kern_sleepq.c revision 1.86 1 1.86 riastrad /* $NetBSD: kern_sleepq.c,v 1.86 2023/10/15 10:29:02 riastradh Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.75 ad * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 1.75 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Sleep queue implementation, used by turnstiles and general sleep/wakeup
35 1.2 ad * interfaces.
36 1.2 ad */
37 1.2 ad
38 1.2 ad #include <sys/cdefs.h>
39 1.86 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.86 2023/10/15 10:29:02 riastradh Exp $");
40 1.2 ad
41 1.2 ad #include <sys/param.h>
42 1.86 riastrad
43 1.9 yamt #include <sys/cpu.h>
44 1.47 matt #include <sys/intr.h>
45 1.86 riastrad #include <sys/kernel.h>
46 1.86 riastrad #include <sys/ktrace.h>
47 1.2 ad #include <sys/pool.h>
48 1.86 riastrad #include <sys/proc.h>
49 1.2 ad #include <sys/resourcevar.h>
50 1.2 ad #include <sys/sched.h>
51 1.2 ad #include <sys/sleepq.h>
52 1.85 riastrad #include <sys/syncobj.h>
53 1.86 riastrad #include <sys/systm.h>
54 1.2 ad
55 1.47 matt /*
56 1.47 matt * for sleepq_abort:
57 1.47 matt * During autoconfiguration or after a panic, a sleep will simply lower the
58 1.47 matt * priority briefly to allow interrupts, then return. The priority to be
59 1.47 matt * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
60 1.47 matt * maintained in the machine-dependent layers. This priority will typically
61 1.47 matt * be 0, or the lowest priority that is safe for use on the interrupt stack;
62 1.47 matt * it can be made higher to block network software interrupts after panics.
63 1.47 matt */
64 1.47 matt #ifndef IPL_SAFEPRI
65 1.47 matt #define IPL_SAFEPRI 0
66 1.47 matt #endif
67 1.47 matt
68 1.39 rmind static int sleepq_sigtoerror(lwp_t *, int);
69 1.2 ad
70 1.45 rmind /* General purpose sleep table, used by mtsleep() and condition variables. */
71 1.52 ad sleeptab_t sleeptab __cacheline_aligned;
72 1.55 ad sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
73 1.2 ad
74 1.2 ad /*
75 1.2 ad * sleeptab_init:
76 1.2 ad *
77 1.2 ad * Initialize a sleep table.
78 1.2 ad */
79 1.2 ad void
80 1.2 ad sleeptab_init(sleeptab_t *st)
81 1.2 ad {
82 1.56 ad static bool again;
83 1.2 ad int i;
84 1.2 ad
85 1.2 ad for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
86 1.56 ad if (!again) {
87 1.56 ad mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
88 1.56 ad IPL_SCHED);
89 1.56 ad }
90 1.52 ad sleepq_init(&st->st_queue[i]);
91 1.2 ad }
92 1.56 ad again = true;
93 1.2 ad }
94 1.2 ad
95 1.2 ad /*
96 1.2 ad * sleepq_init:
97 1.2 ad *
98 1.2 ad * Prepare a sleep queue for use.
99 1.2 ad */
100 1.2 ad void
101 1.30 ad sleepq_init(sleepq_t *sq)
102 1.2 ad {
103 1.2 ad
104 1.63 ad LIST_INIT(sq);
105 1.2 ad }
106 1.2 ad
107 1.2 ad /*
108 1.2 ad * sleepq_remove:
109 1.2 ad *
110 1.82 ad * Remove an LWP from a sleep queue and wake it up. Distinguish
111 1.82 ad * between deliberate wakeups (which are a valuable information) and
112 1.82 ad * "unsleep" (an out-of-band action must be taken).
113 1.82 ad *
114 1.82 ad * For wakeup, convert any interruptable wait into non-interruptable
115 1.82 ad * one before waking the LWP. Otherwise, if only one LWP is awoken it
116 1.82 ad * could fail to do something useful with the wakeup due to an error
117 1.82 ad * return and the caller of e.g. cv_signal() may not expect this.
