.2     ad  *	Foundation, Inc. and its contributors.
     22      1.2     ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23      1.2     ad  *    contributors may be used to endorse or promote products derived
     24      1.2     ad  *    from this software without specific prior written permission.
     25      1.2     ad  *
     26      1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27      1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28      1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29      1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30      1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31      1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32      1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33      1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34      1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35      1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36      1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     37      1.2     ad  */
     38      1.2     ad 
     39      1.2     ad /*
     40      1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41      1.2     ad  * interfaces.
     42      1.2     ad  */
     43      1.2     ad 
     44      1.2     ad #include <sys/cdefs.h>
     45  1.7.2.9   yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.9 2007/08/22 11:42:41 yamt Exp $");
     46      1.2     ad 
     47      1.2     ad #include <sys/param.h>
     48      1.2     ad #include <sys/lock.h>
     49      1.2     ad #include <sys/kernel.h>
     50  1.7.2.5     ad #include <sys/cpu.h>
     51      1.2     ad #include <sys/pool.h>
     52      1.2     ad #include <sys/proc.h>
     53      1.2     ad #include <sys/resourcevar.h>
     54      1.2     ad #include <sys/sched.h>
     55      1.2     ad #include <sys/systm.h>
     56      1.2     ad #include <sys/sleepq.h>
     57      1.2     ad #include <sys/ktrace.h>
     58      1.2     ad 
     59      1.4     ad #include <uvm/uvm_extern.h>
     60      1.4     ad 
     61  1.7.2.3     ad int	sleepq_sigtoerror(lwp_t *, int);
     62      1.2     ad 
     63      1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     64      1.2     ad sleeptab_t	sleeptab;
     65      1.2     ad 
     66      1.2     ad /*
     67      1.2     ad  * sleeptab_init:
     68      1.2     ad  *
     69      1.2     ad  *	Initialize a sleep table.
     70      1.2     ad  */
     71      1.2     ad void
     72      1.2     ad sleeptab_init(sleeptab_t *st)
     73      1.2     ad {
     74      1.2     ad 	sleepq_t *sq;
     75      1.2     ad 	int i;
     76      1.2     ad 
     77      1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     78      1.2     ad 		sq = &st->st_queues[i].st_queue;
     79      1.2     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     80      1.2     ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     81      1.2     ad 	}
     82      1.2     ad }
     83      1.2     ad 
     84      1.2     ad /*
     85      1.2     ad  * sleepq_init:
     86      1.2     ad  *
     87      1.2     ad  *	Prepare a sleep queue for use.
     88      1.2     ad  */
     89      1.2     ad void
     90      1.2     ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     91      1.2     ad {
     92      1.2     ad 
     93      1.2     ad 	sq->sq_waiters = 0;
     94      1.2     ad 	sq->sq_mutex = mtx;
     95      1.2     ad 	TAILQ_INIT(&sq->sq_queue);
     96      1.2     ad }
     97      1.2     ad 
     98      1.2     ad /*
     99      1.2     ad  * sleepq_remove:
    100      1.2     ad  *
    101      1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    102      1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    103      1.2     ad  *	to bring the LWP into memory.
    104      1.2     ad  */
    105      1.2     ad int
    106  1.7.2.3     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    107      1.2     ad {
    108  1.7.2.5     ad 	struct schedstate_percpu *spc;
    109      1.2     ad 	struct cpu_info *ci;
    110      1.2     ad 
    111      1.4     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    112      1.2     ad 	KASSERT(sq->sq_waiters > 0);
    113      1.2     ad 
    114      1.2     ad 	sq->sq_waiters--;
    115      1.2     ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    116      1.2     ad 
    117      1.2     ad #ifdef DIAGNOSTIC
    118      1.2     ad 	if (sq->sq_waiters == 0)
    119      1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    120      1.2     ad 	else
    121      1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    122      1.2     ad #endif
    123      1.2     ad 
    124      1.2     ad 	l->l_syncobj = &sched_syncobj;
    125      1.2     ad 	l->l_wchan = NULL;
    126      1.2     ad 	l->l_sleepq = NULL;
    127      1.5  pavel 	l->l_flag &= ~LW_SINTR;
    128      1.2     ad 
    129  1.7.2.5     ad 	ci = l->l_cpu;
    130  1.7.2.5     ad 	spc = &ci->ci_schedstate;
    131  1.7.2.5     ad 
    132      1.2     ad 	/*
    133      1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134      1.2     ad 	 * holds it stopped set it running again.
