Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.9
      1  1.9   yamt /*	$NetBSD: kern_sleepq.c,v 1.9 2007/05/17 14:51:40 yamt Exp $	*/
      2  1.2     ad 
      3  1.2     ad /*-
      4  1.2     ad  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  1.2     ad  * All rights reserved.
      6  1.2     ad  *
      7  1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.2     ad  * by Andrew Doran.
      9  1.2     ad  *
     10  1.2     ad  * Redistribution and use in source and binary forms, with or without
     11  1.2     ad  * modification, are permitted provided that the following conditions
     12  1.2     ad  * are met:
     13  1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14  1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15  1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.2     ad  *    documentation and/or other materials provided with the distribution.
     18  1.2     ad  * 3. All advertising materials mentioning features or use of this software
     19  1.2     ad  *    must display the following acknowledgement:
     20  1.2     ad  *	This product includes software developed by the NetBSD
     21  1.2     ad  *	Foundation, Inc. and its contributors.
     22  1.2     ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.2     ad  *    contributors may be used to endorse or promote products derived
     24  1.2     ad  *    from this software without specific prior written permission.
     25  1.2     ad  *
     26  1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     37  1.2     ad  */
     38  1.2     ad 
     39  1.2     ad /*
     40  1.2     ad  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  1.2     ad  * interfaces.
     42  1.2     ad  */
     43  1.2     ad 
     44  1.2     ad #include <sys/cdefs.h>
     45  1.9   yamt __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.9 2007/05/17 14:51:40 yamt Exp $");
     46  1.2     ad 
     47  1.2     ad #include "opt_ktrace.h"
     48  1.2     ad 
     49  1.2     ad #include <sys/param.h>
     50  1.2     ad #include <sys/lock.h>
     51  1.2     ad #include <sys/kernel.h>
     52  1.9   yamt #include <sys/cpu.h>
     53  1.2     ad #include <sys/pool.h>
     54  1.2     ad #include <sys/proc.h>
     55  1.2     ad #include <sys/resourcevar.h>
     56  1.2     ad #include <sys/sched.h>
     57  1.2     ad #include <sys/systm.h>
     58  1.2     ad #include <sys/sleepq.h>
     59  1.2     ad #ifdef KTRACE
     60  1.2     ad #include <sys/ktrace.h>
     61  1.2     ad #endif
     62  1.2     ad 
     63  1.4     ad #include <uvm/uvm_extern.h>
     64  1.4     ad 
     65  1.8     ad int	sleepq_sigtoerror(lwp_t *, int);
     66  1.2     ad 
     67  1.2     ad /* General purpose sleep table, used by ltsleep() and condition variables. */
     68  1.2     ad sleeptab_t	sleeptab;
     69  1.2     ad 
     70  1.2     ad /*
     71  1.2     ad  * sleeptab_init:
     72  1.2     ad  *
     73  1.2     ad  *	Initialize a sleep table.
     74  1.2     ad  */
     75  1.2     ad void
     76  1.2     ad sleeptab_init(sleeptab_t *st)
     77  1.2     ad {
     78  1.2     ad 	sleepq_t *sq;
     79  1.2     ad 	int i;
     80  1.2     ad 
     81  1.2     ad 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82  1.2     ad 		sq = &st->st_queues[i].st_queue;
     83  1.2     ad 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     84  1.2     ad 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     85  1.2     ad 	}
     86  1.2     ad }
     87  1.2     ad 
     88  1.2     ad /*
     89  1.2     ad  * sleepq_init:
     90  1.2     ad  *
     91  1.2     ad  *	Prepare a sleep queue for use.
     92  1.2     ad  */
     93  1.2     ad void
     94  1.2     ad sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     95  1.2     ad {
     96  1.2     ad 
     97  1.2     ad 	sq->sq_waiters = 0;
     98  1.2     ad 	sq->sq_mutex = mtx;
     99  1.2     ad 	TAILQ_INIT(&sq->sq_queue);
    100  1.2     ad }
    101  1.2     ad 
    102  1.2     ad /*
    103  1.2     ad  * sleepq_remove:
    104  1.2     ad  *
    105  1.2     ad  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    106  1.2     ad  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    107  1.2     ad  *	to bring the LWP into memory.
