Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.81
      1  1.81        ad /*	$NetBSD: kern_sleepq.c,v 1.81 2023/10/08 11:12:47 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.75        ad  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  1.75        ad  *     The NetBSD Foundation, Inc.
      6   1.2        ad  * All rights reserved.
      7   1.2        ad  *
      8   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9   1.2        ad  * by Andrew Doran.
     10   1.2        ad  *
     11   1.2        ad  * Redistribution and use in source and binary forms, with or without
     12   1.2        ad  * modification, are permitted provided that the following conditions
     13   1.2        ad  * are met:
     14   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18   1.2        ad  *    documentation and/or other materials provided with the distribution.
     19   1.2        ad  *
     20   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31   1.2        ad  */
     32   1.2        ad 
     33   1.2        ad /*
     34   1.2        ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35   1.2        ad  * interfaces.
     36   1.2        ad  */
     37   1.2        ad 
     38   1.2        ad #include <sys/cdefs.h>
     39  1.81        ad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.81 2023/10/08 11:12:47 ad Exp $");
     40   1.2        ad 
     41   1.2        ad #include <sys/param.h>
     42   1.2        ad #include <sys/kernel.h>
     43   1.9      yamt #include <sys/cpu.h>
     44  1.47      matt #include <sys/intr.h>
     45   1.2        ad #include <sys/pool.h>
     46   1.2        ad #include <sys/proc.h>
     47   1.2        ad #include <sys/resourcevar.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/systm.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/ktrace.h>
     52   1.2        ad 
     53  1.47      matt /*
     54  1.47      matt  * for sleepq_abort:
     55  1.47      matt  * During autoconfiguration or after a panic, a sleep will simply lower the
     56  1.47      matt  * priority briefly to allow interrupts, then return.  The priority to be
     57  1.47      matt  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     58  1.47      matt  * maintained in the machine-dependent layers.  This priority will typically
     59  1.47      matt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     60  1.47      matt  * it can be made higher to block network software interrupts after panics.
     61  1.47      matt  */
     62  1.47      matt #ifndef	IPL_SAFEPRI
     63  1.47      matt #define	IPL_SAFEPRI	0
     64  1.47      matt #endif
     65  1.47      matt 
     66  1.39     rmind static int	sleepq_sigtoerror(lwp_t *, int);
     67   1.2        ad 
     68  1.45     rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
     69  1.52        ad sleeptab_t	sleeptab __cacheline_aligned;
     70  1.55        ad sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     71   1.2        ad 
     72   1.2        ad /*
     73   1.2        ad  * sleeptab_init:
     74   1.2        ad  *
     75   1.2        ad  *	Initialize a sleep table.
     76   1.2        ad  */
     77   1.2        ad void
     78   1.2        ad sleeptab_init(sleeptab_t *st)
     79   1.2        ad {
     80  1.56        ad 	static bool again;
     81   1.2        ad 	int i;
     82   1.2        ad 
     83   1.2        ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84  1.56        ad 		if (!again) {
     85  1.56        ad 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     86  1.56        ad 			    IPL_SCHED);
     87  1.56        ad 		}
     88  1.52        ad 		sleepq_init(&st->st_queue[i]);
     89   1.2        ad 	}
     90  1.56        ad 	again = true;
     91   1.2        ad }
     92   1.2        ad 
     93   1.2        ad /*
     94   1.2        ad  * sleepq_init:
     95   1.2        ad  *
     96   1.2        ad  *	Prepare a sleep queue for use.
     97   1.2        ad  */
     98   1.2        ad void
     99  1.30        ad sleepq_init(sleepq_t *sq)
    100   1.2        ad {
    101   1.2        ad 
    102  1.63        ad 	LIST_INIT(sq);
    103   1.2        ad }
    104   1.2        ad 
    105   1.2        ad /*
    106   1.2        ad  * sleepq_remove:
    107   1.2        ad  *
    108  1.37     rmind  *	Remove an LWP from a sleep queue and wake it up.
