kern_sleepq.c revision 1.1.2.10 1 /* $NetBSD: kern_sleepq.c,v 1.1.2.10 2007/01/27 14:00:02 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.10 2007/01/27 14:00:02 ad Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sa.h>
60 #include <sys/savar.h>
61 #include <sys/sleepq.h>
62
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66
67 int sleepq_sigtoerror(struct lwp *, int);
68 void updatepri(struct lwp *);
69 void sa_awaken(struct lwp *);
70
71 /* General purpose sleep table, used by ltsleep() and condition variables. */
72 sleeptab_t sleeptab;
73
74 /*
75 * sleeptab_init:
76 *
77 * Initialize a sleep table.
78 */
79 void
80 sleeptab_init(sleeptab_t *st)
81 {
82 sleepq_t *sq;
83 int i;
84
85 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
86 sq = &st->st_queues[i];
87 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
88 mutex_init(&st->st_mutexes[i], MUTEX_SPIN, IPL_SCHED);
89 sleepq_init(sq, &st->st_mutexes[i]);
90 #else
91 sleepq_init(sq, &sched_mutex);
92 #endif
93 }
94 }
95
96 /*
97 * sleepq_init:
98 *
99 * Prepare a sleep queue for use.
100 */
101 void
102 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
103 {
104
105 sq->sq_waiters = 0;
106 sq->sq_mutex = mtx;
107 TAILQ_INIT(&sq->sq_queue);
108 }
109
110 /*
111 * sleepq_remove:
112 *
113 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
114 * the LWP is swapped out; if so the caller needs to awaken the swapper
115 * to bring the LWP into memory.
116 */
117 int
118 sleepq_remove(sleepq_t *sq, struct lwp *l)
119 {
120 struct cpu_info *ci;
121
122 LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
123 KASSERT(sq->sq_waiters > 0);
124
125 sq->sq_waiters--;
126 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
127
128 #ifdef DIAGNOSTIC
129 if (sq->sq_waiters == 0)
130 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
131 else
132 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
133 #endif
134
135 l->l_syncobj = &sched_syncobj;
136 l->l_wchan = NULL;
137 l->l_sleepq = NULL;
138 l->l_flag &= ~L_SINTR;
139
140 /*
141 * If not sleeping, the LWP must have been suspended. Let whoever
142 * holds it stopped set it running again.
143 */
144 if (l->l_stat != LSSLEEP) {
145 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
146 lwp_setlock(l, &sched_mutex);
147 return 0;
148 }
149
150 sched_lock(1);
151 lwp_setlock(l, &sched_mutex);
152
153 /*
154 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
155 * about to call mi_switch(), in which case it will yield.
156 *
157 * XXXSMP Will need to change for preemption.
158 */
159 ci = l->l_cpu;
160 #ifdef MULTIPROCESSOR
161 if (ci->ci_curlwp == l) {
162 #else
163 if (l == curlwp) {
164 #endif
165 l->l_stat = LSONPROC;
166 l->l_slptime = 0;
167 sched_unlock(1);
168 return 0;
169 }
170
171 /*
172 * Set it running. We'll try to get the last CPU that ran
173 * this LWP to pick it up again.
174 */
175 if (l->l_proc->p_sa != NULL)
176 sa_awaken(l);
177 if (l->l_slptime > 1)
178 updatepri(l);
179 l->l_stat = LSRUN;
180 l->l_slptime = 0;
181 if ((l->l_flag & L_INMEM) != 0) {
182 setrunqueue(l);
183 if (l->l_priority < ci->ci_schedstate.spc_curpriority)
184 cpu_need_resched(ci);
185 sched_unlock(1);
186 return 0;
187 }
188
189 sched_unlock(1);
190 return 1;
191 }
192
193 /*
194 * sleepq_insert:
195 *
196 * Insert an LWP into the sleep queue, optionally sorting by priority.
