Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.1.2.2
      1 /*	$NetBSD: kern_sleepq.c,v 1.1.2.2 2006/10/20 20:41:26 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include "opt_multiprocessor.h"
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.2 2006/10/20 20:41:26 ad Exp $");
     48 
     49 #include <sys/param.h>
     50 #include <sys/lock.h>
     51 #include <sys/kernel.h>
     52 #include <sys/pool.h>
     53 #include <sys/proc.h>
     54 #include <sys/resourcevar.h>
     55 #include <sys/sched.h>
     56 #include <sys/systm.h>
     57 #include <sys/sa.h>
     58 #include <sys/savar.h>
     59 #include <sys/sleepq.h>
     60 
     61 int	sleepq_sigtoerror(struct lwp *, int);
     62 void	updatepri(struct lwp *);
     63 void	sa_awaken(struct lwp *);
     64 
     65 sleepq_t	sleeptab[SLEEPTAB_HASH_SIZE];
     66 #ifdef MULTIPROCESSOR
     67 kmutex_t	sleeptab_mutexes[SLEEPTAB_HASH_SIZE];
     68 #else
     69 kmutex_t	sleeptab_mutex;
     70 #endif
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize the general-purpose sleep queues.
     76  */
     77 void
     78 sleeptab_init(void)
     79 {
     80 	sleepq_t *sq;
     81 	int i;
     82 
     83 #ifndef MULTIPROCESSOR
     84 	mutex_init(&sleeptab_mutex, MUTEX_SPIN, IPL_SCHED);
     85 #endif
     86 
     87 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     88 		sq = &sleeptab[i];
     89 #ifdef MULTIPROCESSOR
     90 		mutex_init(&sleeptab_mutexes[i], MUTEX_SPIN, IPL_SCHED);
     91 		sleepq_init(&sleeptab[i], &sleeptab_mutexes[i]);
     92 #else
     93 		sleepq_init(&sleeptab[i], &sleeptab_mutex);
     94 #endif
     95 	}
     96 }
     97 
     98 /*
     99  * sleepq_init:
    100  *
    101  *	Prepare a sleep queue for use.
    102  */
    103 void
    104 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
    105 {
    106 
    107 	sq->sq_waiters = 0;
    108 	sq->sq_mutex = mtx;
    109 	TAILQ_INIT(&sq->sq_queue);
    110 }
    111 
    112 /*
    113  * sleepq_remove:
    114  *
    115  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    116  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    117  *	to bring the LWP into memory.
    118  */
    119 int
    120 sleepq_remove(sleepq_t *sq, struct lwp *l)
    121 {
    122 
    123 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    124 	KASSERT(sq->sq_waiters > 0);
    125 
    126 	l->l_wchan = NULL;
    127 	l->l_slptime = 0;
    128 	l->l_flag &= ~L_SINTR;
    129 
    130 	sq->sq_waiters--;
    131 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
    132 
    133 #ifdef DIAGNOSTIC
    134 	if (sq->sq_waiters == 0)
    135 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    136 	else
    137 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    138 #endif
    139 
    140 	/*
    141 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    142 	 * holds it stopped set it running again.
    143 	 */
    144 	if (l->l_stat != LSSLEEP) {
    145 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    146 		return 0;
    147 	}
    148 
    149 	if (l == curlwp) {
    150 		l->l_stat = LSONPROC;
    151 		lwp_setlock(l, &l->l_cpu->ci_sched_mutex);
    152 		return 0;
    153 	}
    154 
    155 	l->l_stat = LSRUN;
    156 
    157 	if (l->l_proc->p_sa)
    158 		sa_awaken(l);
    159 	if (l->l_slptime > 1)
    160 		updatepri(l);
    161 
    162 	/*
    163 	 * Try to set the LWP running, and swap in its new mutex.  Once
    164 	 * we've done the swap, we can't touch the LWP again.
    165 	 */
    166 	if ((l->l_flag & L_INMEM) != 0) {
    167 		/*
    168 		 * Try to get the last CPU that ran this LWP to pick it up.
    169 		 */
    170 		setrunqueue(l);
    171 		lwp_setlock(l, &sched_mutex);
    172 		cpu_need_resched(l->l_cpu);
    173 		return 0;
    174 	}
    175 
    176 	lwp_setlock(l, &lwp_mutex);
    177 	return 1;
    178 }
    179 
    180 /*
    181  * sleepq_enter:
    182  *
    183  *	Enter an LWP into the sleep queue and prepare for sleep.  Any interlocking
    184  * 	step such as releasing a mutex or checking for signals may be safely done
    185  *	by the caller once on the sleep queue.
    186  */
    187 void
    188 sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
    189 	     int catch)
    190 {
    191 	struct lwp *l = curlwp;
    192 
    193 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    194 
    195 #ifdef KTRACE
    196 	if (KTRPOINT(p, KTR_CSW))
    197 		ktrcsw(l, 1, 0);
    198 #endif
    199 
    200 	sq->sq_waiters++;
    201 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepq);
    202 
    203 	/*
    204 	 * Acquire the per-LWP mutex.
