kern_sleepq.c revision 1.72 1 1.72 riastrad /* $NetBSD: kern_sleepq.c,v 1.72 2022/06/29 22:10:43 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.59 ad * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 1.2 ad * interfaces.
35 1.2 ad */
36 1.2 ad
37 1.2 ad #include <sys/cdefs.h>
38 1.72 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.72 2022/06/29 22:10:43 riastradh Exp $");
39 1.2 ad
40 1.2 ad #include <sys/param.h>
41 1.2 ad #include <sys/kernel.h>
42 1.9 yamt #include <sys/cpu.h>
43 1.47 matt #include <sys/intr.h>
44 1.2 ad #include <sys/pool.h>
45 1.2 ad #include <sys/proc.h>
46 1.2 ad #include <sys/resourcevar.h>
47 1.2 ad #include <sys/sched.h>
48 1.2 ad #include <sys/systm.h>
49 1.2 ad #include <sys/sleepq.h>
50 1.2 ad #include <sys/ktrace.h>
51 1.2 ad
52 1.47 matt /*
53 1.47 matt * for sleepq_abort:
54 1.47 matt * During autoconfiguration or after a panic, a sleep will simply lower the
55 1.47 matt * priority briefly to allow interrupts, then return. The priority to be
56 1.47 matt * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57 1.47 matt * maintained in the machine-dependent layers. This priority will typically
58 1.47 matt * be 0, or the lowest priority that is safe for use on the interrupt stack;
59 1.47 matt * it can be made higher to block network software interrupts after panics.
60 1.47 matt */
61 1.47 matt #ifndef IPL_SAFEPRI
62 1.47 matt #define IPL_SAFEPRI 0
63 1.47 matt #endif
64 1.47 matt
65 1.39 rmind static int sleepq_sigtoerror(lwp_t *, int);
66 1.2 ad
67 1.45 rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
68 1.52 ad sleeptab_t sleeptab __cacheline_aligned;
69 1.55 ad sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70 1.2 ad
71 1.2 ad /*
72 1.2 ad * sleeptab_init:
73 1.2 ad *
74 1.2 ad * Initialize a sleep table.
75 1.2 ad */
76 1.2 ad void
77 1.2 ad sleeptab_init(sleeptab_t *st)
78 1.2 ad {
79 1.56 ad static bool again;
80 1.2 ad int i;
81 1.2 ad
82 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 1.56 ad if (!again) {
84 1.56 ad mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 1.56 ad IPL_SCHED);
86 1.56 ad }
87 1.52 ad sleepq_init(&st->st_queue[i]);
88 1.2 ad }
89 1.56 ad again = true;
90 1.2 ad }
91 1.2 ad
92 1.2 ad /*
93 1.2 ad * sleepq_init:
94 1.2 ad *
95 1.2 ad * Prepare a sleep queue for use.
96 1.2 ad */
97 1.2 ad void
98 1.30 ad sleepq_init(sleepq_t *sq)
99 1.2 ad {
100 1.2 ad
101 1.63 ad LIST_INIT(sq);
102 1.2 ad }
103 1.2 ad
104 1.2 ad /*
105 1.2 ad * sleepq_remove:
106 1.2 ad *
107 1.37 rmind * Remove an LWP from a sleep queue and wake it up.
108 1.2 ad */
109 1.37 rmind void
110 1.8 ad sleepq_remove(sleepq_t *sq, lwp_t *l)
111 1.2 ad {
112 1.9 yamt struct schedstate_percpu *spc;
113 1.2 ad struct cpu_info *ci;
114 1.2 ad
115 1.30 ad KASSERT(lwp_locked(l, NULL));
116 1.2 ad
117 1.59 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 1.59 ad KASSERT(sq != NULL);
119 1.63 ad LIST_REMOVE(l, l_sleepchain);
120 1.59 ad } else {
121 1.59 ad KASSERT(sq == NULL);
122 1.59 ad }
123 1.59 ad
124 1.2 ad l->l_syncobj = &sched_syncobj;
125 1.2 ad l->l_wchan = NULL;
126 1.2 ad l->l_sleepq = NULL;
127 1.5 pavel l->l_flag &= ~LW_SINTR;
128 1.2 ad
129 1.9 yamt ci = l->l_cpu;
130 1.9 yamt spc = &ci->ci_schedstate;
131 1.9 yamt
132 1.2 ad /*
133 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
134 1.2 ad * holds it stopped set it running again.