197 */
198 static inline void
199 sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
200 {
201 struct lwp *l2;
202
203 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
204 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
205 if (l2->l_priority > pri) {
206 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
207 return;
208 }
209 }
210 }
211
212 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
213 }
214
215 /*
216 * sleepq_block:
217 *
218 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
219 * queue must already be locked, and any interlock (such as the kernel
220 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
221 *
222 * sleepq_block() may return early under exceptional conditions, for
223 * example if the LWP's containing process is exiting.
224 */
225 void
226 sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
227 int catch, syncobj_t *sobj)
228 {
229 struct lwp *l = curlwp;
230
231 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
232 KASSERT(l->l_stat == LSONPROC);
233 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
234
235 #ifdef KTRACE
236 if (KTRPOINT(l->l_proc, KTR_CSW))
237 ktrcsw(l, 1, 0);
238 #endif
239
240 l->l_syncobj = sobj;
241 l->l_wchan = wchan;
242 l->l_sleepq = sq;
243 l->l_wmesg = wmesg;
244 l->l_slptime = 0;
245 l->l_priority = pri;
246 l->l_stat = LSSLEEP;
247 l->l_sleeperr = 0;
248 l->l_nvcsw++;
249
250 sq->sq_waiters++;
251 sleepq_insert(sq, l, pri, sobj);
252
253 /*
254 * If sleeping interruptably, check for pending signals, exits or
255 * core dump events.
256 */
257 if (catch) {
258 l->l_flag |= L_SINTR;
259 if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
260 l->l_sleeperr = EPASSTHROUGH;
261 /* lwp_unsleep() will release the lock */
262 lwp_unsleep(l);
263 return;
264 }
265 if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
266 l->l_flag &= ~L_CANCELLED;
267 l->l_sleeperr = EINTR;
268 /* lwp_unsleep() will release the lock */
269 lwp_unsleep(l);
270 return;
271 }
272 }
273
274 if (timo)
275 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
276
277 if ((l->l_flag & L_SA) != 0) {
278 /* XXXAD Allocating memory while on sleep queue */
279 sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
280 } else {
281 mi_switch(l, NULL);
282 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
283 }
284
285 /*
286 * When we reach this point, the LWP and sleep queue are unlocked.
287 */
288 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
289 }
290
291 /*
292 * sleepq_unblock:
293 *
294 * After any intermediate step such as updating statistics, re-acquire
295 * the kernel lock and record the switch for ktrace. Note that we are
296 * no longer on the sleep queue at this point.
297 *
298 * This is split out from sleepq_block() in expectation that at some
299 * point in the future, LWPs may awake on different kernel stacks than
300 * those they went asleep on.
301 */
302 int
303 sleepq_unblock(int timo, int catch)
304 {
305 int error, expired, sig;
306 struct proc *p;
307 struct lwp *l;
308
309 l = curlwp;
310 error = l->l_sleeperr;
311
312 if (timo) {
313 /*
314 * Even if the callout appears to have fired, we need to
315 * stop it in order to synchronise with other CPUs.
316 */
317 expired = callout_expired(&l->l_tsleep_ch);
318 callout_stop(&l->l_tsleep_ch);
319 if (expired && error == 0)
320 error = EWOULDBLOCK;
321 }
322
323 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
324 /*
325 * Re-acquire the kernel lock. XXXSMP This can come after the
326 * ktrace stuff below once its safe to allocate memory unlocked.
327 */
328 KERNEL_LOCK(l->l_biglocks, l);
329 #endif
330
331 if (catch && (error == 0 || error == EPASSTHROUGH)) {
332 l->l_sleeperr = 0;
333 p = l->l_proc;
334 if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
335 error = EINTR;
336 else if ((l->l_flag & L_PENDSIG) != 0) {
337 mutex_enter(&p->p_smutex);
338 if ((sig = issignal(l)) != 0)
339 error = sleepq_sigtoerror(l, sig);
340 mutex_exit(&p->p_smutex);
341 }
342 if (error == EPASSTHROUGH) {
343 /* Raced */
344 error = EINTR;
345 }
346 }
347
348 #ifdef KTRACE
349 if (KTRPOINT(l->l_proc, KTR_CSW))
350 ktrcsw(l, 0, 0);
351 #endif
352
353 return error;
354 }
355
356 /*
357 * sleepq_wake:
358 *
359 * Wake zero or more LWPs blocked on a single wait channel.