118 1.2 ad */
119 1.37 rmind void
120 1.82 ad sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
121 1.2 ad {
122 1.9 yamt struct schedstate_percpu *spc;
123 1.2 ad struct cpu_info *ci;
124 1.2 ad
125 1.30 ad KASSERT(lwp_locked(l, NULL));
126 1.2 ad
127 1.59 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
128 1.59 ad KASSERT(sq != NULL);
129 1.63 ad LIST_REMOVE(l, l_sleepchain);
130 1.59 ad } else {
131 1.59 ad KASSERT(sq == NULL);
132 1.59 ad }
133 1.59 ad
134 1.2 ad l->l_syncobj = &sched_syncobj;
135 1.2 ad l->l_wchan = NULL;
136 1.2 ad l->l_sleepq = NULL;
137 1.82 ad l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;
138 1.2 ad
139 1.9 yamt ci = l->l_cpu;
140 1.9 yamt spc = &ci->ci_schedstate;
141 1.9 yamt
142 1.2 ad /*
143 1.2 ad * If not sleeping, the LWP must have been suspended. Let whoever
144 1.2 ad * holds it stopped set it running again.
145 1.2 ad */
146 1.2 ad if (l->l_stat != LSSLEEP) {
147 1.16 rmind KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
148 1.21 ad lwp_setlock(l, spc->spc_lwplock);
149 1.37 rmind return;
150 1.2 ad }
151 1.2 ad
152 1.2 ad /*
153 1.2 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 1.2 ad * about to call mi_switch(), in which case it will yield.
155 1.2 ad */
156 1.61 ad if ((l->l_pflag & LP_RUNNING) != 0) {
157 1.2 ad l->l_stat = LSONPROC;
158 1.2 ad l->l_slptime = 0;
159 1.21 ad lwp_setlock(l, spc->spc_lwplock);
160 1.37 rmind return;
161 1.2 ad }
162 1.2 ad
163 1.29 rmind /* Update sleep time delta, call the wake-up handler of scheduler */
164 1.65 maxv l->l_slpticksum += (getticks() - l->l_slpticks);
165 1.16 rmind sched_wakeup(l);
166 1.29 rmind
167 1.29 rmind /* Look for a CPU to wake up */
168 1.29 rmind l->l_cpu = sched_takecpu(l);
169 1.16 rmind ci = l->l_cpu;
170 1.16 rmind spc = &ci->ci_schedstate;
171 1.16 rmind
172 1.16 rmind /*
173 1.17 yamt * Set it running.
174 1.2 ad */
175 1.9 yamt spc_lock(ci);
176 1.9 yamt lwp_setlock(l, spc->spc_mutex);
177 1.9 yamt sched_setrunnable(l);
178 1.2 ad l->l_stat = LSRUN;
179 1.2 ad l->l_slptime = 0;
180 1.53 ad sched_enqueue(l);
181 1.53 ad sched_resched_lwp(l, true);
182 1.53 ad /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
183 1.2 ad }
184 1.2 ad
185 1.2 ad /*
186 1.2 ad * sleepq_insert:
187 1.2 ad *
188 1.2 ad * Insert an LWP into the sleep queue, optionally sorting by priority.
189 1.2 ad */
190 1.46 rmind static void
191 1.8 ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
192 1.2 ad {
193 1.2 ad
194 1.59 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
195 1.59 ad KASSERT(sq == NULL);
196 1.59 ad return;
197 1.59 ad }
198 1.59 ad KASSERT(sq != NULL);
199 1.59 ad
200 1.2 ad if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
201 1.68 thorpej lwp_t *l2, *l_last = NULL;
202 1.60 christos const pri_t pri = lwp_eprio(l);
203 1.40 yamt
204 1.63 ad LIST_FOREACH(l2, sq, l_sleepchain) {
205 1.68 thorpej l_last = l2;
206 1.18 ad if (lwp_eprio(l2) < pri) {
207 1.63 ad LIST_INSERT_BEFORE(l2, l, l_sleepchain);
208 1.2 ad return;
209 1.2 ad }
210 1.2 ad }
211 1.68 thorpej /*
212 1.68 thorpej * Ensure FIFO ordering if no waiters are of lower priority.