135 1.2 ad */
136 1.2 ad if (l->l_stat != LSSLEEP) {
137 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 1.21 ad lwp_setlock(l, spc->spc_lwplock);
139 1.37 rmind return;
140 1.2 ad }
141 1.2 ad
142 1.2 ad /*
143 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 1.2 ad * about to call mi_switch(), in which case it will yield.
145 1.2 ad */
146 1.61 ad if ((l->l_pflag & LP_RUNNING) != 0) {
147 1.2 ad l->l_stat = LSONPROC;
148 1.2 ad l->l_slptime = 0;
149 1.21 ad lwp_setlock(l, spc->spc_lwplock);
150 1.37 rmind return;
151 1.2 ad }
152 1.2 ad
153 1.29 rmind /* Update sleep time delta, call the wake-up handler of scheduler */
154 1.65 maxv l->l_slpticksum += (getticks() - l->l_slpticks);
155 1.16 rmind sched_wakeup(l);
156 1.29 rmind
157 1.29 rmind /* Look for a CPU to wake up */
158 1.29 rmind l->l_cpu = sched_takecpu(l);
159 1.16 rmind ci = l->l_cpu;
160 1.16 rmind spc = &ci->ci_schedstate;
161 1.16 rmind
162 1.16 rmind /*
163 1.17 yamt * Set it running.
164 1.2 ad */
165 1.9 yamt spc_lock(ci);
166 1.9 yamt lwp_setlock(l, spc->spc_mutex);
167 1.9 yamt sched_setrunnable(l);
168 1.2 ad l->l_stat = LSRUN;
169 1.2 ad l->l_slptime = 0;
170 1.53 ad sched_enqueue(l);
171 1.53 ad sched_resched_lwp(l, true);
172 1.53 ad /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 1.2 ad }
174 1.2 ad
175 1.2 ad /*
176 1.2 ad * sleepq_insert:
177 1.2 ad *
178 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
179 1.2 ad */
180 1.46 rmind static void
181 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 1.2 ad {
183 1.2 ad
184 1.59 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 1.59 ad KASSERT(sq == NULL);
186 1.59 ad return;
187 1.59 ad }
188 1.59 ad KASSERT(sq != NULL);
189 1.59 ad
190 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 1.68 thorpej lwp_t *l2, *l_last = NULL;
192 1.60 christos const pri_t pri = lwp_eprio(l);
193 1.40 yamt
194 1.63 ad LIST_FOREACH(l2, sq, l_sleepchain) {
195 1.68 thorpej l_last = l2;
196 1.18 ad if (lwp_eprio(l2) < pri) {
197 1.63 ad LIST_INSERT_BEFORE(l2, l, l_sleepchain);
198 1.2 ad return;
199 1.2 ad }
200 1.2 ad }
201 1.68 thorpej /*
202 1.68 thorpej * Ensure FIFO ordering if no waiters are of lower priority.