    109   1.2        ad  */
    110  1.37     rmind void
    111   1.8        ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    112   1.2        ad {
    113   1.9      yamt 	struct schedstate_percpu *spc;
    114   1.2        ad 	struct cpu_info *ci;
    115   1.2        ad 
    116  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    117   1.2        ad 
    118  1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    119  1.59        ad 		KASSERT(sq != NULL);
    120  1.63        ad 		LIST_REMOVE(l, l_sleepchain);
    121  1.59        ad 	} else {
    122  1.59        ad 		KASSERT(sq == NULL);
    123  1.59        ad 	}
    124  1.59        ad 
    125   1.2        ad 	l->l_syncobj = &sched_syncobj;
    126   1.2        ad 	l->l_wchan = NULL;
    127   1.2        ad 	l->l_sleepq = NULL;
    128   1.5     pavel 	l->l_flag &= ~LW_SINTR;
    129   1.2        ad 
    130   1.9      yamt 	ci = l->l_cpu;
    131   1.9      yamt 	spc = &ci->ci_schedstate;
    132   1.9      yamt 
    133   1.2        ad 	/*
    134   1.2        ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    135   1.2        ad 	 * holds it stopped set it running again.
    136   1.2        ad 	 */
    137   1.2        ad 	if (l->l_stat != LSSLEEP) {
    138  1.16     rmind 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    139  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    140  1.37     rmind 		return;
    141   1.2        ad 	}
    142   1.2        ad 
    143   1.2        ad 	/*
    144   1.2        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    145   1.2        ad 	 * about to call mi_switch(), in which case it will yield.
    146   1.2        ad 	 */
    147  1.61        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    148   1.2        ad 		l->l_stat = LSONPROC;
    149   1.2        ad 		l->l_slptime = 0;
    150  1.21        ad 		lwp_setlock(l, spc->spc_lwplock);
    151  1.37     rmind 		return;
    152   1.2        ad 	}
    153   1.2        ad 
    154  1.29     rmind 	/* Update sleep time delta, call the wake-up handler of scheduler */
    155  1.65      maxv 	l->l_slpticksum += (getticks() - l->l_slpticks);
    156  1.16     rmind 	sched_wakeup(l);
    157  1.29     rmind 
    158  1.29     rmind 	/* Look for a CPU to wake up */
    159  1.29     rmind 	l->l_cpu = sched_takecpu(l);
    160  1.16     rmind 	ci = l->l_cpu;
    161  1.16     rmind 	spc = &ci->ci_schedstate;
    162  1.16     rmind 
    163  1.16     rmind 	/*
    164  1.17      yamt 	 * Set it running.
    165   1.2        ad 	 */
    166   1.9      yamt 	spc_lock(ci);
    167   1.9      yamt 	lwp_setlock(l, spc->spc_mutex);
    168   1.9      yamt 	sched_setrunnable(l);
    169   1.2        ad 	l->l_stat = LSRUN;
    170   1.2        ad 	l->l_slptime = 0;
    171  1.53        ad 	sched_enqueue(l);
    172  1.53        ad 	sched_resched_lwp(l, true);
    173  1.53        ad 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    174   1.2        ad }
    175   1.2        ad 
    176   1.2        ad /*
    177   1.2        ad  * sleepq_insert:
    178   1.2        ad  *
    179   1.2        ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    180   1.2        ad  */
    181  1.46     rmind static void
    182   1.8        ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    183   1.2        ad {
    184   1.2        ad 
    185  1.59        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    186  1.59        ad 		KASSERT(sq == NULL);
    187  1.59        ad 		return;
    188  1.59        ad 	}
    189  1.59        ad 	KASSERT(sq != NULL);
    190  1.59        ad 
    191   1.2        ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    192  1.68   thorpej 		lwp_t *l2, *l_last = NULL;
    193  1.60  christos 		const pri_t pri = lwp_eprio(l);
    194  1.40      yamt 
    195  1.63        ad 		LIST_FOREACH(l2, sq, l_sleepchain) {
    196  1.68   thorpej 			l_last = l2;
    197  1.18        ad 			if (lwp_eprio(l2) < pri) {
    198  1.63        ad 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    199   1.2        ad 				return;
    200   1.2        ad 			}
    201   1.2        ad 		}
    202  1.68   thorpej 		/*
    203  1.68   thorpej 		 * Ensure FIFO ordering if no waiters are of lower priority.