213 1.68 thorpej */
214 1.68 thorpej if (l_last != NULL) {
215 1.68 thorpej LIST_INSERT_AFTER(l_last, l, l_sleepchain);
216 1.68 thorpej return;
217 1.68 thorpej }
218 1.2 ad }
219 1.2 ad
220 1.63 ad LIST_INSERT_HEAD(sq, l, l_sleepchain);
221 1.2 ad }
222 1.2 ad
223 1.9 yamt /*
224 1.75 ad * sleepq_enter:
225 1.75 ad *
226 1.75 ad * Prepare to block on a sleep queue, after which any interlock can be
227 1.75 ad * safely released.
228 1.75 ad */
229 1.77 ad int
230 1.75 ad sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
231 1.75 ad {
232 1.77 ad int nlocks;
233 1.75 ad
234 1.78 ad KASSERT((sq != NULL) == (mp != NULL));
235 1.78 ad
236 1.75 ad /*
237 1.75 ad * Acquire the per-LWP mutex and lend it our sleep queue lock.
238 1.75 ad * Once interlocked, we can release the kernel lock.
239 1.75 ad */
240 1.75 ad lwp_lock(l);
241 1.78 ad if (mp != NULL) {
242 1.78 ad lwp_unlock_to(l, mp);
243 1.78 ad }
244 1.78 ad if (__predict_false((nlocks = l->l_blcnt) != 0)) {
245 1.78 ad KERNEL_UNLOCK_ALL(NULL, NULL);
246 1.78 ad }
247 1.77 ad return nlocks;
248 1.75 ad }
249 1.75 ad
250 1.75 ad /*
251 1.9 yamt * sleepq_enqueue:
252 1.9 yamt *
253 1.9 yamt * Enter an LWP into the sleep queue and prepare for sleep. The sleep
254 1.9 yamt * queue must already be locked, and any interlock (such as the kernel
255 1.9 yamt * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
256 1.9 yamt */
257 1.2 ad void
258 1.66 ad sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
259 1.66 ad bool catch_p)
260 1.2 ad {
261 1.8 ad lwp_t *l = curlwp;
262 1.2 ad
263 1.30 ad KASSERT(lwp_locked(l, NULL));
264 1.2 ad KASSERT(l->l_stat == LSONPROC);
265 1.74 riastrad KASSERT(l->l_wchan == NULL);
266 1.74 riastrad KASSERT(l->l_sleepq == NULL);
267 1.66 ad KASSERT((l->l_flag & LW_SINTR) == 0);
268 1.2 ad
269 1.2 ad l->l_syncobj = sobj;
270 1.2 ad l->l_wchan = wchan;
271 1.2 ad l->l_sleepq = sq;
272 1.2 ad l->l_wmesg = wmesg;
273 1.2 ad l->l_slptime = 0;
274 1.2 ad l->l_stat = LSSLEEP;
275 1.66 ad if (catch_p)
276 1.66 ad l->l_flag |= LW_SINTR;
277 1.2 ad
278 1.6 yamt sleepq_insert(sq, l, sobj);
279 1.29 rmind
280 1.29 rmind /* Save the time when thread has slept */
281 1.65 maxv l->l_slpticks = getticks();
282 1.15 rmind sched_slept(l);
283 1.6 yamt }
284 1.6 yamt
285 1.9 yamt /*
286 1.67 thorpej * sleepq_transfer:
287 1.67 thorpej *
288 1.67 thorpej * Move an LWP from one sleep queue to another. Both sleep queues
289 1.67 thorpej * must already be locked.
290 1.67 thorpej *
291 1.67 thorpej * The LWP will be updated with the new sleepq, wchan, wmesg,
292 1.67 thorpej * sobj, and mutex. The interruptible flag will also be updated.