203 1.68 thorpej */
204 1.68 thorpej if (l_last != NULL) {
205 1.68 thorpej LIST_INSERT_AFTER(l_last, l, l_sleepchain);
206 1.68 thorpej return;
207 1.68 thorpej }
208 1.2 ad }
209 1.2 ad
210 1.63 ad LIST_INSERT_HEAD(sq, l, l_sleepchain);
211 1.2 ad }
212 1.2 ad
213 1.9 yamt /*
214 1.9 yamt * sleepq_enqueue:
215 1.9 yamt *
216 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
217 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
218 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
219 1.9 yamt */
220 1.2 ad void
221 1.66 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
222 1.66 ad bool catch_p)
223 1.2 ad {
224 1.8 ad lwp_t *l = curlwp;
225 1.2 ad
226 1.30 ad KASSERT(lwp_locked(l, NULL));
227 1.2 ad KASSERT(l->l_stat == LSONPROC);
228 1.2 ad KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
229 1.66 ad KASSERT((l->l_flag & LW_SINTR) == 0);
230 1.2 ad
231 1.2 ad l->l_syncobj = sobj;
232 1.2 ad l->l_wchan = wchan;
233 1.2 ad l->l_sleepq = sq;
234 1.2 ad l->l_wmesg = wmesg;
235 1.2 ad l->l_slptime = 0;
236 1.2 ad l->l_stat = LSSLEEP;
237 1.66 ad if (catch_p)
238 1.66 ad l->l_flag |= LW_SINTR;
239 1.2 ad
240 1.6 yamt sleepq_insert(sq, l, sobj);
241 1.29 rmind
242 1.29 rmind /* Save the time when thread has slept */
243 1.65 maxv l->l_slpticks = getticks();
244 1.15 rmind sched_slept(l);
245 1.6 yamt }
246 1.6 yamt
247 1.9 yamt /*
248 1.67 thorpej * sleepq_transfer:
249 1.67 thorpej *
250 1.67 thorpej * Move an LWP from one sleep queue to another. Both sleep queues
251 1.67 thorpej * must already be locked.
252 1.67 thorpej *
253 1.67 thorpej * The LWP will be updated with the new sleepq, wchan, wmesg,
254 1.67 thorpej * sobj, and mutex. The interruptible flag will also be updated.
255 1.67 thorpej */
256 1.67 thorpej void
257 1.67 thorpej sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
258 1.67 thorpej const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
259 1.67 thorpej {
260 1.67 thorpej
261 1.67 thorpej KASSERT(l->l_sleepq == from_sq);
262 1.67 thorpej
263 1.67 thorpej LIST_REMOVE(l, l_sleepchain);
264 1.67 thorpej l->l_syncobj = sobj;
265 1.67 thorpej l->l_wchan = wchan;
266 1.67 thorpej l->l_sleepq = sq;
267 1.67 thorpej l->l_wmesg = wmesg;
268 1.67 thorpej
269 1.67 thorpej if (catch_p)
270 1.69 thorpej l->l_flag = LW_SINTR | LW_CATCHINTR;
271 1.67 thorpej else
272 1.69 thorpej l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
273 1.67 thorpej
274 1.69 thorpej /*
275 1.69 thorpej * This allows the transfer from one sleepq to another where
276 1.69 thorpej * it is known that they're both protected by the same lock.
277 1.69 thorpej */
278 1.69 thorpej if (mp != NULL)
279 1.69 thorpej lwp_setlock(l, mp);
280 1.67 thorpej
281 1.67 thorpej sleepq_insert(sq, l, sobj);
282 1.67 thorpej }
283 1.67 thorpej
284 1.67 thorpej /*
285 1.69 thorpej * sleepq_uncatch:
286 1.69 thorpej *
287 1.69 thorpej * Mark the LWP as no longer sleeping interruptibly.
288 1.69 thorpej */
289 1.69 thorpej void
290 1.69 thorpej sleepq_uncatch(lwp_t *l)
291 1.69 thorpej {
292 1.69 thorpej l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
293 1.69 thorpej }
294 1.69 thorpej
295 1.69 thorpej /*
296 1.9 yamt * sleepq_block:
297 1.9 yamt *
298 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
299 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
300 1.9 yamt * example if the LWP's containing process is exiting.