    135      1.2     ad 	 */
    136      1.2     ad 	if (l->l_stat != LSSLEEP) {
    137      1.2     ad 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138  1.7.2.5     ad 		lwp_setlock(l, &spc->spc_lwplock);
    139      1.2     ad 		return 0;
    140      1.2     ad 	}
    141      1.2     ad 
    142      1.2     ad 	/*
    143      1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144      1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    145      1.2     ad 	 */
    146  1.7.2.5     ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    147      1.2     ad 		l->l_stat = LSONPROC;
    148      1.2     ad 		l->l_slptime = 0;
    149  1.7.2.5     ad 		lwp_setlock(l, &spc->spc_lwplock);
    150      1.2     ad 		return 0;
    151      1.2     ad 	}
    152      1.2     ad 
    153      1.2     ad 	/*
    154      1.2     ad 	 * Set it running.  We'll try to get the last CPU that ran
    155      1.2     ad 	 * this LWP to pick it up again.
    156      1.2     ad 	 */
    157  1.7.2.5     ad 	spc_lock(ci);
    158  1.7.2.5     ad 	lwp_setlock(l, spc->spc_mutex);
    159  1.7.2.5     ad 	sched_setrunnable(l);
    160      1.2     ad 	l->l_stat = LSRUN;
    161      1.2     ad 	l->l_slptime = 0;
    162      1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    163  1.7.2.5     ad 		sched_enqueue(l, false);
    164  1.7.2.6     ad 		if (lwp_eprio(l) > spc->spc_curpriority)
    165  1.7.2.5     ad 			cpu_need_resched(ci, 0);
    166  1.7.2.5     ad 		spc_unlock(ci);
    167      1.2     ad 		return 0;
    168      1.2     ad 	}
    169  1.7.2.5     ad 	spc_unlock(ci);
    170      1.2     ad 	return 1;
    171      1.2     ad }
    172      1.2     ad 
    173      1.2     ad /*
    174      1.2     ad  * sleepq_insert:
    175      1.2     ad  *
    176      1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    177      1.2     ad  */
    178      1.2     ad inline void
    179  1.7.2.3     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    180      1.2     ad {
    181  1.7.2.3     ad 	lwp_t *l2;
    182      1.6   yamt 	const int pri = lwp_eprio(l);
    183      1.2     ad 
    184      1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    185      1.2     ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    186  1.7.2.6     ad 			if (lwp_eprio(l2) < pri) {
    187      1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    188      1.2     ad 				return;
    189      1.2     ad 			}
    190      1.2     ad 		}
    191      1.2     ad 	}
    192      1.2     ad 
    193      1.2     ad 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    194      1.2     ad }
    195      1.2     ad 
    196  1.7.2.4     ad /*
    197  1.7.2.4     ad  * sleepq_enqueue:
    198  1.7.2.4     ad  *
    199  1.7.2.4     ad  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    200  1.7.2.4     ad  *	queue must already be locked, and any interlock (such as the kernel
    201  1.7.2.4     ad  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    202  1.7.2.4     ad  */
    203      1.2     ad void
    204      1.7   yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    205  1.7.2.4     ad 	       syncobj_t *sobj)
    206      1.2     ad {
    207  1.7.2.3     ad 	lwp_t *l = curlwp;
    208      1.2     ad 
    209      1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    210      1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    211      1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    212      1.2     ad 
    213      1.2     ad 	l->l_syncobj = sobj;
    214      1.2     ad 	l->l_wchan = wchan;
    215      1.2     ad 	l->l_sleepq = sq;
    216      1.2     ad 	l->l_wmesg = wmesg;
    217      1.2     ad 	l->l_slptime = 0;
    218      1.2     ad 	l->l_priority = pri;
    219      1.2     ad 	l->l_stat = LSSLEEP;
    220      1.2     ad 	l->l_sleeperr = 0;
    221      1.2     ad 
    222      1.2     ad 	sq->sq_waiters++;
    223      1.6   yamt 	sleepq_insert(sq, l, sobj);
    224      1.6   yamt }
    225      1.6   yamt 
    226  1.7.2.4     ad /*
    227  1.7.2.4     ad  * sleepq_block:
    228  1.7.2.4     ad  *
    229  1.7.2.4     ad  *	After any intermediate step such as releasing an interlock, switch.
    230  1.7.2.4     ad  * 	sleepq_block() may return early under exceptional conditions, for
    231  1.7.2.4     ad  * 	example if the LWP's containing process is exiting.
    232  1.7.2.4     ad  */
    233  1.7.2.4     ad int
    234  1.7.2.4     ad sleepq_block(int timo, bool catch)
    235      1.6   yamt {
    236  1.7.2.7     ad 	int error = 0, sig;
    237  1.7.2.4     ad 	struct proc *p;
    238  1.7.2.3     ad 	lwp_t *l = curlwp;
    239  1.7.2.8     ad 	bool early = false;
    240      1.2     ad 
    241  1.7.2.8     ad 	ktrcsw(1, 0);
    242      1.4     ad 
    243      1.2     ad 	/*
    244      1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    245      1.2     ad 	 * core dump events.