    205 	 */
    206 	lwp_lock(l);
    207 
    208 	KASSERT(l->l_wchan == NULL);
    209 
    210 	l->l_wchan = wchan;
    211 	l->l_wmesg = wmesg;
    212 	l->l_slptime = 0;
    213 	l->l_priority = pri & PRIMASK;
    214 	l->l_flag &= ~L_CANCELLED;
    215 	if (catch)
    216 		l->l_flag |= L_SINTR;
    217 	if (l->l_stat == LSONPROC)
    218 		l->l_stat = LSSLEEP;
    219 	l->l_nvcsw++;
    220 
    221 	if (timo)
    222 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    223 
    224 	/*
    225 	 * The LWP is now on the sleep queue.  Release its old mutex and
    226 	 * lend it ours for the duration of the sleep.
    227 	 */
    228 	lwp_swaplock(l, sq->sq_mutex);
    229 }
    230 
    231 /*
    232  * sleepq_block:
    233  *
    234  *	The calling LWP has been entered into the sleep queue by
    235  *	sleepq_enter(), and now wants to block.  sleepq_block() may return
    236  *	early under exceptional conditions, for example if the LWP's process
    237  *	is exiting.  sleepq_block() must be called if sleepq_enter() has
    238  *	been called.
    239  */
    240 int
    241 sleepq_block(sleepq_t *sq, int timo)
    242 {
    243 	int error, flag, expired, sig;
    244 	struct lwp *l = curlwp;
    245 	struct proc *p;
    246 
    247 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    248 
    249 	flag = l->l_flag;
    250 	error = 0;
    251 
    252 	/*
    253 	 * If sleeping interruptably, check for pending signals, exits or
    254 	 * core dump events.
    255 	 */
    256 	if ((flag & L_SINTR) != 0) {
    257 		while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
    258 			lwp_unlock(l);
    259 			p = l->l_proc;
    260 			mutex_enter(&p->p_smutex);
    261 			if ((sig = issignal(l)) != 0)
    262 				error = sleepq_sigtoerror(l, sig);
    263 			mutex_exit(&p->p_smutex);
    264 			lwp_lock(l);
    265 		}
    266 
    267 		if (error == 0 && (l->l_flag & (L_WEXIT | L_WCORE)) != 0)
    268 			error = EINTR;
    269 
    270 		if (error != 0) {
    271 			/*
    272 			 * If the LWP is on a sleep queue and we remove it,
    273 			 * we will change its mutex and so we need to unlock
    274 			 * the sleep queue.  If it's off the sleep queue
    275 			 * already, the unlock the LWP directly.
    276 			 */
    277 			if (l->l_wchan != NULL) {
    278 				mutex_enter(&sched_mutex);
    279 				(void)sleepq_remove(sq, l);
    280 				mutex_exit(&sched_mutex);
    281 				mutex_exit(sq->sq_mutex);
    282 			} else
    283 				lwp_unlock(l);
    284 
    285 			goto out;
    286 		}
    287 	}
    288 
    289 	if (l->l_stat == LSONPROC) {
    290 		/*
    291 		 * We may have decided not to switch away, and so removed
    292 		 * ourself from the sleep queue.
    293 		 */
    294 		lwp_unlock(l);
    295 	} else if ((flag & L_SA) != 0) {
    296 		sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
    297 		/* XXXAD verify sa_switch restores SPL. */
    298 	} else {
    299 		mi_switch(l, NULL);
    300 
    301 		l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    302 	}
    303 
    304 	KASSERT(l->l_wchan == NULL);
    305 
    306 	if (timo) {
    307 		/*
    308 		 * Even if the callout appears to have fired, we need to
    309 		 * stop it in order to synchronise with other CPUs.
    310 		 */
    311 		expired = callout_expired(&l->l_tsleep_ch);
    312 		callout_stop(&l->l_tsleep_ch);
    313 		if (expired)
    314 			return EWOULDBLOCK;
    315 	}
    316 
    317 	if ((flag & L_SINTR) != 0) {
    318 		if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
    319 			error = EINTR;
    320 		else if ((l->l_flag & L_PENDSIG) != 0) {
    321 			p = l->l_proc;
    322 			mutex_enter(&p->p_smutex);
    323 			if ((sig = issignal(l)) != 0)
    324 				error = sleepq_sigtoerror(l, sig);
    325 			mutex_exit(&p->p_smutex);
    326 		}
    327 	}
    328 
    329  out:
    330 #ifdef KTRACE
    331 	if (KTRPOINT(p, KTR_CSW))
    332 		ktrcsw(l, 0, 0);
    333 #endif
    334 	return error;
    335 }
    336 
    337 /*
    338  * sleepq_wakeone:
    339  *
    340  *	Remove one LWP from the sleep queue and wake it.  We search among
    341  *	the higest priority LWPs waiting on a single wait channel, and pick
    342  *	the longest waiting one.