    108  1.2     ad  */
    109  1.2     ad int
    110  1.8     ad sleepq_remove(sleepq_t *sq, lwp_t *l)
    111  1.2     ad {
    112  1.9   yamt 	struct schedstate_percpu *spc;
    113  1.2     ad 	struct cpu_info *ci;
    114  1.2     ad 
    115  1.4     ad 	KASSERT(lwp_locked(l, sq->sq_mutex));
    116  1.2     ad 	KASSERT(sq->sq_waiters > 0);
    117  1.2     ad 
    118  1.2     ad 	sq->sq_waiters--;
    119  1.2     ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    120  1.2     ad 
    121  1.2     ad #ifdef DIAGNOSTIC
    122  1.2     ad 	if (sq->sq_waiters == 0)
    123  1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    124  1.2     ad 	else
    125  1.2     ad 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    126  1.2     ad #endif
    127  1.2     ad 
    128  1.2     ad 	l->l_syncobj = &sched_syncobj;
    129  1.2     ad 	l->l_wchan = NULL;
    130  1.2     ad 	l->l_sleepq = NULL;
    131  1.5  pavel 	l->l_flag &= ~LW_SINTR;
    132  1.2     ad 
    133  1.9   yamt 	ci = l->l_cpu;
    134  1.9   yamt 	spc = &ci->ci_schedstate;
    135  1.9   yamt 
    136  1.2     ad 	/*
    137  1.2     ad 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    138  1.2     ad 	 * holds it stopped set it running again.
    139  1.2     ad 	 */
    140  1.2     ad 	if (l->l_stat != LSSLEEP) {
    141  1.2     ad 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    142  1.9   yamt 		lwp_setlock(l, &spc->spc_lwplock);
    143  1.2     ad 		return 0;
    144  1.2     ad 	}
    145  1.2     ad 
    146  1.2     ad 	/*
    147  1.2     ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    148  1.2     ad 	 * about to call mi_switch(), in which case it will yield.
    149  1.2     ad 	 */
    150  1.9   yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    151  1.2     ad 		l->l_stat = LSONPROC;
    152  1.2     ad 		l->l_slptime = 0;
    153  1.9   yamt 		lwp_setlock(l, &spc->spc_lwplock);
    154  1.2     ad 		return 0;
    155  1.2     ad 	}
    156  1.2     ad 
    157  1.2     ad 	/*
    158  1.2     ad 	 * Set it running.  We'll try to get the last CPU that ran
    159  1.2     ad 	 * this LWP to pick it up again.
    160  1.2     ad 	 */
    161  1.9   yamt 	spc_lock(ci);
    162  1.9   yamt 	lwp_setlock(l, spc->spc_mutex);
    163  1.9   yamt 	sched_setrunnable(l);
    164  1.2     ad 	l->l_stat = LSRUN;
    165  1.2     ad 	l->l_slptime = 0;
    166  1.5  pavel 	if ((l->l_flag & LW_INMEM) != 0) {
    167  1.9   yamt 		sched_enqueue(l, false);
    168  1.9   yamt 		if (lwp_eprio(l) < spc->spc_curpriority)
    169  1.9   yamt 			cpu_need_resched(ci, 0);
    170  1.9   yamt 		spc_unlock(ci);
    171  1.2     ad 		return 0;
    172  1.2     ad 	}
    173  1.9   yamt 	spc_unlock(ci);
    174  1.2     ad 	return 1;
    175  1.2     ad }
    176  1.2     ad 
    177  1.2     ad /*
    178  1.2     ad  * sleepq_insert:
    179  1.2     ad  *
    180  1.2     ad  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    181  1.2     ad  */
    182  1.2     ad inline void
    183  1.8     ad sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    184  1.2     ad {
    185  1.8     ad 	lwp_t *l2;
    186  1.6   yamt 	const int pri = lwp_eprio(l);
    187  1.2     ad 
    188  1.2     ad 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    189  1.2     ad 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    190  1.6   yamt 			if (lwp_eprio(l2) > pri) {
    191  1.2     ad 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    192  1.2     ad 				return;
    193  1.2     ad 			}
    194  1.2     ad 		}
    195  1.2     ad 	}