    246      1.2     ad 	 */
    247      1.2     ad 	if (catch) {
    248      1.5  pavel 		l->l_flag |= LW_SINTR;
    249      1.5  pavel 		if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
    250      1.2     ad 			/* lwp_unsleep() will release the lock */
    251      1.2     ad 			lwp_unsleep(l);
    252  1.7.2.8     ad 			early = true;
    253      1.2     ad 		}
    254      1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    255      1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    256      1.2     ad 			/* lwp_unsleep() will release the lock */
    257      1.2     ad 			lwp_unsleep(l);
    258  1.7.2.9   yamt 			early = true;
    259      1.2     ad 		}
    260      1.2     ad 	}
    261      1.2     ad 
    262  1.7.2.8     ad 	if (!early) {
    263  1.7.2.8     ad 		if (timo)
    264  1.7.2.8     ad 			callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    265      1.2     ad 
    266  1.7.2.8     ad 		mi_switch(l);
    267  1.7.2.8     ad 		l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    268      1.2     ad 
    269      1.2     ad 		/*
    270  1.7.2.8     ad 		 * When we reach this point, the LWP and sleep queue are unlocked.
    271      1.2     ad 		 */
    272  1.7.2.8     ad 		if (timo) {
    273  1.7.2.8     ad 			/*
    274  1.7.2.8     ad 			 * Even if the callout appears to have fired, we need to
    275  1.7.2.8     ad 			 * stop it in order to synchronise with other CPUs.
    276  1.7.2.8     ad 			 */
    277  1.7.2.8     ad 			if (callout_stop(&l->l_tsleep_ch))
    278  1.7.2.8     ad 				error = EWOULDBLOCK;
    279  1.7.2.8     ad 		}
    280      1.2     ad 	}
    281      1.2     ad 
    282  1.7.2.4     ad 	if (catch && error == 0) {
    283      1.2     ad 		p = l->l_proc;
    284      1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    285      1.2     ad 			error = EINTR;
    286      1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    287      1.2     ad 			mutex_enter(&p->p_smutex);
    288      1.2     ad 			if ((sig = issignal(l)) != 0)
    289      1.2     ad 				error = sleepq_sigtoerror(l, sig);
    290      1.2     ad 			mutex_exit(&p->p_smutex);
    291      1.2     ad 		}
    292      1.2     ad 	}
    293      1.2     ad 
    294  1.7.2.8     ad 	ktrcsw(0, 0);
    295      1.2     ad 
    296      1.2     ad 	KERNEL_LOCK(l->l_biglocks, l);
    297      1.2     ad 	return error;
    298      1.2     ad }
    299      1.2     ad 
    300      1.2     ad /*
    301      1.2     ad  * sleepq_wake:
    302      1.2     ad  *
    303      1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    304      1.2     ad  */
    305  1.7.2.3     ad lwp_t *
    306      1.2     ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    307      1.2     ad {
    308  1.7.2.3     ad 	lwp_t *l, *next;
    309      1.2     ad 	int swapin = 0;
    310      1.2     ad 
    311      1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    312      1.2     ad 
    313      1.2     ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    314      1.2     ad 		KASSERT(l->l_sleepq == sq);
    315      1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    316      1.2     ad 		if (l->l_wchan != wchan)
    317      1.2     ad 			continue;
    318      1.2     ad 		swapin |= sleepq_remove(sq, l);
    319      1.2     ad 		if (--expected == 0)
    320      1.2     ad 			break;
    321      1.2     ad 	}
    322      1.2     ad 
    323      1.2     ad 	sleepq_unlock(sq);
    324      1.2     ad 
    325      1.2     ad 	/*
    326      1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    327      1.2     ad 	 * then kick the swapper into action.
    328      1.2     ad 	 */
    329      1.2     ad 	if (swapin)
    330      1.4     ad 		uvm_kick_scheduler();
    331  1.7.2.3     ad 
    332  1.7.2.3     ad 	return l;
    333      1.2     ad }
    334      1.2     ad 
    335      1.2     ad /*
    336      1.2     ad  * sleepq_unsleep:
    337      1.2     ad  *
    338      1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    339      1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    340      1.2     ad  *	always release it.