    204  1.68   thorpej 		 */
    205  1.68   thorpej 		if (l_last != NULL) {
    206  1.68   thorpej 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    207  1.68   thorpej 			return;
    208  1.68   thorpej 		}
    209   1.2        ad 	}
    210   1.2        ad 
    211  1.63        ad 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    212   1.2        ad }
    213   1.2        ad 
    214   1.9      yamt /*
    215  1.75        ad  * sleepq_enter:
    216  1.75        ad  *
    217  1.75        ad  *	Prepare to block on a sleep queue, after which any interlock can be
    218  1.75        ad  *	safely released.
    219  1.75        ad  */
    220  1.77        ad int
    221  1.75        ad sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    222  1.75        ad {
    223  1.77        ad 	int nlocks;
    224  1.75        ad 
    225  1.78        ad 	KASSERT((sq != NULL) == (mp != NULL));
    226  1.78        ad 
    227  1.75        ad 	/*
    228  1.75        ad 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    229  1.75        ad 	 * Once interlocked, we can release the kernel lock.
    230  1.75        ad 	 */
    231  1.75        ad 	lwp_lock(l);
    232  1.78        ad 	if (mp != NULL) {
    233  1.78        ad 		lwp_unlock_to(l, mp);
    234  1.78        ad 	}
    235  1.78        ad 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    236  1.78        ad 		KERNEL_UNLOCK_ALL(NULL, NULL);
    237  1.78        ad 	}
    238  1.77        ad 	return nlocks;
    239  1.75        ad }
    240  1.75        ad 
    241  1.75        ad /*
    242   1.9      yamt  * sleepq_enqueue:
    243   1.9      yamt  *
    244   1.9      yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    245   1.9      yamt  *	queue must already be locked, and any interlock (such as the kernel
    246   1.9      yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    247   1.9      yamt  */
    248   1.2        ad void
    249  1.66        ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    250  1.66        ad     bool catch_p)
    251   1.2        ad {
    252   1.8        ad 	lwp_t *l = curlwp;
    253   1.2        ad 
    254  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    255   1.2        ad 	KASSERT(l->l_stat == LSONPROC);
    256  1.74  riastrad 	KASSERT(l->l_wchan == NULL);
    257  1.74  riastrad 	KASSERT(l->l_sleepq == NULL);
    258  1.66        ad 	KASSERT((l->l_flag & LW_SINTR) == 0);
    259   1.2        ad 
    260   1.2        ad 	l->l_syncobj = sobj;
    261   1.2        ad 	l->l_wchan = wchan;
    262   1.2        ad 	l->l_sleepq = sq;
    263   1.2        ad 	l->l_wmesg = wmesg;
    264   1.2        ad 	l->l_slptime = 0;
    265   1.2        ad 	l->l_stat = LSSLEEP;
    266  1.66        ad 	if (catch_p)
    267  1.66        ad 		l->l_flag |= LW_SINTR;
    268   1.2        ad 
    269   1.6      yamt 	sleepq_insert(sq, l, sobj);
    270  1.29     rmind 
    271  1.29     rmind 	/* Save the time when thread has slept */
    272  1.65      maxv 	l->l_slpticks = getticks();
    273  1.15     rmind 	sched_slept(l);
    274   1.6      yamt }
    275   1.6      yamt 
    276   1.9      yamt /*
    277  1.67   thorpej  * sleepq_transfer:
    278  1.67   thorpej  *
    279  1.67   thorpej  *	Move an LWP from one sleep queue to another.  Both sleep queues
    280  1.67   thorpej  *	must already be locked.
    281  1.67   thorpej  *
    282  1.67   thorpej  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    283  1.67   thorpej  *	sobj, and mutex.  The interruptible flag will also be updated.