    196  1.2     ad 
    197  1.2     ad 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    198  1.2     ad }
    199  1.2     ad 
    200  1.9   yamt /*
    201  1.9   yamt  * sleepq_enqueue:
    202  1.9   yamt  *
    203  1.9   yamt  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    204  1.9   yamt  *	queue must already be locked, and any interlock (such as the kernel
    205  1.9   yamt  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    206  1.9   yamt  */
    207  1.2     ad void
    208  1.7   yamt sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    209  1.9   yamt 	       syncobj_t *sobj)
    210  1.2     ad {
    211  1.8     ad 	lwp_t *l = curlwp;
    212  1.2     ad 
    213  1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    214  1.2     ad 	KASSERT(l->l_stat == LSONPROC);
    215  1.2     ad 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    216  1.2     ad 
    217  1.2     ad 	l->l_syncobj = sobj;
    218  1.2     ad 	l->l_wchan = wchan;
    219  1.2     ad 	l->l_sleepq = sq;
    220  1.2     ad 	l->l_wmesg = wmesg;
    221  1.2     ad 	l->l_slptime = 0;
    222  1.2     ad 	l->l_priority = pri;
    223  1.2     ad 	l->l_stat = LSSLEEP;
    224  1.2     ad 	l->l_sleeperr = 0;
    225  1.2     ad 
    226  1.2     ad 	sq->sq_waiters++;
    227  1.6   yamt 	sleepq_insert(sq, l, sobj);
    228  1.6   yamt }
    229  1.6   yamt 
    230  1.9   yamt /*
    231  1.9   yamt  * sleepq_block:
    232  1.9   yamt  *
    233  1.9   yamt  *	After any intermediate step such as releasing an interlock, switch.
    234  1.9   yamt  * 	sleepq_block() may return early under exceptional conditions, for
    235  1.9   yamt  * 	example if the LWP's containing process is exiting.
    236  1.9   yamt  */
    237  1.9   yamt int
    238  1.9   yamt sleepq_block(int timo, bool catch)
    239  1.6   yamt {
    240  1.9   yamt 	int error = 0, expired, sig;
    241  1.9   yamt 	struct proc *p;
    242  1.8     ad 	lwp_t *l = curlwp;
    243  1.2     ad 
    244  1.4     ad #ifdef KTRACE
    245  1.4     ad 	if (KTRPOINT(l->l_proc, KTR_CSW))
    246  1.4     ad 		ktrcsw(l, 1, 0);
    247  1.4     ad #endif
    248  1.4     ad 
    249  1.2     ad 	/*
    250  1.2     ad 	 * If sleeping interruptably, check for pending signals, exits or
    251  1.2     ad 	 * core dump events.
    252  1.2     ad 	 */
    253  1.2     ad 	if (catch) {
    254  1.5  pavel 		l->l_flag |= LW_SINTR;
    255  1.5  pavel 		if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
    256  1.2     ad 			/* lwp_unsleep() will release the lock */
    257  1.2     ad 			lwp_unsleep(l);
    258  1.9   yamt 			error = EINTR;
    259  1.9   yamt 			goto catchit;
    260  1.2     ad 		}
    261  1.5  pavel 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    262  1.5  pavel 			l->l_flag &= ~LW_CANCELLED;
    263  1.2     ad 			/* lwp_unsleep() will release the lock */
    264  1.2     ad 			lwp_unsleep(l);
    265  1.9   yamt 			error = EINTR;
    266  1.9   yamt 			goto catchit;
    267  1.2     ad 		}
    268  1.2     ad 	}
    269  1.2     ad 
    270  1.2     ad 	if (timo)
    271  1.2     ad 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    272  1.2     ad 
    273  1.9   yamt 	mi_switch(l);
    274  1.2     ad 
    275  1.2     ad 	/*
    276  1.2     ad 	 * When we reach this point, the LWP and sleep queue are unlocked.
    277  1.2     ad 	 */
    278  1.2     ad 	if (timo) {
    279  1.2     ad 		/*
    280  1.2     ad 		 * Even if the callout appears to have fired, we need to
    281  1.2     ad 		 * stop it in order to synchronise with other CPUs.