360 */
361 void
362 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
363 {
364 struct lwp *l, *next;
365 int swapin = 0;
366
367 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
368
369 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
370 KASSERT(l->l_sleepq == sq);
371 next = TAILQ_NEXT(l, l_sleepchain);
372 if (l->l_wchan != wchan)
373 continue;
374 swapin |= sleepq_remove(sq, l);
375 if (--expected == 0)
376 break;
377 }
378
379 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
380 sleepq_unlock(sq);
381
382 /*
383 * If there are newly awakend threads that need to be swapped in,
384 * then kick the swapper into action.
385 */
386 if (swapin)
387 wakeup(&proc0);
388 }
389
390 /*
391 * sleepq_unsleep:
392 *
393 * Remove an LWP from its sleep queue and set it runnable again.
394 * sleepq_unsleep() is called with the LWP's mutex held, and will
395 * always release it.
396 */
397 void
398 sleepq_unsleep(struct lwp *l)
399 {
400 sleepq_t *sq = l->l_sleepq;
401 int swapin;
402
403 LOCK_ASSERT(lwp_locked(l, NULL));
404 KASSERT(l->l_wchan != NULL);
405 KASSERT(l->l_mutex == sq->sq_mutex);
406
407 swapin = sleepq_remove(sq, l);
408 sleepq_unlock(sq);
409
410 if (swapin)
411 wakeup(&proc0);
412 }
413
414 /*
415 * sleepq_timeout:
416 *
417 * Entered via the callout(9) subsystem to time out an LWP that is on a
418 * sleep queue.
419 */
420 void
421 sleepq_timeout(void *arg)
422 {
423 struct lwp *l = arg;
424
425 /*
426 * Lock the LWP. Assuming it's still on the sleep queue, its
427 * current mutex will also be the sleep queue mutex.
428 */
429 lwp_lock(l);
430
431 if (l->l_wchan == NULL) {
432 /* Somebody beat us to it. */
433 lwp_unlock(l);
434 return;
435 }
436
437 lwp_unsleep(l);
438 }
439
440 /*
441 * sleepq_sigtoerror:
442 *
443 * Given a signal number, interpret and return an error code.
444 */
445 int
446 sleepq_sigtoerror(struct lwp *l, int sig)
447 {
448 struct proc *p = l->l_proc;
449 int error;
450
451 LOCK_ASSERT(mutex_owned(&p->p_smutex));
452
453 /*
454 * If this sleep was canceled, don't let the syscall restart.
455 */
456 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
457 error = EINTR;
458 else
459 error = ERESTART;
460
461 return error;
462 }
463
464 /*
465 * sleepq_abort:
466 *
467 * After a panic or during autoconfiguration, lower the interrupt
468 * priority level to give pending interrupts a chance to run, and
469 * then return. Called if sleepq_dontsleep() returns non-zero, and
470 * always returns zero.
471 */
472 int
473 sleepq_abort(kmutex_t *mtx, int unlock)
474 {
475 extern int safepri;
476 int s;
477
478 s = splhigh();
479 splx(safepri);
480 splx(s);
481 if (mtx != NULL && unlock != 0)
482 mutex_exit(mtx);
483
484 return 0;
485 }
486
487 /*
488 * sleepq_changepri:
489 *
490 * Adjust the priority of an LWP residing on a sleepq.
491 */
492 void
493 sleepq_changepri(struct lwp *l, int pri)
494 {
495 sleepq_t *sq = l->l_sleepq;
496
497 KASSERT(lwp_locked(l, sq->sq_mutex));
498
499 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0)
500 return;
501
502 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
503 sleepq_insert(sq, l, pri, l->l_syncobj);
504 }
505