    284  1.67   thorpej  */
    285  1.67   thorpej void
    286  1.67   thorpej sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    287  1.67   thorpej     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    288  1.67   thorpej {
    289  1.67   thorpej 
    290  1.67   thorpej 	KASSERT(l->l_sleepq == from_sq);
    291  1.67   thorpej 
    292  1.67   thorpej 	LIST_REMOVE(l, l_sleepchain);
    293  1.67   thorpej 	l->l_syncobj = sobj;
    294  1.67   thorpej 	l->l_wchan = wchan;
    295  1.67   thorpej 	l->l_sleepq = sq;
    296  1.67   thorpej 	l->l_wmesg = wmesg;
    297  1.67   thorpej 
    298  1.67   thorpej 	if (catch_p)
    299  1.69   thorpej 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    300  1.67   thorpej 	else
    301  1.69   thorpej 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    302  1.67   thorpej 
    303  1.69   thorpej 	/*
    304  1.69   thorpej 	 * This allows the transfer from one sleepq to another where
    305  1.69   thorpej 	 * it is known that they're both protected by the same lock.
    306  1.69   thorpej 	 */
    307  1.69   thorpej 	if (mp != NULL)
    308  1.69   thorpej 		lwp_setlock(l, mp);
    309  1.67   thorpej 
    310  1.67   thorpej 	sleepq_insert(sq, l, sobj);
    311  1.67   thorpej }
    312  1.67   thorpej 
    313  1.67   thorpej /*
    314  1.69   thorpej  * sleepq_uncatch:
    315  1.69   thorpej  *
    316  1.69   thorpej  *	Mark the LWP as no longer sleeping interruptibly.
    317  1.69   thorpej  */
    318  1.69   thorpej void
    319  1.69   thorpej sleepq_uncatch(lwp_t *l)
    320  1.69   thorpej {
    321  1.79        ad 
    322  1.80        ad 	l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
    323  1.69   thorpej }
    324  1.69   thorpej 
    325  1.69   thorpej /*
    326   1.9      yamt  * sleepq_block:
    327   1.9      yamt  *
    328   1.9      yamt  *	After any intermediate step such as releasing an interlock, switch.
    329   1.9      yamt  * 	sleepq_block() may return early under exceptional conditions, for
    330   1.9      yamt  * 	example if the LWP's containing process is exiting.
    331  1.48       apb  *
    332  1.48       apb  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    333   1.9      yamt  */
    334   1.9      yamt int
    335  1.77        ad sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    336   1.6      yamt {
    337  1.81        ad 	const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG;
    338  1.81        ad 	int error = 0, sig, flag;
    339   1.9      yamt 	struct proc *p;
    340   1.8        ad 	lwp_t *l = curlwp;
    341  1.11        ad 	bool early = false;
    342   1.2        ad 
    343  1.72  riastrad 	ktrcsw(1, 0, syncobj);
    344   1.4        ad 
    345   1.2        ad 	/*
    346   1.2        ad 	 * If sleeping interruptably, check for pending signals, exits or
    347  1.66        ad 	 * core dump events.
    348  1.69   thorpej 	 *
    349  1.69   thorpej 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    350  1.69   thorpej 	 * to catch or not catch sleep interruptions, which might change
    351  1.69   thorpej 	 * while we are sleeping.  It is independent from LW_SINTR because
    352  1.69   thorpej 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    353   1.2        ad 	 */
    354  1.50      matt 	if (catch_p) {
    355   1.5     pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    356   1.5     pavel 			l->l_flag &= ~LW_CANCELLED;
    357  1.14        ad 			error = EINTR;
    358  1.14        ad 			early = true;
    359  1.14        ad 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    360  1.11        ad 			early = true;
    361  1.69   thorpej 		l->l_flag |= LW_CATCHINTR;
    362  1.69   thorpej 	} else
    363  1.69   thorpej 		l->l_flag &= ~LW_CATCHINTR;
    364   1.2        ad 
    365  1.13      yamt 	if (early) {
    366  1.13      yamt 		/* lwp_unsleep() will release the lock */
    367  1.22        ad 		lwp_unsleep(l, true);
    368  1.13      yamt 	} else {
    369  1.66        ad 		/*
    370  1.66        ad 		 * The LWP may have already been awoken if the caller
    371  1.66        ad 		 * dropped the sleep queue lock between sleepq_enqueue() and
    372  1.70   msaitoh 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    373  1.66        ad 		 * and mi_switch() will treat this as a preemption.  No need
    374  1.66        ad 		 * to do anything special here.