    341      1.2     ad  */
    342      1.2     ad void
    343  1.7.2.3     ad sleepq_unsleep(lwp_t *l)
    344      1.2     ad {
    345      1.2     ad 	sleepq_t *sq = l->l_sleepq;
    346      1.2     ad 	int swapin;
    347      1.2     ad 
    348      1.4     ad 	KASSERT(lwp_locked(l, NULL));
    349      1.2     ad 	KASSERT(l->l_wchan != NULL);
    350      1.2     ad 	KASSERT(l->l_mutex == sq->sq_mutex);
    351      1.2     ad 
    352      1.2     ad 	swapin = sleepq_remove(sq, l);
    353      1.2     ad 	sleepq_unlock(sq);
    354      1.2     ad 
    355      1.2     ad 	if (swapin)
    356      1.4     ad 		uvm_kick_scheduler();
    357      1.2     ad }
    358      1.2     ad 
    359      1.2     ad /*
    360      1.2     ad  * sleepq_timeout:
    361      1.2     ad  *
    362      1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    363      1.2     ad  *	sleep queue.
    364      1.2     ad  */
    365      1.2     ad void
    366      1.2     ad sleepq_timeout(void *arg)
    367      1.2     ad {
    368  1.7.2.3     ad 	lwp_t *l = arg;
    369      1.2     ad 
    370      1.2     ad 	/*
    371      1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    372      1.2     ad 	 * current mutex will also be the sleep queue mutex.
    373      1.2     ad 	 */
    374      1.2     ad 	lwp_lock(l);
    375      1.2     ad 
    376      1.2     ad 	if (l->l_wchan == NULL) {
    377      1.2     ad 		/* Somebody beat us to it. */
    378      1.2     ad 		lwp_unlock(l);
    379      1.2     ad 		return;
    380      1.2     ad 	}
    381      1.2     ad 
    382      1.2     ad 	lwp_unsleep(l);
    383      1.2     ad }
    384      1.2     ad 
    385      1.2     ad /*
    386      1.2     ad  * sleepq_sigtoerror:
    387      1.2     ad  *
    388      1.2     ad  *	Given a signal number, interpret and return an error code.
    389      1.2     ad  */
    390      1.2     ad int
    391  1.7.2.3     ad sleepq_sigtoerror(lwp_t *l, int sig)
    392      1.2     ad {
    393      1.2     ad 	struct proc *p = l->l_proc;
    394      1.2     ad 	int error;
    395      1.2     ad 
    396      1.4     ad 	KASSERT(mutex_owned(&p->p_smutex));
    397      1.2     ad 
    398      1.2     ad 	/*
    399      1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    400      1.2     ad 	 */
    401      1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    402      1.2     ad 		error = EINTR;
    403      1.2     ad 	else
    404      1.2     ad 		error = ERESTART;
    405      1.2     ad 
    406      1.2     ad 	return error;
    407      1.2     ad }
    408      1.2     ad 
    409      1.2     ad /*
    410      1.2     ad  * sleepq_abort:
    411      1.2     ad  *
    412      1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    413      1.2     ad  *	priority level to give pending interrupts a chance to run, and
    414      1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    415      1.2     ad  *	always returns zero.
    416      1.2     ad  */
    417      1.2     ad int
    418      1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    419      1.2     ad {
    420      1.2     ad 	extern int safepri;
    421      1.2     ad 	int s;
    422      1.2     ad 
    423      1.2     ad 	s = splhigh();
    424      1.2     ad 	splx(safepri);
    425      1.2     ad 	splx(s);
    426      1.2     ad 	if (mtx != NULL && unlock != 0)
    427      1.2     ad 		mutex_exit(mtx);
    428      1.2     ad 
    429      1.2     ad 	return 0;
    430      1.2     ad }
    431      1.2     ad 
    432      1.2     ad /*
    433      1.2     ad  * sleepq_changepri:
    434      1.2     ad  *
    435      1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    436      1.2     ad  *	will only alter the user priority; the effective priority is
    437      1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    438      1.2     ad  */
    439      1.2     ad void
    440  1.7.2.3     ad sleepq_changepri(lwp_t *l, pri_t pri)
    441      1.2     ad {
    442      1.2     ad 
    443      1.2     ad 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    444      1.2     ad 	l->l_usrpri = pri;
    445      1.2     ad }
    446      1.6   yamt 
    447      1.6   yamt void
    448  1.7.2.3     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    449      1.6   yamt {
    450      1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    451      1.7   yamt 	pri_t opri;
    452      1.6   yamt 
    453      1.6   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    454      1.6   yamt 
    455      1.6   yamt 	opri = lwp_eprio(l);
    456      1.6   yamt 	l->l_inheritedprio = pri;
    457      1.6   yamt 
    458      1.6   yamt 	if (lwp_eprio(l) != opri &&
    459      1.6   yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    460      1.6   yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    461      1.6   yamt 		sleepq_insert(sq, l, l->l_syncobj);
    462      1.6   yamt 	}
    463      1.6   yamt }
    464