301 1.48 apb *
302 1.48 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
303 1.9 yamt */
304 1.9 yamt int
305 1.50 matt sleepq_block(int timo, bool catch_p)
306 1.6 yamt {
307 1.10 ad int error = 0, sig;
308 1.9 yamt struct proc *p;
309 1.8 ad lwp_t *l = curlwp;
310 1.11 ad bool early = false;
311 1.34 yamt int biglocks = l->l_biglocks;
312 1.72 riastrad struct syncobj *syncobj = l->l_syncobj;
313 1.2 ad
314 1.72 riastrad ktrcsw(1, 0, syncobj);
315 1.4 ad
316 1.2 ad /*
317 1.2 ad * If sleeping interruptably, check for pending signals, exits or
318 1.66 ad * core dump events.
319 1.69 thorpej *
320 1.69 thorpej * Note the usage of LW_CATCHINTR. This expresses our intent
321 1.69 thorpej * to catch or not catch sleep interruptions, which might change
322 1.69 thorpej * while we are sleeping. It is independent from LW_SINTR because
323 1.69 thorpej * we don't want to leave LW_SINTR set when the LWP is not asleep.
324 1.2 ad */
325 1.50 matt if (catch_p) {
326 1.5 pavel if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
327 1.5 pavel l->l_flag &= ~LW_CANCELLED;
328 1.14 ad error = EINTR;
329 1.14 ad early = true;
330 1.14 ad } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
331 1.11 ad early = true;
332 1.69 thorpej l->l_flag |= LW_CATCHINTR;
333 1.69 thorpej } else
334 1.69 thorpej l->l_flag &= ~LW_CATCHINTR;
335 1.2 ad
336 1.13 yamt if (early) {
337 1.13 yamt /* lwp_unsleep() will release the lock */
338 1.22 ad lwp_unsleep(l, true);
339 1.13 yamt } else {
340 1.66 ad /*
341 1.66 ad * The LWP may have already been awoken if the caller
342 1.66 ad * dropped the sleep queue lock between sleepq_enqueue() and
343 1.70 msaitoh * sleepq_block(). If that happens l_stat will be LSONPROC
344 1.66 ad * and mi_switch() will treat this as a preemption. No need
345 1.66 ad * to do anything special here.
346 1.66 ad */
347 1.46 rmind if (timo) {
348 1.64 ad l->l_flag &= ~LW_STIMO;
349 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
350 1.46 rmind }
351 1.54 ad spc_lock(l->l_cpu);
352 1.46 rmind mi_switch(l);
353 1.11 ad
354 1.11 ad /* The LWP and sleep queue are now unlocked. */
355 1.11 ad if (timo) {
356 1.11 ad /*
357 1.52 ad * Even if the callout appears to have fired, we
358 1.52 ad * need to stop it in order to synchronise with
359 1.52 ad * other CPUs. It's important that we do this in
360 1.52 ad * this LWP's context, and not during wakeup, in
361 1.52 ad * order to keep the callout & its cache lines
362 1.52 ad * co-located on the CPU with the LWP.
363 1.11 ad */
364 1.64 ad (void)callout_halt(&l->l_timeout_ch, NULL);
365 1.64 ad error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
366 1.11 ad }
367 1.2 ad }
368 1.2 ad
369 1.69 thorpej /*
370 1.69 thorpej * LW_CATCHINTR is only modified in this function OR when we
371 1.69 thorpej * are asleep (with the sleepq locked). We can therefore safely
372 1.69 thorpej * test it unlocked here as it is guaranteed to be stable by
373 1.69 thorpej * virtue of us running.
374 1.69 thorpej *
375 1.69 thorpej * We do not bother clearing it if set; that would require us
376 1.69 thorpej * to take the LWP lock, and it doesn't seem worth the hassle
377 1.69 thorpej * considering it is only meaningful here inside this function,
378 1.69 thorpej * and is set to reflect intent upon entry.
379 1.69 thorpej */
380 1.69 thorpej if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
381 1.2 ad p = l->l_proc;
382 1.5 pavel if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
383 1.2 ad error = EINTR;
384 1.5 pavel else if ((l->l_flag & LW_PENDSIG) != 0) {
385 1.33 ad /*
386 1.33 ad * Acquiring p_lock may cause us to recurse
387 1.33 ad * through the sleep path and back into this
388 1.33 ad * routine, but is safe because LWPs sleeping
389 1.62 ad * on locks are non-interruptable and we will
390 1.33 ad * not recurse again.