    375  1.66        ad 		 */
    376  1.46     rmind 		if (timo) {
    377  1.64        ad 			l->l_flag &= ~LW_STIMO;
    378  1.14        ad 			callout_schedule(&l->l_timeout_ch, timo);
    379  1.46     rmind 		}
    380  1.76        ad 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    381  1.54        ad 		spc_lock(l->l_cpu);
    382  1.46     rmind 		mi_switch(l);
    383  1.11        ad 
    384  1.11        ad 		/* The LWP and sleep queue are now unlocked. */
    385  1.11        ad 		if (timo) {
    386  1.11        ad 			/*
    387  1.52        ad 			 * Even if the callout appears to have fired, we
    388  1.52        ad 			 * need to stop it in order to synchronise with
    389  1.52        ad 			 * other CPUs.  It's important that we do this in
    390  1.52        ad 			 * this LWP's context, and not during wakeup, in
    391  1.52        ad 			 * order to keep the callout & its cache lines
    392  1.52        ad 			 * co-located on the CPU with the LWP.
    393  1.11        ad 			 */
    394  1.64        ad 			(void)callout_halt(&l->l_timeout_ch, NULL);
    395  1.64        ad 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    396  1.11        ad 		}
    397   1.2        ad 	}
    398   1.2        ad 
    399  1.69   thorpej 	/*
    400  1.69   thorpej 	 * LW_CATCHINTR is only modified in this function OR when we
    401  1.69   thorpej 	 * are asleep (with the sleepq locked).  We can therefore safely
    402  1.69   thorpej 	 * test it unlocked here as it is guaranteed to be stable by
    403  1.69   thorpej 	 * virtue of us running.
    404  1.69   thorpej 	 *
    405  1.69   thorpej 	 * We do not bother clearing it if set; that would require us
    406  1.69   thorpej 	 * to take the LWP lock, and it doesn't seem worth the hassle
    407  1.69   thorpej 	 * considering it is only meaningful here inside this function,
    408  1.69   thorpej 	 * and is set to reflect intent upon entry.
    409  1.69   thorpej 	 */
    410  1.81        ad 	flag = atomic_load_relaxed(&l->l_flag);
    411  1.81        ad 	if (__predict_false((flag & mask) != 0)) {
    412   1.2        ad 		p = l->l_proc;
    413  1.81        ad 		if ((flag & LW_CATCHINTR) == 0 && error != 0)
    414  1.81        ad 			/* nothing */;
    415  1.81        ad 		else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    416   1.2        ad 			error = EINTR;
    417  1.81        ad 		else if ((flag & LW_PENDSIG) != 0) {
    418  1.33        ad 			/*
    419  1.33        ad 			 * Acquiring p_lock may cause us to recurse
    420  1.33        ad 			 * through the sleep path and back into this
    421  1.33        ad 			 * routine, but is safe because LWPs sleeping
    422  1.62        ad 			 * on locks are non-interruptable and we will
    423  1.33        ad 			 * not recurse again.
    424  1.33        ad 			 */
    425  1.27        ad 			mutex_enter(p->p_lock);
    426  1.43  christos 			if (((sig = sigispending(l, 0)) != 0 &&
    427  1.43  christos 			    (sigprop[sig] & SA_STOP) == 0) ||
    428  1.43  christos 			    (sig = issignal(l)) != 0)
    429   1.2        ad 				error = sleepq_sigtoerror(l, sig);
    430  1.27        ad 			mutex_exit(p->p_lock);
    431   1.2        ad 		}
    432   1.2        ad 	}
    433   1.2        ad 
    434  1.72  riastrad 	ktrcsw(0, 0, syncobj);
    435  1.77        ad 	if (__predict_false(nlocks != 0)) {
    436  1.77        ad 		KERNEL_LOCK(nlocks, NULL);
    437  1.30        ad 	}
    438   1.2        ad 	return error;
    439   1.2        ad }
    440   1.2        ad 
    441   1.2        ad /*
    442   1.2        ad  * sleepq_wake:
    443   1.2        ad  *
    444   1.2        ad  *	Wake zero or more LWPs blocked on a single wait channel.
