kern_sleepq.c revision 1.1.2.15 1 /* $NetBSD: kern_sleepq.c,v 1.1.2.15 2007/02/09 19:58:10 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.15 2007/02/09 19:58:10 ad Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sleepq.h>
60
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64
65 int sleepq_sigtoerror(struct lwp *, int);
66 void updatepri(struct lwp *);
67 void sa_awaken(struct lwp *);
68
69 /* General purpose sleep table, used by ltsleep() and condition variables. */
70 sleeptab_t sleeptab;
71
72 /*
73 * sleeptab_init:
74 *
75 * Initialize a sleep table.
76 */
77 void
78 sleeptab_init(sleeptab_t *st)
79 {
80 sleepq_t *sq;
81 int i;
82
83 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
85 sq = &st->st_queues[i].st_queue;
86 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
87 sleepq_init(sq, &st->st_queues[i].st_mutex);
88 #else
89 sq = &st->st_queues[i];
90 sleepq_init(sq, &sched_mutex);
91 #endif
92 }
93 }
94
95 /*
96 * sleepq_init:
97 *
98 * Prepare a sleep queue for use.
99 */
100 void
101 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
102 {
103
104 sq->sq_waiters = 0;
105 sq->sq_mutex = mtx;
106 TAILQ_INIT(&sq->sq_queue);
107 }
108
109 /*
110 * sleepq_remove:
111 *
112 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
113 * the LWP is swapped out; if so the caller needs to awaken the swapper
114 * to bring the LWP into memory.
115 */
116 int
117 sleepq_remove(sleepq_t *sq, struct lwp *l)
118 {
119 struct cpu_info *ci;
120
121 LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
122 KASSERT(sq->sq_waiters > 0);
123
124 sq->sq_waiters--;
125 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
126
127 #ifdef DIAGNOSTIC
128 if (sq->sq_waiters == 0)
129 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
130 else
131 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
132 #endif
133
134 l->l_syncobj = &sched_syncobj;
135 l->l_wchan = NULL;
136 l->l_sleepq = NULL;
137 l->l_flag &= ~L_SINTR;
138
139 /*
140 * If not sleeping, the LWP must have been suspended. Let whoever
141 * holds it stopped set it running again.
142 */
143 if (l->l_stat != LSSLEEP) {
144 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
145 lwp_setlock(l, &sched_mutex);
146 return 0;
147 }
148
149 sched_lock(1);
150 lwp_setlock(l, &sched_mutex);
151
152 /*
153 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 * about to call mi_switch(), in which case it will yield.
155 *
156 * XXXSMP Will need to change for preemption.
157 */
158 ci = l->l_cpu;
159 #ifdef MULTIPROCESSOR
160 if (ci->ci_curlwp == l) {
161 #else
162 if (l == curlwp) {
163 #endif
164 l->l_stat = LSONPROC;
165 l->l_slptime = 0;
166 sched_unlock(1);
167 return 0;
168 }
169
170 /*
171 * Set it running. We'll try to get the last CPU that ran
172 * this LWP to pick it up again.
173 */
174 if (l->l_slptime > 1)
175 updatepri(l);
176 l->l_stat = LSRUN;
177 l->l_slptime = 0;
178 if ((l->l_flag & L_INMEM) != 0) {
179 setrunqueue(l);
180 if (l->l_priority < ci->ci_schedstate.spc_curpriority)
181 cpu_need_resched(ci);
182 sched_unlock(1);
183 return 0;
184 }
185
186 sched_unlock(1);
187 return 1;
188 }
189
190 /*
191 * sleepq_insert:
192 *
193 * Insert an LWP into the sleep queue, optionally sorting by priority.
194 */
195 inline void
196 sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
197 {
198 struct lwp *l2;
199
200 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
201 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
202 if (l2->l_priority > pri) {
203 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
204 return;
205 }
206 }
207 }
208
209 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
210 }
211
212 /*
213 * sleepq_block:
214 *
215 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
216 * queue must already be locked, and any interlock (such as the kernel
217 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
218 *
219 * sleepq_block() may return early under exceptional conditions, for
220 * example if the LWP's containing process is exiting.
221 */
222 void
223 sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
224 int catch, syncobj_t *sobj)
225 {
226 struct lwp *l = curlwp;
227
228 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
229 KASSERT(l->l_stat == LSONPROC);
230 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
231
232 #ifdef KTRACE
233 if (KTRPOINT(l->l_proc, KTR_CSW))
234 ktrcsw(l, 1, 0);
235 #endif
236
237 l->l_syncobj = sobj;
238 l->l_wchan = wchan;
239 l->l_sleepq = sq;
240 l->l_wmesg = wmesg;
241 l->l_slptime = 0;
242 l->l_priority = pri;
243 l->l_stat = LSSLEEP;
244 l->l_sleeperr = 0;
245 l->l_nvcsw++;
246
247 sq->sq_waiters++;
248 sleepq_insert(sq, l, pri, sobj);
249
250 /*
251 * If sleeping interruptably, check for pending signals, exits or
252 * core dump events.
253 */
254 if (catch) {
255 l->l_flag |= L_SINTR;
256 if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
257 l->l_sleeperr = EPASSTHROUGH;
258 /* lwp_unsleep() will release the lock */
259 lwp_unsleep(l);
260 return;
261 }
262 if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
263 l->l_flag &= ~L_CANCELLED;
264 l->l_sleeperr = EINTR;
265 /* lwp_unsleep() will release the lock */
266 lwp_unsleep(l);
267 return;
268 }
269 }
270
271 if (timo)
272 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
273
274 mi_switch(l, NULL);
275 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
276
277 /*
278 * When we reach this point, the LWP and sleep queue are unlocked.