391 1.33 ad */
392 1.27 ad mutex_enter(p->p_lock);
393 1.43 christos if (((sig = sigispending(l, 0)) != 0 &&
394 1.43 christos (sigprop[sig] & SA_STOP) == 0) ||
395 1.43 christos (sig = issignal(l)) != 0)
396 1.2 ad error = sleepq_sigtoerror(l, sig);
397 1.27 ad mutex_exit(p->p_lock);
398 1.2 ad }
399 1.2 ad }
400 1.2 ad
401 1.72 riastrad ktrcsw(0, 0, syncobj);
402 1.34 yamt if (__predict_false(biglocks != 0)) {
403 1.34 yamt KERNEL_LOCK(biglocks, NULL);
404 1.30 ad }
405 1.2 ad return error;
406 1.2 ad }
407 1.2 ad
408 1.2 ad /*
409 1.2 ad * sleepq_wake:
410 1.2 ad *
411 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
412 1.2 ad */
413 1.49 pooka void
414 1.30 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
415 1.2 ad {
416 1.8 ad lwp_t *l, *next;
417 1.2 ad
418 1.30 ad KASSERT(mutex_owned(mp));
419 1.2 ad
420 1.63 ad for (l = LIST_FIRST(sq); l != NULL; l = next) {
421 1.2 ad KASSERT(l->l_sleepq == sq);
422 1.30 ad KASSERT(l->l_mutex == mp);
423 1.63 ad next = LIST_NEXT(l, l_sleepchain);
424 1.2 ad if (l->l_wchan != wchan)
425 1.2 ad continue;
426 1.37 rmind sleepq_remove(sq, l);
427 1.2 ad if (--expected == 0)
428 1.2 ad break;
429 1.2 ad }
430 1.2 ad
431 1.30 ad mutex_spin_exit(mp);
432 1.2 ad }
433 1.2 ad
434 1.2 ad /*
435 1.2 ad * sleepq_unsleep:
436 1.2 ad *
437 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
438 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
439 1.52 ad * release it if "unlock" is true.
440 1.2 ad */
441 1.37 rmind void
442 1.52 ad sleepq_unsleep(lwp_t *l, bool unlock)
443 1.2 ad {
444 1.2 ad sleepq_t *sq = l->l_sleepq;
445 1.30 ad kmutex_t *mp = l->l_mutex;
446 1.2 ad
447 1.30 ad KASSERT(lwp_locked(l, mp));
448 1.2 ad KASSERT(l->l_wchan != NULL);
449 1.2 ad
450 1.37 rmind sleepq_remove(sq, l);
451 1.52 ad if (unlock) {
452 1.30 ad mutex_spin_exit(mp);
453 1.22 ad }
454 1.2 ad }
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * sleepq_timeout:
458 1.2 ad *
459 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
460 1.2 ad * sleep queue.
461 1.2 ad */
462 1.2 ad void
463 1.2 ad sleepq_timeout(void *arg)
464 1.2 ad {
465 1.8 ad lwp_t *l = arg;
466 1.2 ad
467 1.2 ad /*
468 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
469 1.2 ad * current mutex will also be the sleep queue mutex.
470 1.2 ad */
471 1.2 ad lwp_lock(l);
472 1.2 ad
473 1.2 ad if (l->l_wchan == NULL) {
474 1.2 ad /* Somebody beat us to it. */
475 1.2 ad lwp_unlock(l);
476 1.2 ad return;
477 1.2 ad }
478 1.2 ad
479 1.64 ad l->l_flag |= LW_STIMO;
480 1.22 ad lwp_unsleep(l, true);
481 1.2 ad }
482 1.2 ad
483 1.2 ad /*
484 1.2 ad * sleepq_sigtoerror:
485 1.2 ad *
486 1.2 ad * Given a signal number, interpret and return an error code.