293 1.67 thorpej */
294 1.67 thorpej void
295 1.67 thorpej sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
296 1.67 thorpej const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
297 1.67 thorpej {
298 1.67 thorpej
299 1.67 thorpej KASSERT(l->l_sleepq == from_sq);
300 1.67 thorpej
301 1.67 thorpej LIST_REMOVE(l, l_sleepchain);
302 1.67 thorpej l->l_syncobj = sobj;
303 1.67 thorpej l->l_wchan = wchan;
304 1.67 thorpej l->l_sleepq = sq;
305 1.67 thorpej l->l_wmesg = wmesg;
306 1.67 thorpej
307 1.67 thorpej if (catch_p)
308 1.69 thorpej l->l_flag = LW_SINTR | LW_CATCHINTR;
309 1.67 thorpej else
310 1.69 thorpej l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
311 1.67 thorpej
312 1.69 thorpej /*
313 1.69 thorpej * This allows the transfer from one sleepq to another where
314 1.69 thorpej * it is known that they're both protected by the same lock.
315 1.69 thorpej */
316 1.69 thorpej if (mp != NULL)
317 1.69 thorpej lwp_setlock(l, mp);
318 1.67 thorpej
319 1.67 thorpej sleepq_insert(sq, l, sobj);
320 1.67 thorpej }
321 1.67 thorpej
322 1.67 thorpej /*
323 1.69 thorpej * sleepq_uncatch:
324 1.69 thorpej *
325 1.69 thorpej * Mark the LWP as no longer sleeping interruptibly.
326 1.69 thorpej */
327 1.69 thorpej void
328 1.69 thorpej sleepq_uncatch(lwp_t *l)
329 1.69 thorpej {
330 1.79 ad
331 1.80 ad l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
332 1.69 thorpej }
333 1.69 thorpej
334 1.69 thorpej /*
335 1.9 yamt * sleepq_block:
336 1.9 yamt *
337 1.9 yamt * After any intermediate step such as releasing an interlock, switch.
338 1.9 yamt * sleepq_block() may return early under exceptional conditions, for
339 1.9 yamt * example if the LWP's containing process is exiting.
340 1.48 apb *
341 1.48 apb * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
342 1.9 yamt */
343 1.9 yamt int
344 1.77 ad sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
345 1.6 yamt {
346 1.84 ad const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG|LW_RESTART;
347 1.81 ad int error = 0, sig, flag;
348 1.9 yamt struct proc *p;
349 1.8 ad lwp_t *l = curlwp;
350 1.11 ad bool early = false;
351 1.2 ad
352 1.72 riastrad ktrcsw(1, 0, syncobj);
353 1.4 ad
354 1.2 ad /*
355 1.2 ad * If sleeping interruptably, check for pending signals, exits or
356 1.66 ad * core dump events.
357 1.69 thorpej *
358 1.69 thorpej * Note the usage of LW_CATCHINTR. This expresses our intent
359 1.69 thorpej * to catch or not catch sleep interruptions, which might change
360 1.69 thorpej * while we are sleeping. It is independent from LW_SINTR because
361 1.69 thorpej * we don't want to leave LW_SINTR set when the LWP is not asleep.
362 1.2 ad */
363 1.84 ad flag = l->l_flag;
364 1.50 matt if (catch_p) {
365 1.84 ad if ((flag & mask) != 0) {
366 1.84 ad if ((flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
367 1.84 ad l->l_flag = flag & ~LW_CANCELLED;
368 1.84 ad error = EINTR;
369 1.84 ad early = true;
370 1.84 ad } else if ((flag & LW_PENDSIG) != 0 &&
371 1.84 ad sigispending(l, 0))
372 1.84 ad early = true;
373 1.84 ad }
374 1.84 ad l->l_flag = (flag | LW_CATCHINTR) & ~LW_RESTART;
375 1.69 thorpej } else
376 1.84 ad l->l_flag = flag & ~(LW_CATCHINTR | LW_RESTART);
377 1.2 ad
378 1.13 yamt if (early) {
379 1.13 yamt /* lwp_unsleep() will release the lock */
380 1.22 ad lwp_unsleep(l, true);
381 1.13 yamt } else {
382 1.66 ad /*
383 1.66 ad * The LWP may have already been awoken if the caller
384 1.66 ad * dropped the sleep queue lock between sleepq_enqueue() and
385 1.70 msaitoh * sleepq_block(). If that happens l_stat will be LSONPROC
386 1.66 ad * and mi_switch() will treat this as a preemption. No need
387 1.66 ad * to do anything special here.