    282  1.2     ad 		 */
    283  1.2     ad 		expired = callout_expired(&l->l_tsleep_ch);
    284  1.2     ad 		callout_stop(&l->l_tsleep_ch);
    285  1.9   yamt 		if (expired)
    286  1.2     ad 			error = EWOULDBLOCK;
    287  1.2     ad 	}
    288  1.2     ad 
    289  1.9   yamt 	if (catch && error == 0) {
    290  1.9   yamt   catchit:
    291  1.2     ad 		p = l->l_proc;
    292  1.5  pavel 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    293  1.2     ad 			error = EINTR;
    294  1.5  pavel 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    295  1.2     ad 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() */
    296  1.2     ad 			mutex_enter(&p->p_smutex);
    297  1.2     ad 			if ((sig = issignal(l)) != 0)
    298  1.2     ad 				error = sleepq_sigtoerror(l, sig);
    299  1.2     ad 			mutex_exit(&p->p_smutex);
    300  1.2     ad 			KERNEL_UNLOCK_LAST(l);
    301  1.2     ad 		}
    302  1.2     ad 	}
    303  1.2     ad 
    304  1.2     ad #ifdef KTRACE
    305  1.2     ad 	if (KTRPOINT(l->l_proc, KTR_CSW))
    306  1.2     ad 		ktrcsw(l, 0, 0);
    307  1.2     ad #endif
    308  1.2     ad 
    309  1.2     ad 	KERNEL_LOCK(l->l_biglocks, l);
    310  1.2     ad 	return error;
    311  1.2     ad }
    312  1.2     ad 
    313  1.2     ad /*
    314  1.2     ad  * sleepq_wake:
    315  1.2     ad  *
    316  1.2     ad  *	Wake zero or more LWPs blocked on a single wait channel.
    317  1.2     ad  */
    318  1.8     ad lwp_t *
    319  1.2     ad sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    320  1.2     ad {
    321  1.8     ad 	lwp_t *l, *next;
    322  1.2     ad 	int swapin = 0;
    323  1.2     ad 
    324  1.4     ad 	KASSERT(mutex_owned(sq->sq_mutex));
    325  1.2     ad 
    326  1.2     ad 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    327  1.2     ad 		KASSERT(l->l_sleepq == sq);
    328  1.2     ad 		next = TAILQ_NEXT(l, l_sleepchain);
    329  1.2     ad 		if (l->l_wchan != wchan)
    330  1.2     ad 			continue;
    331  1.2     ad 		swapin |= sleepq_remove(sq, l);
    332  1.2     ad 		if (--expected == 0)
    333  1.2     ad 			break;
    334  1.2     ad 	}
    335  1.2     ad 
    336  1.2     ad 	sleepq_unlock(sq);
    337  1.2     ad 
    338  1.2     ad 	/*
    339  1.2     ad 	 * If there are newly awakend threads that need to be swapped in,
    340  1.2     ad 	 * then kick the swapper into action.
    341  1.2     ad 	 */
    342  1.2     ad 	if (swapin)
    343  1.4     ad 		uvm_kick_scheduler();
    344  1.8     ad 
    345  1.8     ad 	return l;
    346  1.2     ad }
    347  1.2     ad 
    348  1.2     ad /*
    349  1.2     ad  * sleepq_unsleep:
    350  1.2     ad  *
    351  1.2     ad  *	Remove an LWP from its sleep queue and set it runnable again.
    352  1.2     ad  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    353  1.2     ad  *	always release it.
    354  1.2     ad  */
    355  1.2     ad void
    356  1.8     ad sleepq_unsleep(lwp_t *l)
    357  1.2     ad {
    358  1.2     ad 	sleepq_t *sq = l->l_sleepq;
    359  1.2     ad 	int swapin;
    360  1.2     ad 
    361  1.4     ad 	KASSERT(lwp_locked(l, NULL));
    362  1.2     ad 	KASSERT(l->l_wchan != NULL);
    363  1.2     ad 	KASSERT(l->l_mutex == sq->sq_mutex);
    364  1.2     ad 
    365  1.2     ad 	swapin = sleepq_remove(sq, l);
    366  1.2     ad 	sleepq_unlock(sq);
    367  1.2     ad 
    368  1.2     ad 	if (swapin)
    369  1.4     ad 		uvm_kick_scheduler();
    370  1.2     ad }
    371  1.2     ad 
    372  1.2     ad /*
    373  1.2     ad  * sleepq_timeout:
    374  1.2     ad  *
    375  1.2     ad  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    376  1.2     ad  *	sleep queue.
    377  1.2     ad  */
    378  1.2     ad void
    379  1.2     ad sleepq_timeout(void *arg)
    380  1.2     ad {
    381  1.8     ad 	lwp_t *l = arg;
    382  1.2     ad 
    383  1.2     ad 	/*
    384  1.2     ad 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    385  1.2     ad 	 * current mutex will also be the sleep queue mutex.