279 */
280 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
281 }
282
283 /*
284 * sleepq_unblock:
285 *
286 * After any intermediate step such as updating statistics, re-acquire
287 * the kernel lock and record the switch for ktrace. Note that we are
288 * no longer on the sleep queue at this point.
289 *
290 * This is split out from sleepq_block() in expectation that at some
291 * point in the future, LWPs may awake on different kernel stacks than
292 * those they went asleep on.
293 */
294 int
295 sleepq_unblock(int timo, int catch)
296 {
297 int error, expired, sig;
298 struct proc *p;
299 struct lwp *l;
300
301 l = curlwp;
302 error = l->l_sleeperr;
303
304 if (timo) {
305 /*
306 * Even if the callout appears to have fired, we need to
307 * stop it in order to synchronise with other CPUs.
308 */
309 expired = callout_expired(&l->l_tsleep_ch);
310 callout_stop(&l->l_tsleep_ch);
311 if (expired && error == 0)
312 error = EWOULDBLOCK;
313 }
314
315 if (catch && (error == 0 || error == EPASSTHROUGH)) {
316 l->l_sleeperr = 0;
317 p = l->l_proc;
318 if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
319 error = EINTR;
320 else if ((l->l_flag & L_PENDSIG) != 0) {
321 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
322 mutex_enter(&p->p_smutex);
323 if ((sig = issignal(l)) != 0)
324 error = sleepq_sigtoerror(l, sig);
325 mutex_exit(&p->p_smutex);
326 KERNEL_UNLOCK_LAST(l);
327 }
328 if (error == EPASSTHROUGH) {
329 /* Raced */
330 error = EINTR;
331 }
332 }
333
334 #ifdef KTRACE
335 if (KTRPOINT(l->l_proc, KTR_CSW))
336 ktrcsw(l, 0, 0);
337 #endif
338
339 KERNEL_LOCK(l->l_biglocks, l);
340 return error;
341 }
342
343 /*
344 * sleepq_wake:
345 *
346 * Wake zero or more LWPs blocked on a single wait channel.
347 */
348 void
349 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
350 {
351 struct lwp *l, *next;
352 int swapin = 0;
353
354 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
355
356 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
357 KASSERT(l->l_sleepq == sq);
358 next = TAILQ_NEXT(l, l_sleepchain);
359 if (l->l_wchan != wchan)
360 continue;
361 swapin |= sleepq_remove(sq, l);
362 if (--expected == 0)
363 break;
364 }
365
366 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
367 sleepq_unlock(sq);
368
369 /*
370 * If there are newly awakend threads that need to be swapped in,
371 * then kick the swapper into action.
372 */
373 if (swapin)
374 wakeup(&proc0);
375 }
376
377 /*
378 * sleepq_unsleep:
379 *
380 * Remove an LWP from its sleep queue and set it runnable again.
381 * sleepq_unsleep() is called with the LWP's mutex held, and will
382 * always release it.
383 */
384 void
385 sleepq_unsleep(struct lwp *l)
386 {
387 sleepq_t *sq = l->l_sleepq;
388 int swapin;
389
390 LOCK_ASSERT(lwp_locked(l, NULL));
391 KASSERT(l->l_wchan != NULL);
392 KASSERT(l->l_mutex == sq->sq_mutex);
393
394 swapin = sleepq_remove(sq, l);
395 sleepq_unlock(sq);
396
397 if (swapin)
398 wakeup(&proc0);
399 }
400
401 /*
402 * sleepq_timeout:
403 *
404 * Entered via the callout(9) subsystem to time out an LWP that is on a
405 * sleep queue.
406 */
407 void
408 sleepq_timeout(void *arg)
409 {
410 struct lwp *l = arg;
411
412 /*
413 * Lock the LWP. Assuming it's still on the sleep queue, its
414 * current mutex will also be the sleep queue mutex.
415 */
416 lwp_lock(l);
417
418 if (l->l_wchan == NULL) {
419 /* Somebody beat us to it. */
420 lwp_unlock(l);
421 return;
422 }
423
424 lwp_unsleep(l);
425 }
426
427 /*
428 * sleepq_sigtoerror:
429 *
430 * Given a signal number, interpret and return an error code.
431 */
432 int
433 sleepq_sigtoerror(struct lwp *l, int sig)
434 {
435 struct proc *p = l->l_proc;
436 int error;
437
438 LOCK_ASSERT(mutex_owned(&p->p_smutex));
439
440 /*
441 * If this sleep was canceled, don't let the syscall restart.
442 */
443 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
444 error = EINTR;
445 else
446 error = ERESTART;
447
448 return error;
449 }
450
451 /*
452 * sleepq_abort:
453 *
454 * After a panic or during autoconfiguration, lower the interrupt
455 * priority level to give pending interrupts a chance to run, and
456 * then return. Called if sleepq_dontsleep() returns non-zero, and
457 * always returns zero.
458 */
459 int
460 sleepq_abort(kmutex_t *mtx, int unlock)
461 {
462 extern int safepri;
463 int s;
464
465 s = splhigh();
466 splx(safepri);
467 splx(s);
468 if (mtx != NULL && unlock != 0)
469 mutex_exit(mtx);
470
471 return 0;
472 }
473
474 /*
475 * sleepq_changepri:
476 *
477 * Adjust the priority of an LWP residing on a sleepq. This method
478 * will only alter the user priority; the effective priority is
479 * assumed to have been fixed at the time of insertion into the queue.
480 */
481 void
482 sleepq_changepri(struct lwp *l, int pri)
483 {
484
485 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
486 l->l_usrpri = pri;
487 }
488