388 1.66 ad */
389 1.46 rmind if (timo) {
390 1.64 ad l->l_flag &= ~LW_STIMO;
391 1.14 ad callout_schedule(&l->l_timeout_ch, timo);
392 1.46 rmind }
393 1.76 ad l->l_boostpri = l->l_syncobj->sobj_boostpri;
394 1.54 ad spc_lock(l->l_cpu);
395 1.46 rmind mi_switch(l);
396 1.11 ad
397 1.11 ad /* The LWP and sleep queue are now unlocked. */
398 1.11 ad if (timo) {
399 1.11 ad /*
400 1.52 ad * Even if the callout appears to have fired, we
401 1.52 ad * need to stop it in order to synchronise with
402 1.52 ad * other CPUs. It's important that we do this in
403 1.52 ad * this LWP's context, and not during wakeup, in
404 1.52 ad * order to keep the callout & its cache lines
405 1.52 ad * co-located on the CPU with the LWP.
406 1.11 ad */
407 1.64 ad (void)callout_halt(&l->l_timeout_ch, NULL);
408 1.64 ad error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
409 1.11 ad }
410 1.2 ad }
411 1.2 ad
412 1.69 thorpej /*
413 1.69 thorpej * LW_CATCHINTR is only modified in this function OR when we
414 1.69 thorpej * are asleep (with the sleepq locked). We can therefore safely
415 1.69 thorpej * test it unlocked here as it is guaranteed to be stable by
416 1.69 thorpej * virtue of us running.
417 1.69 thorpej *
418 1.69 thorpej * We do not bother clearing it if set; that would require us
419 1.69 thorpej * to take the LWP lock, and it doesn't seem worth the hassle
420 1.69 thorpej * considering it is only meaningful here inside this function,
421 1.69 thorpej * and is set to reflect intent upon entry.
422 1.69 thorpej */
423 1.81 ad flag = atomic_load_relaxed(&l->l_flag);
424 1.81 ad if (__predict_false((flag & mask) != 0)) {
425 1.83 ad if ((flag & LW_CATCHINTR) == 0 || error != 0)
426 1.81 ad /* nothing */;
427 1.81 ad else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
428 1.2 ad error = EINTR;
429 1.81 ad else if ((flag & LW_PENDSIG) != 0) {
430 1.33 ad /*
431 1.33 ad * Acquiring p_lock may cause us to recurse
432 1.33 ad * through the sleep path and back into this
433 1.33 ad * routine, but is safe because LWPs sleeping
434 1.62 ad * on locks are non-interruptable and we will
435 1.33 ad * not recurse again.
436 1.33 ad */
437 1.82 ad p = l->l_proc;
438 1.27 ad mutex_enter(p->p_lock);
439 1.43 christos if (((sig = sigispending(l, 0)) != 0 &&
440 1.43 christos (sigprop[sig] & SA_STOP) == 0) ||
441 1.43 christos (sig = issignal(l)) != 0)
442 1.2 ad error = sleepq_sigtoerror(l, sig);
443 1.27 ad mutex_exit(p->p_lock);
444 1.84 ad } else if ((flag & LW_RESTART) != 0)
445 1.84 ad error = ERESTART;
446 1.2 ad }
447 1.2 ad
448 1.72 riastrad ktrcsw(0, 0, syncobj);
449 1.77 ad if (__predict_false(nlocks != 0)) {
450 1.77 ad KERNEL_LOCK(nlocks, NULL);
451 1.30 ad }
452 1.2 ad return error;
453 1.2 ad }
454 1.2 ad
455 1.2 ad /*
456 1.2 ad * sleepq_wake:
457 1.2 ad *
458 1.2 ad * Wake zero or more LWPs blocked on a single wait channel.