    343  */
    344 void
    345 sleepq_wakeone(sleepq_t *sq, wchan_t wchan)
    346 {
    347 	struct lwp *l, *bl;
    348 	int bpri, swapin;
    349 
    350 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    351 
    352 	swapin = 0;
    353 	bpri = MAXPRI;
    354 	bl = NULL;
    355 
    356 	TAILQ_FOREACH(l, &sq->sq_queue, l_sleepq) {
    357 		if (l->l_wchan != wchan || l->l_priority > bpri)
    358 			continue;
    359 		bl = l;
    360 		bpri = l->l_priority;
    361 	}
    362 
    363 	if (bl != NULL) {
    364 		mutex_enter(&sched_mutex);
    365 		swapin = sleepq_remove(sq, bl);
    366 		mutex_exit(&sched_mutex);
    367 	}
    368 
    369 	mutex_exit(sq->sq_mutex);
    370 
    371 	if (swapin)
    372 		wakeup(&proc0);
    373 }
    374 
    375 /*
    376  * sleepq_wakeall:
    377  *
    378  *	Wake all LWPs blocked on a single wait channel.
    379  */
    380 void
    381 sleepq_wakeall(sleepq_t *sq, wchan_t wchan, u_int expected)
    382 {
    383 	struct lwp *l, *next;
    384 	int swapin = 0;
    385 
    386 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    387 
    388 	mutex_enter(&sched_mutex);
    389 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    390 		next = TAILQ_NEXT(l, l_sleepq);
    391 		if (l->l_wchan != wchan)
    392 			continue;
    393 		swapin |= sleepq_remove(sq, l);
    394 		if (--expected == 0)
    395 			break;
    396 	}
    397 	mutex_exit(&sched_mutex);
    398 
    399 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    400 	mutex_exit(sq->sq_mutex);
    401 
    402 	/*
    403 	 * If there are newly awakend threads that need to be swapped in,
    404 	 * then kick the swapper into action.
    405 	 */
    406 	if (swapin)
    407 		wakeup(&proc0);
    408 }
    409 
    410 /*
    411  * sleepq_unsleep:
    412  *
    413  *	Remove an LWP from its sleep queue and set it runnable again.
    414  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    415  *	always release it.
    416  */
    417 void
    418 sleepq_unsleep(struct lwp *l)
    419 {
    420 	sleepq_t *sq;
    421 	int swapin;
    422 
    423 	sq = &sleeptab[SLEEPTAB_HASH(l->l_wchan)];
    424 	KASSERT(l->l_wchan != NULL);
    425 	KASSERT(l->l_mutex == sq->sq_mutex);
    426 
    427 	mutex_enter(&sched_mutex);
    428 	swapin = sleepq_remove(sq, l);
    429 	mutex_exit(&sched_mutex);
    430 
    431 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    432 	mutex_exit(sq->sq_mutex);
    433 
    434 	if (swapin)
    435 		wakeup(&proc0);
    436 }
    437 
    438 /*
    439  * sleepq_timeout:
    440  *
    441  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    442  *	sleep queue.
    443  */
    444 void
    445 sleepq_timeout(void *arg)
    446 {
    447 	struct lwp *l = arg;
    448 
    449 	/*
    450 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    451 	 * current mutex will also be the sleep queue mutex.
    452 	 */
    453 	lwp_lock(l);
    454 
    455 	if (l->l_wchan == NULL) {
    456 		/* Somebody beat us to it. */
    457 		lwp_unlock(l);
    458 		return;
    459 	}
    460 
    461 	sleepq_unsleep(arg);
    462 }
    463 
    464 /*
    465  * sleepq_sigtoerror:
    466  *
    467  *	Given a signal number, interpret and return an error code.
    468  */
    469 int
    470 sleepq_sigtoerror(struct lwp *l, int sig)
    471 {
    472 	struct proc *p;
    473 	int error;
    474 
    475 	/*
    476 	 * If this sleep was canceled, don't let the syscall restart.
    477 	 */
    478 	p = l->l_proc;
    479 	mutex_enter(&p->p_smutex);
    480 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    481 		error = EINTR;
    482 	else
    483 		error = ERESTART;
    484 	mutex_exit(&p->p_smutex);
    485 
    486 	return error;
    487 }
    488 
    489 /*
    490  * sleepq_abort:
    491  *
    492  *	After a panic or during autoconfiguration, lower the interrupt
    493  *	priority level to give pending interrupts a chance to run, and
    494  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    495  *	always returns zero.
    496  */
    497 int
    498 sleepq_abort(kmutex_t *mtx, int unlock)
    499 {
    500 	extern int safepri;
    501 	int s;
    502 
    503 	s = splhigh();
    504 	splx(safepri);
    505 	splx(s);
    506 	if (mtx != NULL && unlock != 0)
    507 		mutex_exit(mtx);
    508 
    509 	return 0;
    510 }
    511