487 1.2 ad */
488 1.39 rmind static int
489 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
490 1.2 ad {
491 1.2 ad struct proc *p = l->l_proc;
492 1.2 ad int error;
493 1.2 ad
494 1.27 ad KASSERT(mutex_owned(p->p_lock));
495 1.2 ad
496 1.2 ad /*
497 1.2 ad * If this sleep was canceled, don't let the syscall restart.
498 1.2 ad */
499 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
500 1.2 ad error = EINTR;
501 1.2 ad else
502 1.2 ad error = ERESTART;
503 1.2 ad
504 1.2 ad return error;
505 1.2 ad }
506 1.2 ad
507 1.2 ad /*
508 1.2 ad * sleepq_abort:
509 1.2 ad *
510 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
511 1.2 ad * priority level to give pending interrupts a chance to run, and
512 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
513 1.2 ad * always returns zero.
514 1.2 ad */
515 1.2 ad int
516 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
517 1.2 ad {
518 1.2 ad int s;
519 1.2 ad
520 1.2 ad s = splhigh();
521 1.47 matt splx(IPL_SAFEPRI);
522 1.2 ad splx(s);
523 1.2 ad if (mtx != NULL && unlock != 0)
524 1.2 ad mutex_exit(mtx);
525 1.2 ad
526 1.2 ad return 0;
527 1.2 ad }
528 1.2 ad
529 1.2 ad /*
530 1.44 yamt * sleepq_reinsert:
531 1.2 ad *
532 1.71 andvar * Move the position of the lwp in the sleep queue after a possible
533 1.44 yamt * change of the lwp's effective priority.
534 1.2 ad */
535 1.44 yamt static void
536 1.44 yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
537 1.2 ad {
538 1.2 ad
539 1.44 yamt KASSERT(l->l_sleepq == sq);
540 1.59 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
541 1.32 ad return;
542 1.32 ad }
543 1.32 ad
544 1.32 ad /*
545 1.32 ad * Don't let the sleep queue become empty, even briefly.
546 1.32 ad * cv_signal() and cv_broadcast() inspect it without the
547 1.32 ad * sleep queue lock held and need to see a non-empty queue
548 1.32 ad * head if there are waiters.
549 1.32 ad */
550 1.63 ad if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
551 1.32 ad return;
552 1.18 ad }
553 1.63 ad LIST_REMOVE(l, l_sleepchain);
554 1.32 ad sleepq_insert(sq, l, l->l_syncobj);
555 1.2 ad }
556 1.6 yamt
557 1.44 yamt /*
558 1.44 yamt * sleepq_changepri:
559 1.44 yamt *
560 1.44 yamt * Adjust the priority of an LWP residing on a sleepq.
561 1.44 yamt */
562 1.44 yamt void
563 1.44 yamt sleepq_changepri(lwp_t *l, pri_t pri)
564 1.44 yamt {
565 1.44 yamt sleepq_t *sq = l->l_sleepq;
566 1.44 yamt
567 1.44 yamt KASSERT(lwp_locked(l, NULL));
568 1.44 yamt
569 1.44 yamt l->l_priority = pri;
570 1.44 yamt sleepq_reinsert(sq, l);
571 1.44 yamt }
572 1.44 yamt
573 1.44 yamt /*
574 1.44 yamt * sleepq_changepri:
575 1.44 yamt *
576 1.44 yamt * Adjust the lended priority of an LWP residing on a sleepq.
577 1.44 yamt */
578 1.6 yamt void
579 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
580 1.6 yamt {
581 1.6 yamt sleepq_t *sq = l->l_sleepq;
582 1.6 yamt
583 1.30 ad KASSERT(lwp_locked(l, NULL));
584 1.6 yamt
585 1.6 yamt l->l_inheritedprio = pri;
586 1.51 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
587 1.44 yamt sleepq_reinsert(sq, l);
588 1.6 yamt }
589