459 1.2 ad */
460 1.49 pooka void
461 1.30 ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
462 1.2 ad {
463 1.8 ad lwp_t *l, *next;
464 1.2 ad
465 1.30 ad KASSERT(mutex_owned(mp));
466 1.2 ad
467 1.63 ad for (l = LIST_FIRST(sq); l != NULL; l = next) {
468 1.2 ad KASSERT(l->l_sleepq == sq);
469 1.30 ad KASSERT(l->l_mutex == mp);
470 1.63 ad next = LIST_NEXT(l, l_sleepchain);
471 1.2 ad if (l->l_wchan != wchan)
472 1.2 ad continue;
473 1.82 ad sleepq_remove(sq, l, true);
474 1.2 ad if (--expected == 0)
475 1.2 ad break;
476 1.2 ad }
477 1.2 ad
478 1.30 ad mutex_spin_exit(mp);
479 1.2 ad }
480 1.2 ad
481 1.2 ad /*
482 1.2 ad * sleepq_unsleep:
483 1.2 ad *
484 1.2 ad * Remove an LWP from its sleep queue and set it runnable again.
485 1.2 ad * sleepq_unsleep() is called with the LWP's mutex held, and will
486 1.52 ad * release it if "unlock" is true.
487 1.2 ad */
488 1.37 rmind void
489 1.52 ad sleepq_unsleep(lwp_t *l, bool unlock)
490 1.2 ad {
491 1.2 ad sleepq_t *sq = l->l_sleepq;
492 1.30 ad kmutex_t *mp = l->l_mutex;
493 1.2 ad
494 1.30 ad KASSERT(lwp_locked(l, mp));
495 1.2 ad KASSERT(l->l_wchan != NULL);
496 1.2 ad
497 1.82 ad sleepq_remove(sq, l, false);
498 1.52 ad if (unlock) {
499 1.30 ad mutex_spin_exit(mp);
500 1.22 ad }
501 1.2 ad }
502 1.2 ad
503 1.2 ad /*
504 1.2 ad * sleepq_timeout:
505 1.2 ad *
506 1.2 ad * Entered via the callout(9) subsystem to time out an LWP that is on a
507 1.2 ad * sleep queue.
508 1.2 ad */
509 1.2 ad void
510 1.2 ad sleepq_timeout(void *arg)
511 1.2 ad {
512 1.8 ad lwp_t *l = arg;
513 1.2 ad
514 1.2 ad /*
515 1.2 ad * Lock the LWP. Assuming it's still on the sleep queue, its
516 1.2 ad * current mutex will also be the sleep queue mutex.
517 1.2 ad */
518 1.2 ad lwp_lock(l);
519 1.2 ad
520 1.82 ad if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
521 1.82 ad /*
522 1.82 ad * Somebody beat us to it, or the LWP is blocked in
523 1.82 ad * callout_halt() waiting for us to finish here. In
524 1.82 ad * neither case should the LWP produce EWOULDBLOCK.
525 1.82 ad */
526 1.2 ad lwp_unlock(l);
527 1.2 ad return;
528 1.2 ad }
529 1.2 ad
530 1.64 ad l->l_flag |= LW_STIMO;
531 1.22 ad lwp_unsleep(l, true);
532 1.2 ad }
533 1.2 ad
534 1.2 ad /*
535 1.2 ad * sleepq_sigtoerror:
536 1.2 ad *
537 1.2 ad * Given a signal number, interpret and return an error code.
538 1.2 ad */
539 1.39 rmind static int
540 1.8 ad sleepq_sigtoerror(lwp_t *l, int sig)
541 1.2 ad {
542 1.2 ad struct proc *p = l->l_proc;
543 1.2 ad int error;
544 1.2 ad
545 1.27 ad KASSERT(mutex_owned(p->p_lock));
546 1.2 ad
547 1.2 ad /*
548 1.2 ad * If this sleep was canceled, don't let the syscall restart.