    445   1.2        ad  */
    446  1.49     pooka void
    447  1.30        ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    448   1.2        ad {
    449   1.8        ad 	lwp_t *l, *next;
    450   1.2        ad 
    451  1.30        ad 	KASSERT(mutex_owned(mp));
    452   1.2        ad 
    453  1.63        ad 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    454   1.2        ad 		KASSERT(l->l_sleepq == sq);
    455  1.30        ad 		KASSERT(l->l_mutex == mp);
    456  1.63        ad 		next = LIST_NEXT(l, l_sleepchain);
    457   1.2        ad 		if (l->l_wchan != wchan)
    458   1.2        ad 			continue;
    459  1.37     rmind 		sleepq_remove(sq, l);
    460   1.2        ad 		if (--expected == 0)
    461   1.2        ad 			break;
    462   1.2        ad 	}
    463   1.2        ad 
    464  1.30        ad 	mutex_spin_exit(mp);
    465   1.2        ad }
    466   1.2        ad 
    467   1.2        ad /*
    468   1.2        ad  * sleepq_unsleep:
    469   1.2        ad  *
    470   1.2        ad  *	Remove an LWP from its sleep queue and set it runnable again.
    471   1.2        ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    472  1.52        ad  *	release it if "unlock" is true.
    473   1.2        ad  */
    474  1.37     rmind void
    475  1.52        ad sleepq_unsleep(lwp_t *l, bool unlock)
    476   1.2        ad {
    477   1.2        ad 	sleepq_t *sq = l->l_sleepq;
    478  1.30        ad 	kmutex_t *mp = l->l_mutex;
    479   1.2        ad 
    480  1.30        ad 	KASSERT(lwp_locked(l, mp));
    481   1.2        ad 	KASSERT(l->l_wchan != NULL);
    482   1.2        ad 
    483  1.37     rmind 	sleepq_remove(sq, l);
    484  1.52        ad 	if (unlock) {
    485  1.30        ad 		mutex_spin_exit(mp);
    486  1.22        ad 	}
    487   1.2        ad }
    488   1.2        ad 
    489   1.2        ad /*
    490   1.2        ad  * sleepq_timeout:
    491   1.2        ad  *
    492   1.2        ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    493   1.2        ad  *	sleep queue.
    494   1.2        ad  */
    495   1.2        ad void
    496   1.2        ad sleepq_timeout(void *arg)
    497   1.2        ad {
    498   1.8        ad 	lwp_t *l = arg;
    499   1.2        ad 
    500   1.2        ad 	/*
    501   1.2        ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    502   1.2        ad 	 * current mutex will also be the sleep queue mutex.
    503   1.2        ad 	 */
    504   1.2        ad 	lwp_lock(l);
    505   1.2        ad 
    506   1.2        ad 	if (l->l_wchan == NULL) {
    507   1.2        ad 		/* Somebody beat us to it. */
    508   1.2        ad 		lwp_unlock(l);
    509   1.2        ad 		return;
    510   1.2        ad 	}
    511   1.2        ad 
    512  1.64        ad 	l->l_flag |= LW_STIMO;
    513  1.22        ad 	lwp_unsleep(l, true);
    514   1.2        ad }
    515   1.2        ad 
    516   1.2        ad /*
    517   1.2        ad  * sleepq_sigtoerror:
    518   1.2        ad  *
    519   1.2        ad  *	Given a signal number, interpret and return an error code.
    520   1.2        ad  */
    521  1.39     rmind static int
    522   1.8        ad sleepq_sigtoerror(lwp_t *l, int sig)
    523   1.2        ad {
    524   1.2        ad 	struct proc *p = l->l_proc;
    525   1.2        ad 	int error;
    526   1.2        ad 
    527  1.27        ad 	KASSERT(mutex_owned(p->p_lock));
    528   1.2        ad 
    529   1.2        ad 	/*
    530   1.2        ad 	 * If this sleep was canceled, don't let the syscall restart.