    386  1.2     ad 	 */
    387  1.2     ad 	lwp_lock(l);
    388  1.2     ad 
    389  1.2     ad 	if (l->l_wchan == NULL) {
    390  1.2     ad 		/* Somebody beat us to it. */
    391  1.2     ad 		lwp_unlock(l);
    392  1.2     ad 		return;
    393  1.2     ad 	}
    394  1.2     ad 
    395  1.2     ad 	lwp_unsleep(l);
    396  1.2     ad }
    397  1.2     ad 
    398  1.2     ad /*
    399  1.2     ad  * sleepq_sigtoerror:
    400  1.2     ad  *
    401  1.2     ad  *	Given a signal number, interpret and return an error code.
    402  1.2     ad  */
    403  1.2     ad int
    404  1.8     ad sleepq_sigtoerror(lwp_t *l, int sig)
    405  1.2     ad {
    406  1.2     ad 	struct proc *p = l->l_proc;
    407  1.2     ad 	int error;
    408  1.2     ad 
    409  1.4     ad 	KASSERT(mutex_owned(&p->p_smutex));
    410  1.2     ad 
    411  1.2     ad 	/*
    412  1.2     ad 	 * If this sleep was canceled, don't let the syscall restart.
    413  1.2     ad 	 */
    414  1.2     ad 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    415  1.2     ad 		error = EINTR;
    416  1.2     ad 	else
    417  1.2     ad 		error = ERESTART;
    418  1.2     ad 
    419  1.2     ad 	return error;
    420  1.2     ad }
    421  1.2     ad 
    422  1.2     ad /*
    423  1.2     ad  * sleepq_abort:
    424  1.2     ad  *
    425  1.2     ad  *	After a panic or during autoconfiguration, lower the interrupt
    426  1.2     ad  *	priority level to give pending interrupts a chance to run, and
    427  1.2     ad  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    428  1.2     ad  *	always returns zero.
    429  1.2     ad  */
    430  1.2     ad int
    431  1.2     ad sleepq_abort(kmutex_t *mtx, int unlock)
    432  1.2     ad {
    433  1.2     ad 	extern int safepri;
    434  1.2     ad 	int s;
    435  1.2     ad 
    436  1.2     ad 	s = splhigh();
    437  1.2     ad 	splx(safepri);
    438  1.2     ad 	splx(s);
    439  1.2     ad 	if (mtx != NULL && unlock != 0)
    440  1.2     ad 		mutex_exit(mtx);
    441  1.2     ad 
    442  1.2     ad 	return 0;
    443  1.2     ad }
    444  1.2     ad 
    445  1.2     ad /*
    446  1.2     ad  * sleepq_changepri:
    447  1.2     ad  *
    448  1.2     ad  *	Adjust the priority of an LWP residing on a sleepq.  This method
    449  1.2     ad  *	will only alter the user priority; the effective priority is
    450  1.2     ad  *	assumed to have been fixed at the time of insertion into the queue.
    451  1.2     ad  */
    452  1.2     ad void
    453  1.8     ad sleepq_changepri(lwp_t *l, pri_t pri)
    454  1.2     ad {
    455  1.2     ad 
    456  1.2     ad 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    457  1.2     ad 	l->l_usrpri = pri;
    458  1.2     ad }
    459  1.6   yamt 
    460  1.6   yamt void
    461  1.8     ad sleepq_lendpri(lwp_t *l, pri_t pri)
    462  1.6   yamt {
    463  1.6   yamt 	sleepq_t *sq = l->l_sleepq;
    464  1.7   yamt 	pri_t opri;
    465  1.6   yamt 
    466  1.6   yamt 	KASSERT(lwp_locked(l, sq->sq_mutex));
    467  1.6   yamt 
    468  1.6   yamt 	opri = lwp_eprio(l);
    469  1.6   yamt 	l->l_inheritedprio = pri;
    470  1.6   yamt 
    471  1.6   yamt 	if (lwp_eprio(l) != opri &&
    472  1.6   yamt 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    473  1.6   yamt 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    474  1.6   yamt 		sleepq_insert(sq, l, l->l_syncobj);
    475  1.6   yamt 	}
    476  1.6   yamt }
    477