549 1.2 ad */
550 1.2 ad if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
551 1.2 ad error = EINTR;
552 1.2 ad else
553 1.2 ad error = ERESTART;
554 1.2 ad
555 1.2 ad return error;
556 1.2 ad }
557 1.2 ad
558 1.2 ad /*
559 1.2 ad * sleepq_abort:
560 1.2 ad *
561 1.2 ad * After a panic or during autoconfiguration, lower the interrupt
562 1.2 ad * priority level to give pending interrupts a chance to run, and
563 1.2 ad * then return. Called if sleepq_dontsleep() returns non-zero, and
564 1.2 ad * always returns zero.
565 1.2 ad */
566 1.2 ad int
567 1.2 ad sleepq_abort(kmutex_t *mtx, int unlock)
568 1.2 ad {
569 1.2 ad int s;
570 1.2 ad
571 1.2 ad s = splhigh();
572 1.47 matt splx(IPL_SAFEPRI);
573 1.2 ad splx(s);
574 1.2 ad if (mtx != NULL && unlock != 0)
575 1.2 ad mutex_exit(mtx);
576 1.2 ad
577 1.2 ad return 0;
578 1.2 ad }
579 1.2 ad
580 1.2 ad /*
581 1.44 yamt * sleepq_reinsert:
582 1.2 ad *
583 1.71 andvar * Move the position of the lwp in the sleep queue after a possible
584 1.44 yamt * change of the lwp's effective priority.
585 1.2 ad */
586 1.44 yamt static void
587 1.44 yamt sleepq_reinsert(sleepq_t *sq, lwp_t *l)
588 1.2 ad {
589 1.2 ad
590 1.44 yamt KASSERT(l->l_sleepq == sq);
591 1.59 ad if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
592 1.32 ad return;
593 1.32 ad }
594 1.32 ad
595 1.32 ad /*
596 1.32 ad * Don't let the sleep queue become empty, even briefly.
597 1.32 ad * cv_signal() and cv_broadcast() inspect it without the
598 1.32 ad * sleep queue lock held and need to see a non-empty queue
599 1.32 ad * head if there are waiters.
600 1.32 ad */
601 1.63 ad if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
602 1.32 ad return;
603 1.18 ad }
604 1.63 ad LIST_REMOVE(l, l_sleepchain);
605 1.32 ad sleepq_insert(sq, l, l->l_syncobj);
606 1.2 ad }
607 1.6 yamt
608 1.44 yamt /*
609 1.44 yamt * sleepq_changepri:
610 1.44 yamt *
611 1.44 yamt * Adjust the priority of an LWP residing on a sleepq.
612 1.44 yamt */
613 1.44 yamt void
614 1.44 yamt sleepq_changepri(lwp_t *l, pri_t pri)
615 1.44 yamt {
616 1.44 yamt sleepq_t *sq = l->l_sleepq;
617 1.44 yamt
618 1.44 yamt KASSERT(lwp_locked(l, NULL));
619 1.44 yamt
620 1.44 yamt l->l_priority = pri;
621 1.44 yamt sleepq_reinsert(sq, l);
622 1.44 yamt }
623 1.44 yamt
624 1.44 yamt /*
625 1.44 yamt * sleepq_changepri:
626 1.44 yamt *
627 1.44 yamt * Adjust the lended priority of an LWP residing on a sleepq.
628 1.44 yamt */
629 1.6 yamt void
630 1.8 ad sleepq_lendpri(lwp_t *l, pri_t pri)
631 1.6 yamt {
632 1.6 yamt sleepq_t *sq = l->l_sleepq;
633 1.6 yamt
634 1.30 ad KASSERT(lwp_locked(l, NULL));
635 1.6 yamt
636 1.6 yamt l->l_inheritedprio = pri;
637 1.51 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
638 1.44 yamt sleepq_reinsert(sq, l);
639 1.6 yamt }
640