    531   1.2        ad 	 */
    532   1.2        ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    533   1.2        ad 		error = EINTR;
    534   1.2        ad 	else
    535   1.2        ad 		error = ERESTART;
    536   1.2        ad 
    537   1.2        ad 	return error;
    538   1.2        ad }
    539   1.2        ad 
    540   1.2        ad /*
    541   1.2        ad  * sleepq_abort:
    542   1.2        ad  *
    543   1.2        ad  *	After a panic or during autoconfiguration, lower the interrupt
    544   1.2        ad  *	priority level to give pending interrupts a chance to run, and
    545   1.2        ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    546   1.2        ad  *	always returns zero.
    547   1.2        ad  */
    548   1.2        ad int
    549   1.2        ad sleepq_abort(kmutex_t *mtx, int unlock)
    550   1.2        ad {
    551   1.2        ad 	int s;
    552   1.2        ad 
    553   1.2        ad 	s = splhigh();
    554  1.47      matt 	splx(IPL_SAFEPRI);
    555   1.2        ad 	splx(s);
    556   1.2        ad 	if (mtx != NULL && unlock != 0)
    557   1.2        ad 		mutex_exit(mtx);
    558   1.2        ad 
    559   1.2        ad 	return 0;
    560   1.2        ad }
    561   1.2        ad 
    562   1.2        ad /*
    563  1.44      yamt  * sleepq_reinsert:
    564   1.2        ad  *
    565  1.71    andvar  *	Move the position of the lwp in the sleep queue after a possible
    566  1.44      yamt  *	change of the lwp's effective priority.
    567   1.2        ad  */
    568  1.44      yamt static void
    569  1.44      yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    570   1.2        ad {
    571   1.2        ad 
    572  1.44      yamt 	KASSERT(l->l_sleepq == sq);
    573  1.59        ad 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    574  1.32        ad 		return;
    575  1.32        ad 	}
    576  1.32        ad 
    577  1.32        ad 	/*
    578  1.32        ad 	 * Don't let the sleep queue become empty, even briefly.
    579  1.32        ad 	 * cv_signal() and cv_broadcast() inspect it without the
    580  1.32        ad 	 * sleep queue lock held and need to see a non-empty queue
    581  1.32        ad 	 * head if there are waiters.
    582  1.32        ad 	 */
    583  1.63        ad 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    584  1.32        ad 		return;
    585  1.18        ad 	}
    586  1.63        ad 	LIST_REMOVE(l, l_sleepchain);
    587  1.32        ad 	sleepq_insert(sq, l, l->l_syncobj);
    588   1.2        ad }
    589   1.6      yamt 
    590  1.44      yamt /*
    591  1.44      yamt  * sleepq_changepri:
    592  1.44      yamt  *
    593  1.44      yamt  *	Adjust the priority of an LWP residing on a sleepq.
    594  1.44      yamt  */
    595  1.44      yamt void
    596  1.44      yamt sleepq_changepri(lwp_t *l, pri_t pri)
    597  1.44      yamt {
    598  1.44      yamt 	sleepq_t *sq = l->l_sleepq;
    599  1.44      yamt 
    600  1.44      yamt 	KASSERT(lwp_locked(l, NULL));
    601  1.44      yamt 
    602  1.44      yamt 	l->l_priority = pri;
    603  1.44      yamt 	sleepq_reinsert(sq, l);
    604  1.44      yamt }
    605  1.44      yamt 
    606  1.44      yamt /*
    607  1.44      yamt  * sleepq_changepri:
    608  1.44      yamt  *
    609  1.44      yamt  *	Adjust the lended priority of an LWP residing on a sleepq.
    610  1.44      yamt  */
    611   1.6      yamt void
    612   1.8        ad sleepq_lendpri(lwp_t *l, pri_t pri)
    613   1.6      yamt {
    614   1.6      yamt 	sleepq_t *sq = l->l_sleepq;
    615   1.6      yamt 
    616  1.30        ad 	KASSERT(lwp_locked(l, NULL));
    617   1.6      yamt 
    618   1.6      yamt 	l->l_inheritedprio = pri;
    619  1.51  christos 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    620  1.44      yamt 	sleepq_reinsert(sq, l);
    621   1.6      yamt }
    622